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RIESZ LACUNARY ALMOST CONVERGENT DOUBLE SEQUENCE SPACES
DEFINED BY ORLICZ FUNCTIONS

Siikran Konca and Metin Basarir

Abstract. The aim of this paper is to introduce a new concept for strong almost Pringsheim
convergence with respect to an Orlicz function, combining with Riesz mean for double
sequences and a double lacunary sequence. In addition, we study almost weighted lacu-
nary statistical convergence for double sequences and present some inclusion theorems.
Keywords: Orlicz function, Pringsheim convergence, double sequences, Riesz conver-
gence.

1. Introduction

A double sequence x = (xi) is said to be convergent in the Pringsheim’s sense
(or P-convergent) if for given ¢ > 0 there exists N € IN such that )xk,; - L| <e
whenever k, [ > N [23]. We shall write this as limy ;. Xt; = L, where k and [ tending
to infinity independent of each other. Let w, and ¢, be the spaces of all real or
complex double sequences and P-convergent sequences, respectively. Throughout
this paper limit of a double sequence means limit in the Pringsheim’s sense. A
double sequence x is bounded if [|x|| = supy >olxkil < co. Note that, in contrast to the
case for single sequences, a convergent double sequence need not be bounded. By
2%, we denote the space of double sequences which are bounded convergent and
by %, the space of bounded double sequences.

We may refer to [1]-[4], [8], [14]-[22], [24], [26]-[29] for further results related
with the concept of double sequence.

Mursaleen and Edely [21] defined the statistical convergence for double se-
quences x = (xi;) as follows: A real double sequence x = (xi;) is said to be P-
statistically convergent to L provided that for each ¢ > 0

P—m!iiqr_l)'lm% {j<mandk<n:|xjrk—L|>g}':O,
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where the vertical bars denote the numbers of (j, k). Following Freedman et al. [9]
and Fridy and Orhan [10], the ideas of lacunary sequence and lacunary statistical
convergence were extended to double sequences by Savag and Patterson in [22],
[26]. But the concept of double lacunary density has been recently introduced by
Cakan et al. in [8]. The concept of lacunary statistical convergence for double
sequences has also been studied in [14]-[18], [20], [27]-[29]. For further results we
recommend to the reader to see [11], [16], [17].

Recently, Bagarir and Konca [5] have obtained a new lacunary sequence and a
new concept of statistical convergence for single sequences which is called weighted
lacunary statistical convergence by combining both of the definitions of lacunary
sequence and Riesz mean, and have extended this new concept to locally solid
Riesz spaces in [6] (see also [7], [12]).

The notion of almost convergence for double sequences had been introduced
by Moricz and Rhoades [19], later the notion of strong almost convergence for
double sequences was introduced by Basarir [3]. In [28] Savas and Patterson gave
the definition of lacunary sequence for double sequences and introduced a new
concept for almost lacunary strong P-convergence. Recently, Alotaibi and Cakan
[1] have introduced the Riesz convergence of double sequences (see also [15]).

In this paper, we introduce a new concept for strong almost Pringsheim con-
vergence with respect to an Orlicz function, combining with Riesz mean and a
lacunary sequence for double sequences. Further, we study almost weighted la-
cunary statistical convergence for double sequences and present some inclusion
theorems.

2. Definitions and Preliminaries

Before the beginning of the presentation of the main results, we give some
definitions and preliminaries.

LetA = (u;’i”) , J,k=0,1,... be a doubly infinite matrix of real numbers for all

m,n =0,1,.... Forming the sums

e8]

(o)
— mn.,.

j=0 k=0

called the A-means of the sequence x, yields a method of summability. More exactly,
we say that a sequence x is A-summable to the limit L if the A-means exist for all
m,n = 0,1, ... in the sense of Pringsheim’s convergence:

9

s =

p
lim
j=0 k=

p,q—)OO

o
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and
i Y = L
We say that a matrix A is bounded-regular or RH-regular if every bounded and
convergent sequence x is A-summable to the same limit and the A-means are also
bounded. Necessary and sufficient conditions for A to be bounded-regular are

L lim a% =0 (jk=0,1,.)

m,n— o0

(o) (o)
2. lim ) Yay'=1
mpn—e0 20 k20 ]

3. lim Y |a™ =0 (k=0,1,.)
mn—ea ;2o J
3 - mn| — { —
4. m!irfoo,go ay| = 0 (j=01,..)
5. Y Y lay'|<C<oo (mn=0,1,..).
j=0k=0'"’

These conditions were first established by Robison [24]. Actually (1) is a con-
sequence of each of (3) and (4). We say that a matrix A is strongly regular if every
almost convergent sequence x is A-summable to the same limit, and the A-means
are also bounded.

