FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 39, No 4 (2024), 721–744 https://doi.org/10.22190/FUMI231101048S Original Scientific Paper

ON AN OVER-RING $C(X)_{\Delta}$ **OF** C(X)

Ritu Sen and Rudra Pratap Saha

Department of Mathematics, Presidency University, 700073 Kolkata, India

ORCID IDs: Ritu Sen Rudra Pratap Saha https://orcid.org/0000-0002-3804-8355
 N/A

Abstract. Our aim in this paper is to introduce a ring of functions defined on a topological space X having a special property. By $C(X)_{\Delta}$ we denote the set of all real-valued functions defined on the topological space X, the discontinuity set of elements of which are members of $\Delta \subseteq \mathcal{P}(X)$, where Δ satisfies the following properties: (i) for each $x \in X, \{x\} \in \Delta, (ii)$ for $A, B \in \mathcal{P}(X)$ with $A \subseteq B, B \in \Delta$ implies that $A \in \Delta$ and (iii) for $A, B \in \Delta, A \cup B \in \Delta$. This $C(X)_{\Delta}$ is an over-ring of C(X), moreover, $C(X) \subseteq C(X)_F \subseteq C(X)_{\Delta} \subseteq \mathbb{R}^X$. The ring $C(X)_{\Delta}$ is also almost regular. We study the Δ -completely separated sets and C_{Δ} -embedded subsets of X. Complete characterizations of fixed maximal ideals are then done and algebraic properties of $C(X)_{\Delta}$ have been studied. In [6], the authors have introduced \mathcal{FP} -spaces, for which the ring $C(X)_{\Delta}$, so that the ring in question becomes regular. As a result, ΔP -spaces have been introduced, it has been proved that every P-space is a ΔP -space and examples are given in support of the fact that there exist ΔP -spaces which are not P-spaces.

Keywords: $C(X)_{\Delta}$, $C^*(X)_{\Delta}$, Δ -completely separated sets, Z_{Δ} -ideals, Z_{Δ} -filters, ΔP -spaces.

1. Introduction

Unless otherwise mentioned, all topological spaces are assumed to be T_1 . Let \mathbb{R}^X be the ring of all real-valued functions defined on a nonempty topological space

© 2024 by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

Received November 01, 2023, revised: January 12, 2024, accepted: January 26, 2024 Communicated by Dimitris Georgiou

Corresponding Author: Ritu Sen. E-mail addresses: ritu_sen29@yahoo.co.in, ritu.maths@presiuniv.ac.in (R. Sen), rudrapratapsaha1997@gmail.com (R. P. Saha) 2020 Mathematics Subject Classification. Primary 54C30; Secondary 54C40, 13C99

X with pointwise addition and multiplication. We here note that all subrings of \mathbb{R}^X are reduced (see [8]), in the sense that they have no non-zero nilpotent elements. Also recall that the ring T'(X) [1] of all $f \in \mathbb{R}^X$, where for each f there is an open dense subset D of X such that $f|_D$ is continuous on D, is a (Von Neumann) regular ring, where a ring R is called regular if for any $a \in R$, there exists $b \in R$ such that a = aba. In this sequel, we also want to mention about the ring T(X)[1] of all $f \in \mathbb{R}^X$ such that $f|_D \in C(D)$, for a dense subspace D of X. Also the collection of all continuous members of \mathbb{R}^X is denoted by C(X), and the collection of all bounded members of C(X) is denoted by $C^*(X)$. In this connection, we refer to the reader [7], where these two rings have been studied extensively. If f is a function from a topological space (X, τ) to the real line \mathbb{R} which is not necessarily continuous, it is well known that the set $D_f = \{x \in X : f \text{ is discontinuous at } x \text{ w.r.t the topology } \tau\}$ is an F_{σ} -subset of X. The proof of this fact is followed by some simple modification in the arguments to prove that for a function $f : \mathbb{R} \to \mathbb{R}$, the set of all points of discontinuity of f is an F_{σ} -set (see [11]). Gharebaghi, Ghirati and Taherifar in [6] first introduced and studied the ring $C(X)_F$ of all real-valued functions on X which are discontinuous on some finite subset of X, i.e. all those members $f \in \mathbb{R}^X$ for which D_f is a finite subset of X. After that this ring has been further studied by M. R. Ahmadi Zand and Z. Khosravi in [2]. Very recently, the authors in [3] investigated the family $\mathcal{M}_0(X,\mu)$ of all those functions f of $\mathcal{M}(X,\mathcal{A})$ $(\equiv$ the ring of all real-valued measurable functions defined over a measurable space (X, \mathcal{A})), for which $\mu(D_f) = 0$. Fortunately, using the properties of the measure μ , it can be checked that $\mathcal{M}_0(X,\mu)$ is a commutative lattice ordered ring with unity if the relevant operations are defined pointwise on X. In this connection, one can go through [4], where the authors have studied the ring of functions which are discontinuous on a countable set. Regarding the rings $C(X)_F$, T(X) and $\mathcal{M}_0(X,\mu)$, the most common features are that the discontinuity set D_f , for any f in all these rings are closed under finite unions and forming subsets. These particular properties motivate us to consider a subcollection $\mathcal{D} \subseteq \mathcal{P}(X)$ closed under forming subsets and finite unions. These urge us to consider a collection $C(X)_{D}$ of all those members f of \mathbb{R}^X for which $D_f \in \mathcal{D}$. This $C(X)_D$ also happens to be a commutative ring with unity if the relevant operations are defined pointwise on X. Note that, if $\mathcal{D} =$ the collection of all finite subsets of X (resp., set of all nowhere dense subsets of X), then $C(X)_{\mathcal{D}}$ reduces to $C(X)_{\mathcal{F}}$ (resp., T(X)) and if \mathcal{D} = the collection of all sets having measure zero in a complete measure space, then $C(X)_D = \mathcal{M}_0(X,\mu)$]. We now impose another condition on \mathcal{D} mainly, \mathcal{D} is closed under containing singletons, i.e. for any $x \in X$, $\{x\} \in \mathcal{D}$. So, in this paper our key element is a subcollection $\Delta \subseteq \mathcal{P}(X)$ with the following properties:

