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Abstract. In this paper, we have considered conformal-Matsumoto change of the class
of m-th root Finsler metrics. We have established the necessary and sufficient condition
for the transformed metric to be projectively flat or locally dually flat. Further, we have
proved the non-existence of the concerned metric which is projectively flat with non-
zero flag curvature.
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1. Introduction

Investigation of geometrical structures of family of probability distribution leads to
the appearance of information geometry and applied to various fields like, multi-
terminal information theory, statistical inference and control system. Finsler in-
formation geometry includes a unique and essential class of Finsler metrics called
dually flat Finsler metrics. These metrics play an important role for understand-
ing flat Finsler information structure. While studying the information geometry
of Riemannian manifold, Amari and Nagaoka [1] introduced the concept of locally
dually flat Riemannian metrics. Later, Shen [4] extended this concept of flatness
to Finsler geometry.

The m-th root metric was first introduced by H. Shimada in 1979 [10]. Mathe-
maticians as well as Physicists become interested in the study of m-th root Finsler
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metrics as it has numerous applications in Ecology, Biology and in Physics including
the study possible model of space time as well as unified gauge theory. The special
m-th root metric F = m

√
yi1yi2 . . . yim is called Berwald-Moór metric which plays

a very important role in theory of space-time structure, gravitation and general
relativity.

Let M be an n-dimensional manifold and TM be its tangent bundle. Let F :
TM → R be defined as F = A

1
m , where A := ai1i2...im(x)yi1yi2 ...yim and ai1i2...im

is symmetric in all indices. Then F is called an m-th root Finsler metric on M .
For m = 3, 4, it is called cubic and quatric metric, respectively. Many authors have
studied and characterized the Randers change [11], Conformal Kropina change [6],
and generalized Kropina change [13] of m-th root Finsler metrics. Tayebi et al. [11]
and M. Kumar [7] have studied generalized m-th root Finsler metrics and discussed
conditions for a Finsler metric to be locally dually flat and locally projectively
flat. In the paper, we have considered the Conformal-Matsumoto change of Finsler
metric defined by following

F = eσ(x)
F 2

F − β
,(1.1)

where β = bi(x)yi is a one-form and the Finsler metric F is an m-th root metric

given by F = A
1
m .

Hilbert’s fourth problem in the regular case is to characterize the metrics on an
open domain V ⊂ Rn such that the straight line segment is the shortest curve join-
ing two points, i.e., geodesic are straight line, and such Finsler metrics are called
projectively flat. It is well known that Riemannian metric is locally projectively flat
if and only if it is of constant sectional curvature. Thus, one can say that the prob-
lem is completely solved for Riemannian metric. Now the question aries, whether
the problem can be solved for Finsler metric? In Finsler spaces, the flag curvature
is natural extension of the sectional curvature and every locally projectively flat
Finsler metric is of scalar flag curvature. But the converse is not true, i.e., there
exist Finsler metrics with scalar or constant flag curvature that are not locally pro-
jectively flat [8]. Thus, it is natural to study Finsler metrics of scalar (respectively
constant) flag curvature, as the problem is still open in Finsler geometry. Here,
we have characterized the locally projectively flatness and locally dually flatness of
Conformal Matsumoto m-th root Finsler metric and gave the following results as

Theorem 1.1. Let F = A
1
m be m-th root Finsler metric. Assume that F =

F (x, y) be the Conformal-Matsumoto change of F . Then the necessary and sufficient
condition for F to be projectively flat is Axj = 0, bj = constant and the change is
homothetic.

Theorem 1.2. Let F = A
1
m be m-th root Finsler metric. Assume that F =

F (x, y) be the Conformal-Matsumoto change of F . Then the necessary and sufficient
condition for F to be locally dually flat is Axi = 0, bi = constant and the change is
homothetic.
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Riemannian curvature is a significant and central concept of Riemannian ge-
ometry and in 1926, it was extended to Finsler geometry by L. Berwald. The
Riemannian curvature of Finsler space is a family of linear transformation on a
tangent plane. The Riemann curvature Ry : TxM → TxM is defined by Ry(u) =
Rij(x, y)uj∂/∂xi, u = uj∂/∂xj , where

Rij(x, y) := 2
∂Gi

∂xj
− yk ∂

2Gi

∂xkyj
+ 2Gk

∂2Gi

∂ykxj
− ∂Gi

∂xk
∂Gk

∂xj
.