Let n,m > 1. A double sequence x = (xi;) of real numbers is called almost

P-convergent to a limit L if

utn=1n+m-1
P—- lim sup |— E E x—L{ =0,
1,1Mm—00 >0 nm
Wiz k:y l:)]

that is; the average value of (xi;) taken over any rectangle
{k,):u<k<p+n-1, n<I<n+m-1}

tends to L as both 7 and m tend to oo, and this convergence is uniform in y and 7.
A double sequence x is called strongly almost P-convergent to a number L if

u+n=1n+m-1

P- n,lniqr—r)loo sup % Z Z |xk,l - L| =0.

w,n =0 k=u 1=

Let denote the set of sequences with this property as [¢*]. By ¢?, we denote
the space of all almost convergent double sequences. It is easy to see that the
inclusions ¢5° C [¢?] C ¢ C [ strictly hold. As in the case of single sequences,



172 Siikran Konca and Metin Bagarir

every almost convergent double sequence is bounded. But a convergent double
sequence need not be bounded. Thus a convergent double sequence need not
be almost convergent. However, every bounded convergent double sequence is
almost convergent.

We will use the following definition which may be called convergence in Pring-
sheim’s sense as follows:

(1 —A)=0(), (k11— o).

Definition 2.1. [1] Let (p,), (5.) be sequences of positive numbers and P, = p; +
P2+ e+ Pu, Py = P1 + P2 + ... + Pu. Then the transformation given by

n

Z i PrPix,1

k=1 I=1

1

Tn,m (-x) = PP
nm

is called the Riesz mean of double sequence x = (xi;). If P - limymTym (x) = L,
L € R, then the sequence x = (xx) is said to be Riesz convergent to L. If x = (xy;) is
Riesz convergent to L, then we write P - limx = L.

The double sequence 0, = {(k;, Is)} is called double lacunary if there exist two
increasing sequences of integers such that ko =0, h, = k, —k,-1 = coasr — coand
lp=0,hs =l —Il;.1 > o0 ass — oo. Let kys = kL5, hys = h,hs and O, 5 is determined
by Ie = {(k,]) : k1 <k <kyand Ly <I<L},q, = =, 4 = 7= and g, = 4,4 [28].

Using the notations of lacunary sequence and Riesz mean for double sequences,
we now present some new notations which will be used in the next section:

Let 0,5 = {(k+,I;)} be a double lacunary sequence and (px), (1) be sequences
of positive real numbers such that Py := Yo Pt P == Yoy Pr and H, :=
Ykekrfo] Por Hs := Xer 1 Pr- Clearly, H, := Py, — Py, H := P, — Py_,. If the Riesz
transformation of double sequences is RH-regular, and H, := Py, — P, , — o as
r — oo, Hy:= P, = P, — coass — oo, then 0;, = {(P}, P,,)} is a double lacunary
sequence. Our obligation to add such provisions is the assumptions “P,, — oo as
n — oo” and P, — o0 as m — c” may be not enough to obtain the conditions
"H, - oo as r — o” and "Hy; — 0 as s — ", respectively. To show these
clearly; for any lacunary sequences (k) and () of integers, one can find sequences
of positive real numbers (px) and (p;) such that P, = p1 + ... + p, — o0 (n — o0) and
Py =p1+ ...+ Pp — 00 (m — ), yet H, = Py — Py, and Hy = P, — P;_, are bounded
and strictly positive. For example, let

{ 1, ifk =k, for somer e IN
Pk =

3—2k, for all other k € N
pr= {

and
, ifl =1 for somes e N

, for all other [ € IN.

N =
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Then P, —» oo (n = oo)and r < Py, <r+1as Py, > p, +Pk, + . + Pk, = 1,
Py, <P, + Pty + Pk + Yio1 5 =7+ 1,and P, — co (m — c0) and s < Py, <s+1
as Py, > pi, + P, + ..+ P, =5, P, <Pi, +Pi, + ... + i, + Loy 37 = s+ 1. Then we obtain
H =P, —-P,<r+1-(r-1)<2and H; =P, -P_, <s+1-(s—1) <2are
bounded from above and cannot diverge to infinity.

Throughout the paper, we assume that P, = p; + ... + p, — o (1 — ),
Py =p1+ ...+ Pm — o (m — ), such that H, = Py — P, — o0 asr — oo and
H;=DP,, - P, - oass— oo.

Let Pkr,s = Pk,PIS/ Hr,s = H,,Hs, I’,,,S = {(k, l) : Pk,_l <k< Pky and P15_1 <I< Pls },
" and Qrs = Q,Qs.

- A _
Ql’ - Pkyil 7 QS - pls_1

If we take py = 1, p; = 1 for all k and [, then H,;, Py, Qrs and I} reduce to h,,
kys, qrs and L.

Recall in [13] that an Orlicz function M is continuous, convex, nondecreasing
function define for x > 0 such that M(0) = 0 and M(x) > 0 for x > 0. If convexity of
Orlicz function is replaced by M(x + y) < M(x) + M(y) then this function is called
the modulus function which is defined and characterized by Ruckle [25].

Without loss of generality, we will use the limit notation in Pringsheim’s sense
lim instead of lim , for brevity.
1,8

7,5—00
3. Main Results

Let M be an Orlicz function and t = (#,) be any factorable double sequence of
strictly positive real numbers, we define the following sequence spaces:

. — |xk+p,l+q_L| fi
- x=(xg) : P=lim 7~ Y p Z[M(i =0
[Rz, 05,0, M, t] = (1) rs—oo Hrs (k,l)ez,,sp P P ’

uniformly in y and 7, for some p> 0

t’,
x:(xkll):P— im Hly,s Y pkﬁ][M(M)]HZO

500 T (k,DelL

uniformly in p and 7, for some p> 0

[R2, 6,0, M t] =

Clearly, the proper inclusion [RZ, 05,0, M, t]o c [RZ, 05,0, M, t] holds. We shall
denote [Rz, 05,0, M, t] and [Rz, 05,0, M, t]o, as [Rz, Or5, 1, M] and
[RZ, 0,5, p, M]O, respectively when f; = 1 for all k and [. If a double sequence

x = (xg;)isin [Rz, Ors, P, M], we shall say that the double sequence x = (xx;) is Riesz
lacunary strongly almost convergent with respect to the Orlicz function M. Note
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that [Rz, 05,0, M, t]: [Rz, Ors, p] and [Rz, 05,0, M, t]O: [Rz, 6,,5,;7]0 when M (x) = x
and t;; = 1 for all k and .

If we choose py = 1, p; = 1 for all k and /, then we obtain the following sequence
spaces which can be seen in [28].

. 1 |xk+p,1+q_L| tis
x=(xx1): P— lim =~ ) MT =0,

[ACQV,S,M, t] = r,5—00 "1 (k)el, s
uniformly in p and n, for some p> 0
v P tim 1 () 2o
[ACo,.. M 1] = ' rs=eo 1o iy, : ’

uniformly in y and 7, for some p> 0

Let M be an Orlicz function, t = (fx;) be any factorable double sequence of
strictly positive real numbers and (p,), (5) be sequences of positive numbers and
Py =pi+p2+ ..+ pPu Py =1+ P2+ ... + Pm. We define the following sequence
spaces:

_( )'P— li 1 i m _[M(M)]tm_o
[RZ,P,M, t] _ =) n,nlgm PPy 2 z:1pkpl . =0|

uniformly in y and 7, for some p> 0

x—(x ) :P— lim Zn“ g“ - [M(M)]t”_o
[sz p, M, t]O = =—\Akl) - ,m—00 PP, = e PrP1 , =0[

uniformly in p and 7, for some p> 0

We will investigate the inclusion relations between these sequence spaces given
above, later. We have the following theorem whose proof is left to the reader.

Theorem 3.1. For any Orlicz function M and a bounded factorable positive double num-
ber sequence ty, [RZ, Ors, 0, M, t] and [RZ, Ors,p, M, t]o are linear spaces.