The flag curvature K at a point x is a function of tangent plane P ⊂ TxM
and a non-zero vector y ∈ P which tells us about how curved the space is, namely,
K = K(x, y, P ). For each tangent plane P ⊂ TxM containing y ∈ P\{0}, the flag
curvature is defined as [4]

K(x, y, P ) =
gy(Ry(u), u)

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where u ∈ P such that P = span{y, u}. If K(x, y, P ) = K(x, y), then the Finsler
metric is called scalar flag curvature and if K(x, y, P ) = constant, then the Finsler
metric is called constant flag curvature. The Finsler metric is said to have isotropic
flag curvature if K(x, y, P ) = K(x) is a function of x ∈ M and by Schur’s lemma,
if the flag curvature is isotropic and dim(M) ≥ 3, then K = constant. There are
many non-Riemannian projectively flat Finsler metric with constant flag curvature.
For example, Funk metric and Hilbert metric [4] are projectively flat as well as of
constant flag curvature on strongly convex domain. This makes it worth considering
the investigation of constant flag curvature for various Finsler metrics. In this case,
we have taken into account the Conformal Matsumoto metric and provided the
following result as

Theorem 1.3. Let F = F (x, y) be the conformal-Matsumoto change of m-th root
(m > 4) metric F = m

√
A such that A is irreducible. Suppose that F is projectively

flat with constant flag curvature. Then F has vanishing flag curvature K = 0 and
it also satisfies the three condition mentioned in the equations (4.4)-(4.6).

2. Projectively Flat Finsler Metrics

Projectively flat Finsler metrics of constant flag curvatures can be described by
using algebraic equation or by using Taylor expression. The projective factor of
projectively flat Finsler metric can be calculated using the general formula provided
by Hamel [5] as: A Finsler metric F = F (x, y) on an open subset V ⊂ Rn is
projectively flat if and only if it satisfies Fxiyjy

i = Fxj .

Proof of theorem 1.1: For an m-th root metric F = A
1
m , we have used the

following notations

Ai =
∂A

∂yi
, Axi =

∂A

∂xi
, A0l = Axkyly

k =
∂2A

∂xkyl
yk .
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Differentiating 1.1 with respect to xi, we get

[F ]xi =
eσ(x)

m(A
1
m − β)2

{
A

3
m−1Axi +mσxiA

3
m− 2βA

2
m−1Axi +m (βxi− βσxi)A

2
m−1

}
.

(2.1)
Differentiating 2.1 with respect to yj and multiplying the result by yi implies that

[F ]xiyjy
i =

eσ(x)

m(A
1
m − β)3

[( 1

m
− 1
)
A0AjA

4
m−2 + (A0j + σ0Aj)A

4
m−1

+3β
(

1− 1

m

)
A0AjA

3
m−2 − 3βA0AjA

3
m−1 +m (β0j + bjσ0)A

3
m

+2β2
( 2

m
− 1
)
A0AjA

2
m−2 + 2β (βA0j + βσ0Aj − bjA0 − β0Aj)A

2
m−1

+m
(
2bjβ0 − 2βσ0bj − ββ0j + βbjσ0

)
A

2
m

]
.(2.2)

Now, if we consider F to be projectively flat Finsler metric, we have [F ]xiyjy
i −

[F ]xj = 0, which in view of equation 2.1 and 2.2 gives us( 1

m
− 1
)
A0AjA

4
m−2 + (A0j + σ0Aj −Axj )A

4
m−1 + 3β

(
1− 1

m

)
A0AjA

3
m−2

−3β(A0Aj + σ0A0j −Axj)A
3
m−1+

{
m(β0j + bjσ0)−m(βxj−βσxj )+mβσxj

}
A

3
m

+2β2
( 2

m
− 1
)
A0AjA

2
m−2+

{
2β(βA0j +βσ0Aj−bjA0−β0Aj)− 2β2Axj

}
A

2
m−1

+
{
m(2bjβ0 − 2βσ0bj − ββ0j + βbjσ0) +mβ(βxj − βσxj )