Theorem 3.2. Let O, = {(k;,Is)} be a double lacunary sequence and py, p; be sequences
of positive numbers. If liminf Q, > 1 and lim inf Qs > 1, then for any Orlicz function M,
r S

[R2,p, M, t] € [R2, 0,6, p, M, t].

Proof. Assume that liminfQ, > 1 and liminf Qs > 1, then there exists 6 > 0 such
r S

that Q, > 1+ 6 and Qs > 1 + 6. This implies f—k’ > 2 and g—: > 2. Then for
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xe [Rz, p,M, t], we can write for each y and n

Xy l+q—L
A,,S—H1 Y PkPi[ (lk‘l' |

(kl eI,S

I
Hly,s k§1 El Pkﬁl[ (|kaz+q )

kv—l 5—

]sz
1 ls 1
“H L L Pkpl[
" k=11=1

|xk+;1 I+11 Ll )]
k; I

1 = |xk+y l+q L| b
—H Z Z 4571 M
k=k,-1+11=1
I Ky

s 1 ty
1 |X]\ 11+ L|
_H” Z kpl[ ( 0 )]
"=l _1+1 k=1
!

k ti
_ pk,P[9 LG |xk+yl+1] L| .
= H. (Pk,PI %Elp" I[M(
ke 1 tr)
Py _ P 1 el |xk+11+q L]
~H. (PA 2 Y. X pkpi| M !p

51 k=11=1
k, P L1 t1
1 Z I 1 Z _ M |xk+y,1+q_L|
o o P Pkpl[
kek4l o P
I ki1 b1
1 Pe o q _ |%kepien=L] |
2 o7 L pkp’[M( P :
1=l +1 1 k=1

Since x € [Rz,p, M, t] the last two terms tend to zero uniformly in y, 7 in the
Pringsheim sense, thus for each p and 7,

ko1 bl
1 b . Xl l+n — L
N
Pe Py 4= 4= p

D ko1 L tk'l
Py _1P] 1 1 |xk+y,l+1] - L)
b _ M| — | |+0(1).
Hys | Py, P P P o)

Since H,s = Py, P, — Py, P;_,, for each p and 1 we have the following:

PP, < 1+06 nd Py, P, < 1
Hr,s o Hr,s 6
The terms
ko1
1 a4 _ )xk+y I+7 L)
_ prpi| M
Pkrpl9 ; l=1 [ ( p

and
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are both Pringsheim null sequences for all  and n. Thus A, is a Pringsheim null
sequence for each i and 7. Therefore x is in [RZ, 05,0, M, t]. This completes the

proof. O

Theorem 3.3. Let 0,5 = {(k;,Is)} be a double lacunary sequence and py, p; be sequences
of positive numbers. If lim sup Qr < o0 and lim sup Qs < oo, then for any Orlicz function

Stikran Konca and Metin Bagarir

M, [R2, 0,5, p, M, t]c [R ,p,Mt]

Proof. Since limsup Q, < o and limsup Qs < oo, there exists H > 0 such that
r S

Q,<Hand Q; < Hforall rand s. Letx € [Rz, Ors, 0, M, t] and ¢ > 0. Then there
exist 7y > 0 and sy > 0 such that for every i >

b1
, 1 _ xk+y,l+r]
Ai= T Z pkp;[M(g]] <e.
Y (K el P

Let M’ = max {A',-j :

and ;.1 <m <

1<i<rpand1<j<

=11=1
k, | 9]
xk+p,l+q_L| .
<p—p— L Z PkPi[ (—p
1 Ply k=11=1
s Iy, -1 bt
_ = kt+p,l+n
~ P D Z Z PkPl[M( 0 )
=11 =11\ (kEl,
Ty,
_ {0 ’ 1 ’
~— P P Z Ht,uA tu + P P Z Ht,uA t,u
k1t = ko1l < <
tu=1,1 (ro<t<r)U(sg<u<s)
M/Pk, plg
0o 1
< 5, +| sup A’y 5 Y H;,
-1 -1 t>roUu>sy =17 551 (g <t<r)U(sg <u<s)
M'P,, Py _
0 so £
< Pl + Pk p[ Z Ht’u
-1 -1 =171 (g <t<r)U(sp<u<s)
< MlPk'QPZSO " Pky Pls e = MPk’OPIQO Q Q
- M/yﬁ]P}f1 Py Pi_y Pr_y Py rics®
<M eH2,

Since P;_, — coand P_, — o0 asr,s — oo, it follows that

5 ol ()leH ~o,
m

k=1 I=1

uniformly in p and 7. Therefore x € [ ,pM, t]

1o and j > sp and for all y and 7,

so}, and nand mbesuchthatk,_; < n <k,
Is. Thus we obtain the following:

m — |xk+ 1,Z+11_L| fil
()
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We observe the following corollary as an outcome of the Theorem 3.2 and
Theorem 3.3.

Corollary 3.1. Let 0,5 = {(k,, )} be a double lacunary sequence and py, p; be sequences

of positive numbers. If 1 < liminf Q, < limsup Q,s < oo, then for any Orlicz function
7,8 rs

M, [R2, 6,c,p,M, t]= [R2, p, M, 1]
Theorem 3.4. The following statements are true:

1. Ifpr < 1forallk € Nand p; < 1 foralll € N, then [ACQ
with [ACq

M,t] c [R2,0,.,p, M, 1|

rs’

M, t|-P-limx = [R2, 0., p, M, t]-P-lim x = L.

s’

2. Ifpx > 1forallk € Nand p; > 1foralll € N, and and = are upper bounded, then

[R2,0,5,p,M,t| € [ACq,., M t] with [R?, ,s,p,M t- p limx = |ACe,., M, t]-P-
limx =L.

rs/ rs/

Proof. 1. If pp < 1forallk € Nand p; < 1 foralll € N, then H, < h, for all
r € N and Hs < h for all s e IN, respectively. So, there exist M1 and M,
constants such that 0 < M; < =~ < 1forallre Nand 0 < M, < = < 1 forall
s€IN. Letx = (x¢;) be a double sequence which converges to the P-limit L in
[ACQ M, t], then for each y and n

_ t1
)3 Pkp[ (7'”*“’;*” 4 )]

H,s
(kDelys

_ ks l4n—L fil
=7 T p|m(ectl)]

(kDelys

ty)
1 1 |xk+y,l+1]_L| !
M;.hy My.h Z‘ [M ( p

(kDelys

sulen—L fit
=g ¥ ()]

(kDels

st

where M, := MiM,. Hence, we obtain the result by taking the P-limit as
7,8 — 0.

2. Let 2 7. and % be upper bounded and px > 1 for all k € N and p; > 1 for all

I e N. Then H, > h, forallre]NandFI > h, for alls € N. So,thereexistN1

and N, constants such that 1 < <N < coforallr e Nand1 < h— <Ny < o0

for all s € N. Assume that the double sequence x = (x;,;) converges to the
P-limit L in [R , 05,0, M, t], with [R , 05,0, M, t] P-limx = L, then for each
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and 1 we have

Loy [w(bect))”

" (kDel,

o L
s e, p
— |xk+p,l+q_L| lis
Y PkPl[M (—p

* (kDel

11 5 | v (B =L i
Nis H,.. Y pib 3
T (kDeEls

[
|>—l

=

|z
1z

T
T

7

where N1, := NiN>. Hence, the result is obtained by taking the P-limit as

7,8 — 00,

O

Definition 3.1. Let 0, = {(k,, [;)} be a double lacunary sequence. The double
number sequence x is said to be S(RZ,QVS)—P—convergent to L provided that for every

>0,

P -1lim

7,8

sup i{(kf ) € Iy : pipt [Xesysion = L] > e}j = 0.
nSp

In this case we write S (& Grs)-P—limx =L.

Theorem 3.5. Let 0,5 = {(k;, I5)} be a double lacunary sequence. If I',s C I,5, then the
inclusion [Rz, O:s, p] c S(Rz’em) is strict and [Rz, O:s, p] - P-limx =S(R2,9”)—P—limx =T

Proof. Let
(3.1) Kp,, (&) = {(k,]) € I'ne : et |y — L| > €}

Suppose that x € [RZ, Ors, p]. Then for each y and

P-1lim HL Z Prp1 |xk+y,;+n - L) =0.