}
A

2
m = 0,

which can be simplified as( 1

m
− 1
)
A0AjA

2
m−1 +

(
A0j + σ0Aj −Axj

)
A

2
m + 3β

(
1− 1

m

)
A0AjA

1
m−1

−3β (A0Aj + σ0A0j −Axj )A
1
m +m(β0j + bjσ0 − βxj + 2βσxj )A

3
m

+2β2
( 2

m
− 1
)
A0AjA

2
m−2 + 2β(βA0j + βσ0Aj − bjA0 − β0Aj − βAxj )

+m(2bjβ0 − βσ0bj − ββ0j + ββxj − β2σxj )A = 0.(2.3)

To calculate the above equation, we recall the following Lemma.

Lemma 2.1. ([12]) Let F = A
1
m (m > 2) be an m-th root Finsler metric on an

open subset V ⊂ Rn. Suppose that the equation ψA
2
m−1 +ΞA

2
m +ΦA

1
m+1 +ΘA

1
m +

ΥA
1
m−1 + Ω = 0 holds, where ψ,Ξ,Φ,Θ,Υ,Ω are homogeneous polynomials in y.

Then ψ = Ξ = Φ = Θ = Υ = Ω = 0.

Using Lemma 2.1, the equation 2.3 reduces to

A0Aj = 0,(2.4)
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A0j + σ0Aj −Axj
= 0,(2.5)

β0j + bjσ0 − βxj + 2βσxj = 0,(2.6)

β(A0j + σ0Aj −Axj )− bjA0 − β0Aj = 0,(2.7)

2bjβ0 − βσ0bj − ββ0j + ββxj − β2σxj = 0.(2.8)

By 2.5 and 2.7, we get
bjA0 + β0Aj = 0 .(2.9)

In view of equation 2.4, we have A0 = 0 as Aj 6= 0. From equation 2.9 and A0 = 0
it follows that β0 = 0. Taking partial derivative of β0 = 0, we obtain

β0j + βxj = 0.(2.10)

Substituting equation 2.6 and β0 = 0 in equation 2.8, we obtain σxj = 0, i.e., the
conformal change is homothetic and then we have σ0 = 0. Again from equation 2.6
and using σ0 = 0, we have β0j − βxj = 0. By considering 2.10, we get βxj = 0,
which implies bj = constant. This proofs our theorem 1.1.

3. Locally Dually Flat Finsler Metrics

Proof of Theorem 1.2: A Finsler metric F = F (x, y) on an open subset U ⊂ Rn
is locally dually flat if and only if it satisfies the following equations [4]:

[F
2

]xiyjy
i − 2[F

2
]xj = 0.

From equation 1.1, we have

[F
2
]xi =2

eσ(x)

m(A
1
m−β)3

{
A

5
m−1Axi +mσxiA

5
m−2βAxiA

4
m−1+m (βxi−βσxi)A

4
m−1

}
.

(3.1)
Again on differentiating 3.1 with respect to yj and contracting by yi, gives us

[F
2
]xiyjy

i =
eσ(x)

m(A
1
m − β)4

{( 2

m
− 1
)
A0AjA

6
m−2 + (A0j + 2σ0Aj)A

6
m−1

+3β
(
1− 3

m

)
A0AjA

5
m−2 + (β0Aj − 3βA0j − 6βσ0Aj + bjA0)A

5
m−1

+m(β0j + 2σ0bj)A
5
m + β(2βAoj − 4βAj − 4A0bj + 4βσ0Aj)A

4
m−1

+2β2
( 4

m
− 1
)
A0AjA

4
m−2 +m(3β0bj − ββ0j − 2βσ0bj)A

4
m

}
.