r,s
" (kDel

Since
1 - 1 -
Ao L P |xk+y,l+r] - L| 25> L P )xk+y,l+r] - L)
(kD€L (k,DEl s
_ 1 - 1 -
=6 L P |xk+,u,l+7] - L| +a- L )xk+,u,l+1] - L|
(kDel', (kDel.
(DeKp, ,(6) (kDEKp, (&)
1 - _ |Ke (@)
> L Pebi |xk+,u,l+7] - L| =~
" (kDEl s ’

(kDeKp,  (¢)



Riesz Lacunary Almost Convergent Double Sequence Spaces 179

|KPv9 (€)|

for all y and 1, we get P- hm = 0 for each p and n. This implies that

X € S(Rz,Gr,s)
To show that this inclusion is strict, let x = (xx;) be defined as

1 2 3 .. {H.-1 JYH. 0

2 2 3 .. JH.-1 YH. 0

3 2 3 .. JH.-1 YH. 0

WS VHL-1 23 SH.-1 YH,. 0
VHzs \3/ VHzs VHzs vH:s 0

0 0 0 0 0

and py := 1, p; := 1 for all k and I. Clearly, x is an unbounded sequence. For ¢ > 0
and for all y and 1 we have

P - lim
s 7,5

=0.

}|:P_hrgl f/mf/m

1,8

{(k, )€1' : prpr [Xkspdon = L) > ¢

Therefore x € S(RZ,Q,S) with the P-limit L = 0. Also note that

Hyo +33Hys —4Hs+2 1

2H, 2

Z Pipi Xk 1en — O = P— lim

r,s "
"8 (k D)el,

Hence xy; ¢ [RZ, Ors, p]. This completes the proof. [

Theorem 3.6. Let M be a constant such that pip, )ka’lw - L)< M, forall k,| € N and for
all wand n. If s C Iy, then S(Rz,e,s) C [Rz, 05, p] with [RZ, Oys, p]-P-limx 25(1'22,9,5)'
P-limx = L.

Proof. Assume that 0, = {(k;, I;)} be a double lacunary sequence, pip; )xkﬂ,,prn - L|
< M, for all k,I € N and for all u and 7. Let I,s C I’;s and Kp, (¢) be as defined
in the previous theorem. Since x € S(RZ,Q,S) with S(Rzﬁm)—P—hmx = L, then P-
- K (@)
lim I;iy,s

= 0. For a given ¢ > 0 and for all 1 and 1 we have the following.

1 . 1 _

Ao L P |xk+,u,l+1] —L| <@ L P )xk+,u,l+1] —L|
(kDel,s (k el

_ 1 _

=g L PP |xk+y l+n — L| H,s Y ppi )xk+y,l+r] —L|
* (kDe, (el

(D)eKp, ) (6DKp, )

|Kp,s (€)]

HV,S

<M + €.

Since ¢ is arbitrary, we get x € [Rz, Ors, p] with the same P-limit L. [
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Theorem 3.7. The following statements are true:

L Ifpc < 1forallk € Nand py < 1forall | € N, then So, C S(gu,q, ) with
Sp,,-P-lim x = S(RZ,G,S)_P_limx =L

2. Ifpr=1forallk € Nand p; > 1 forall ] € N, and and = are upper bounded,
then S(RZ,Q,VS) - 59,/5 with S(RZ,Q,VS) -P-limx = SQV/S—P hmx = L

Proof. 1. Ifpr <1 fc_)r allk e Nand p; < 1 for all I € N, then H, < h, for all
r € Nand H; < h for all s € IN. So, there exist ]\711 and M, constants such
that0<M1\ 1forallr€]Nand0<M2\-— 1 for all s € IN. Let

x = (xx) be a double sequence which converges to the P-limit L in Sg,, then
for an arbitrary ¢ > 0 and, for all u and n we have

HL“ '{(k/ l) € I’r,s . pkﬁl xk+[.l,l+r] - L| > é}'

= oo '{Pkr—l <k< Py, and P]S_l <I< P]S : Prpi )xkﬂ,,lﬂ] - L) > €}|

—|{ < ko1 <k <Py, <k and

LSl < l < 1S < Ny l+n — L) > é}|

M1M2

hl {k,,_l <k<kandl, <I<I: |xk+y,;+,] - L| > 8}'

§|H

L L) € Los [riieg — L] > &

in‘_

where M;, := MiM,. Hence, we obtain the result by taking the P-limit as
7,5 — 00.