If F is locally dually flat Finsler metric, then [F
2

]xiyjy
i − 2[F

2
]xj = 0. From

these, we get( 2

m
− 1
)
A0AjA

6
m−2 + (A0j + 2σ0Aj −Axj )A

6
m−1 + 3β

(
1− 3

m

)
A0AjA

5
m−2
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+(β0Aj − 3βA0j − 6βσ0Aj + bjA0 + 3βAxj )A
5
m−1 +m(β0j + 2σ0bj − βxi + βσxj )A

5
m

+2β2
( 4

m
− 1
)
A0AjA

4
m−2 + β(2βAoj − 4β0Aj − 4A0bj + 4βσ0Aj − 2βAxi)A

4
m−1

+
{
m(3β0bj − ββ0j − 2βσ0bj) +mβ(βxj − βσxj )

}
A

4
m = 0 ,

which can be simplified as( 2

m
− 1
)
A0AjA

2
m + (A0j + 2σ0Aj −Axj )A

2
m+1 + 3β

(
1− 3

m

)
A0AjA

5
m−2

+(β0Aj − 3βA0j − 6βσ0Aj + bjA0 + 3βAxj )A
1
m

+m(β0j + 2σ0bj − βxi + βσxj )A
1
m+1 + 2β2

( 4

m
− 1
)
A0Aj(3.2)

+β(2βAoj − 4β0Aj − 4A0bj + 4βσ0Aj − 2βAxj )A

+m
(
3β0bj − ββ0j − 2βσ0bj + ββxj − β2σxj

)
A2 = 0 .

To solve the above equation, we use the following lemma.

Lemma 3.1. ([12]) Let F = A
1
m (m > 2) be an m-th root Finsler metric on

an open subset V ⊂ Rn. Suppose that the equation ψA
2
m+1 + ΞA

2
m + ΦA

1
m+2 +

ΘA
1
m+1 + ΥA

1
m + Ω = 0 holds, where ψ,Ξ,Φ,Θ,Υ,Ω are homogeneous polynomials

in y. Then ψ = Ξ = Φ = Θ = Υ = Ω = 0.

Using Lemma 3.1 in equation 3.2, it reduces to

A0Aj = 0,(3.3)

A0j + 2σ0Aj −Axj
= 0,(3.4)

β0j + 2bjσ0 − βxj + 2βσxj = 0,(3.5)

β0Aj − 3βA0j − 6βσ0Aj + bjA0 + 3βAxj = 0,(3.6)

2βAoj − 4β0Aj − 4A0bj + 4βσ0Aj − 2βAxj = 0,(3.7)

3β0bj − ββ0j − 2βσ0bj + ββxj − β2σxj = 0 .(3.8)

Since Aj 6= 0, therefore 3.3 gives A0 = 0. Substituting 3.4 and A0 = 0 in 3.6, we
get β0 = 0, which on partial differentiating gives us

β0j + βxj = 0.(3.9)

Solving 3.8, and using 3.5 and β0 = 0, we obtain σxi = 0. This means that the
conformal change is homothetic and then we have σ0 = 0. By 3.5 and σ0 = 0, we
get β0j = βxj . By considering 3.9, we obtain βxj = 0, which implies βj = constant.
This concludes our proof.
By Theorems 1.1 and 1.2, one can conclude the following.

Corollary 3.1. The conformal-Matsumoto change of m-th root Finsler metric is
locally dually flat if and only if it is projectively flat.



On Conformal-Matsumoto Change of m-th Root Finsler Metrics 901

4. Finsler Metrics of Constant Flag Curvature

In this section, we have find the condition for transformed Finsler metric to be
projectively flat with constant flag curvature. The scalar flag curvature K of pro-
jectively flat Finsler metric F is defined as K = F−2

(
P 2 − Pxiyi

)
, where the

projective factor is given by [4]

P =
Fxiyi

2F
.(4.1)

Proof of Theorem 1.3: Multiplying 2.1 with yi implies that

[F ]xiyi =
eσ(x)A

2
m

(A
1
m − β)2

{
σ0A

1
m +

1

m
A0A

1
m−1 − 2

mA
βA0 + (β0 − βσ0)

}
.