2. Let & 7. and % be upper bounded and py > 1 for all k € N and p; > 1 for all
leN. ThenH, > h, forallr € ]N and H > h, for all s € IN. So, there exist Ny
and N; constants such that 1 < 7= < Nj < ooforallr e Nand1< = < Np < o

for all s € IN. Assume that the double sequence x = (xx) converges to the
P-limit L in S(RZ,Q,S) with S(RZ,GVS) -P-limx = L, then for an arbitrary ¢ > 0 and,

for all p and 1 we have
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thS {(k/ l) € Il‘,s : )xk+,u,l+1] - L) > €}|
= 1h {kr_l <k<kandl,_; <I<: |xk+y,;+,] - L) > e}|
< M2 k1 < Py, <k <k <Py and

lioy <Py <I<I; <Py :pip |xk+y I+ — L| }'

N] Nz

{ b, <k <Py and le <I< plg L Prpi |xk+y,l+,7 - L) > é}|

= Nip.q . '{(k 1) €l'ss 2 pibi (X ey — L| > é}'
where N1, = N1N,. Hence, the result is obtained by taking the P-limit as
7,5 — 00,

O

Theorem 3.8. Let 0,5 = {(k:,Is)} be a double lacunary sequence. Then we have the
followings.

1. Ifliminf Q, > 1 and liminf Qs > 1, then S(r) € S(re0,.)-
r S 7vrs

2. Iflimsup Q, < o and limsup Qs < oo, then S(RZ,G, )< S(Rz).
r s g

3. If1 <liminf Q,s < limsup Q,; < o, then S(Rz 0,.)= S(Rz)
7,8 rs Vs

Proof. The item (3) is a consequence of (1) and (2). The proof can be done in a
similar manner as in Theorem 3.2, Theorem 3.3 and Corollary 3.1. For this purpose,
we left the proof to the reader. [

Definition 3.2. A double sequence x = (xx;) is said to be Riesz lacunary almost
P-convergentto L if P — hm W (x) =L, uniformly in y and 1, where ol = wl(x) =
1

A, Y pp Xkt I+
(k1) €l

Definition 3.3. A double sequence x = (xi;) is said to be Riesz lacunary almost
statistically summable to L if for every ¢ > 0 the set

Ke:=1{(r,s) eENxXN:|wl -L| > ¢
{ jr ~ 1| > ¢}

has double natural density zero, i.e., 6> (K;) = 0. In this case, we write (R, 6) .
St

P-limx = L. That is; for every ¢ > 0, P - hm—n {r<m s < )a) L|>€}' =0,

mn
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uniformly in ¢ and . Hence, a double sequence x = (xi,) is Riesz lacunary almost
statistically summable to L if and only if the double sequence (a)fsn(x)) is almost
statistically P-convergent to L.

Note that since a convergent double sequence is also statistically convergent to
the same value, a Riesz lacunary almost convergent double sequence is also Riesz
lacunary almost statistically summable with the same P-limit.

A double sequence x = (xy;) is said to be strongly [Rz, Ors, p]q-almost convergent
(0 < g < c0) to the number L if P- hrr? @t (Jx = L|7) = 0, uniformly in p and 7. In this
case, we write x;; — L ([Rz, 0,5, p]q) and L is called [Rz, 0,5, p]q—P-limit of x. Also,
we denote the set of all strongly [Rz, Oy, p]q—almost P-convergent double sequences

by [Rz, Gr,s,p]q.

Theorem 3.9. Let I,s C I, and pip; |xk+y,l+n - L) < M forall k,I € N and for all u and
1. If the followings hold, then 5(1"22,9,,9) c [Rz, Ors, p]q and S(Rz,em)—P—limx = [R2, Ors, p]q—

P-limx = L.
1. 0<g<land1< )ka’lﬂ, —L| < 00,
2.1<g<o0and0 < |xk+y,l+,7 - L) <1
Proof. Assume that x = (xi1) € S(gs g,y With P - lim g |Kp, (¢)| = 0, where K, (¢)
s r,5—00 1115 s G

was given by (3.1).

Since pip |xk+},,1+,7 - L| < M for all k,I € N and for all g and 1, and I, C I}, then
for a given ¢ > 0 and for all 4 and 1, we have

1

Y. P )xk+y,l+n - L)q

Hrs
" (kDels
1 _ q
<g L pkpl|xk+y,l+1] —L|
" (kDEr s
_ 1 = L q 1 _ L q
=g L PP ke — L] A g X Pk Xy —
’ (krl)epr,s " (k,l)EI',,S
(kDeKp, ¢ (€) (kDeKp, ¢ ()
= Tr,s + T,I‘,Sr
where
1 = q
T”,S = H Z Prpi )xk+,u,l+1] -L
" (ke

(kDEKp, ()
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and

1 _ q

T = 0. Z Pkiﬂl)ka,m, -L.
"5 (kDer s
(kDeKp, o (©)

For (k,I) ¢ Kp,, (¢), we have

1 ~ | _
Tys = H Z Pip1 )xk+y,l+n -L| < . Z Pipi )ka,l”, —-L|<e
" (ke s Sk DEl 1
(k,l)éKp,/S (e) (k,l)éKp,/S (€)

If (k1) € Kp,, (¢), then

1 q
; _
T = o Z prpi |xk+y,l+n - L)
1,8
"~ (kDEL 1
KDeKp, (&)

Z Pipi |xk+y,l+n - L) < Hﬂrs |Kp (e)|.

S (ke s
(kDeKp, ¢ (e)

1

<
H

Hence, HL,S . 1)21 pkﬁ;|xk+y,,+n _L|”7 — 0 as r,s — oo, uniformly in y and n. This
A)E s
completes the proof. [

Theorem 3.10. Let I, C I,.. If the following conditions hold, then [Rz, Gr,s,p]q c
S(RZ,GV,S) and [Rz, O,s, p]q-P-hmx = S(RZ,G,,S)'P'hmx =L

1. 0<g<Tand0< |Xerppq — L] < 1.

2.1<g<ooandl< |xk+y,;+,] - L) < o0,
Proof. Letx = (x;) be strongly [Rz, Oy, p]q—almost P-convergent to the limit L. Since

pkﬁl)ka,m] — L|q 2 pipi |xk+},,1+,7 — L| for case (1) and (2), then for all p and 1, we have

1

Y Pkpl|xk+y,l+n - L|q

Hys
(ke
> H1 - Y pbi )xk+,u,l+1] —L)
S (kDel s
_ q
>4 L mh |xk+y,l+n —L|

" (kDel
(k1)eKp, ¢ ()

1
> e |K»,. (e)|

where Kp, (¢) is as in (3.1). Taking limit as 7,s — oo in both sides of the above
inequality, we conclude that S0, P-limx=L. OO
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Theorem 3.11. Let I, C I, and pip )xk+u,l+n - L) < M for all k,1 € IN and for each u
and 1. If a double sequence x = (xi;) is Riesz lacunary almost statistically P-convergent
to L, then it is Riesz lacunary almost statistically summable to L but not conversely.

Proof. Assume that I, C I  and pifp; |xk+y,;+,] - L) < Mforallk,I € N and for each u
andn. Letx = (xi;) be S(RZ,QVS)—P—convergentto L. PutKp,, (¢) = {(k, D)€l s: pipr | Xespien — L) > e}.
Then

1

|wa” - L| =g,

Y PPl Xkpden — L‘
(kD) €l

_ | Z = _
= kP \Xkepgeg — L
Hrs (k1) eI,,sp : ( e ) ‘

< HS pib1 | ien — L|
" (kD) €l
1 _
< H Z Prp1 |xk+y,l+1] - L|
s
(k1) €l s
_ 1 =
~ A, Z PkpP1 |xk+,u,l+1] - L|
T (k) el
(kD) €Kp,,(©)
1 —
+ta- L P )xk+y,l+n - L)
T (kD) el
(k]) #Kp, (0

< HMM )Kpns (e)) +¢

for each p and n, which implies that P- lim Wl (x) =L uniformly in p and 1. Hence,

sty-P-lim wh! (x) = L uniformly in p and 1 and so, (R, 6)5t -P-lim x = L.
1,8 2

To see that the converse is not true, consider the double lacunary sequence
0,5 = {(2"‘1,35_1)}, pr =1, py = 1for all k and I, and the double sequence x = (xi;)
defined as x; = (1) forall . O
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