Irreducibility of A and deg(Axi) = m − 1 gives us that there exist a one-form
θ = θi(x)yi such that A0 = mθA. Then the above equation can be written as

[F ]xiyi =
eσ(x)A

2
m

(A
1
m − β)2

{
(σ0 + θ)A

1
m + (β0 − βσ0 − 2θβ)

}
.(4.2)

By considering 4.1, the projective factor of the transformed Finsler metric F is
given by

P =
1

2(A
1
m − β)

{
(σ0 + θ)A

1
m + (β0 − βσ0 − 2θβ)

}
.(4.3)

Now, differentiating 4.3 with respect to xi, we obtain

P xi = 1

2(A
1
m−β)2

[
(A

1
m − β)

{
(σ0xi + θxi)A

1
m + 1

m (σ0 + θ)AxiA
1
m−1 + (β0xi − βxiσ0

−βσ0xi − 2θβxi)
}
−
{

(σ0 + θ)A
1
m + (β0 − βσ0 − 2θβ)

}(
1
mAxiA

1
m−1 − βxi

)]
,

which by multiplying it with yi, we get

P 0 =
1

2(A
1
m − β)2

{
(σ00 + θ0)A

2
m + (β00 + θ2β − 2σ00β − 3βθ0 − 2θβ0)A

1
m

+(β0
2 − ββ00 + β2σ00 + 2β2θ0)

}
.

Suppose F is of constant flag curvature, then KF
2

+P 0−P
2

= 0. Using equation
4.3 and 4.4, we obtain

Keσ(x) A
4
m

(A
1
m−β)2

+ 1

2(A
1
m−β)2

{
(σ00 + θ0)A

2
m + (β00 + θ2β − 2βσ00 − 3βθ0 − 2β0θ)A

1
m

+(β2
0 − ββ00 + β2σ00 + 2β2θ0)

}
− 1

4(A
1
m−β)2

{
(σ0 + θ)2A

2
m + (β0 − βσ0 − 2θβ)2

+2(σ0 + θ)(β0 − βσ0 − 2θβ)A
1
m

}
= 0 .

To calculate the above equation, we recall the following Lemma.
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Lemma 4.1. ([12]) Suppose that the equation φA
4
m +χA

2
m +ΞA

1
m +Ω = 0 holds,

where φ, χ,Ξ are homogeneous polynomials in y and m > 4. Then φ = χ = Ξ =
Ω = 0.

Using Lemma 4.1, we have K = 0 and the following conditions

2(σ00 + θ0)− (σ0 + θ)2 = 0,(4.4)

2(β00 + θ2β − 2βσ00 − 3βθ0 − 2β0θ)− 2(σ0 + θ)(β0 − βσ0 − 2θβ) = 0,(4.5)

2(β2
0 − ββ00 + β2σ00 + 2β2θ0)− (β0 − βσ0 − 2θβ)2 = 0.(4.6)

Thus, we conclude the proof of theorem 1.3.
Theorem 1.3 can be reiterated as follows:

Corollary 4.1. If F = F (x, y) is the conformal-Matsumoto change of m-th root
(m > 4) metric F = m

√
A such that A is irreducible. Then F can not be projectively

flat with non-zero constant flag curvature.

5. Conclusion

For a Finsler metric, if the geodesic are straight lines then it must be of constant
curvature. The Funk metric and Klein metric are projectively flat with negative
constant flag curvature K = −1/4 and K = −1, respectively [9]. While, Bryant
metric is projectively flat with positive constant flag curvature K = 1 [3]. Although,
Bao and Shen [2] have constructed a family of Randers metric on S3 of constant
curvature K = 1, which is not locally projectively flat. In the present paper, we
have shown that it doesn’t exist a Finsler metric in the form 1.1 such that it is
projectively flat with non-zero constant flag curvature.
For future approach, one can classify the family of Finsler metrics which is pro-
jectively flat either with non-zero constant flag curvature or with zero constant flag
curvature.
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