- 1) For each $x \in X$, $\{x\} \in \Delta$.
- 2) For $A, B \in \mathcal{P}(X)$ with $A \subseteq B, B \in \Delta$ implies that $A \in \Delta$.
- 3) For $A, B \in \Delta$, $A \cup B \in \Delta$.

As mentioned before, $C(X)_{\Delta}$ becomes a commutative ring with unity. Now, the benefits of switching to Δ from \mathcal{D} yield the following results.

1) X is discrete if and only if $C(X) = C(X)_{\Delta}$.

2) X is connected if and only if $\overline{\mathbf{0}}$ and $\overline{\mathbf{1}}$ are the only idempotent elements of C(X)(where for any $r \in \mathbb{R}$, $\overline{\mathbf{r}}$ denotes the constant function f(x) = r, for all $x \in X$), whereas in the case of $C(X)_{\Delta}$, $\chi_{\{x\}}$ becomes an idempotent element, for each $x \in X$, irrespective of the connectedness of X.

3) Any element of $C(X)_{\Delta}$ is either a unit or a zero-divisor.

4) Also while studying ideals and z-filters, a necessary and sufficient condition for a proper ideal as well as a maximal ideal to be fixed can be solved.

Let us now briefly explain the organization of the paper. Section 2 starts with the definition of the rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$. It is shown that unlike the ring C(X), the equality $C(X)_{\Delta} = C^*(X)_{\Delta}$ is only a sufficient condition for the pseudocompactness of X but not necessary. We define the zero sets $Z_{\Delta}(f)$, for a function $f \in C(X)_{\Delta}$. Examples are given in support of the fact that $Z_{\Delta}(f)$ is not necessarily closed as well as not G_{δ} , like the case of the ring C(X). In fact, it is shown that for any $f \in C(X)_{\Delta}$, $Z_{\Delta}(f)$ can be written as a disjoint union of a G_{δ} -subset of X and a member of Δ . It is proved that $C(X)_{\Delta}$ is an almost regular ring. This section ends with some dissimilarities between C(X) and $C(X)_{\Delta}$.

In section 3, we introduce the notion of Δ -completely separated sets and characterize them in terms of zero sets of $C(X)_{\Delta}$. It has been shown that Δ -complete separation is a generalization of both \mathcal{F} -complete separation and that of complete separation of subsets of X. Next we introduce C_{Δ} -embedded and C_{Δ}^{*} -embedded subsets of X. A necessarry and sufficient condition is obtained for a C_{Δ}^{*} -embedded subset to be C_{Δ} -embedded. Also it is established that if a discrete zero set is C_{Δ}^{*} -embedded, then all its subsets are also zero sets.

In section 4, we introduce the notions of ideals of $C(X)_{\Delta}$ and Z_{Δ} -filters on X. Naturally it is shown that there is a one-to-one correspondence between the set of all maximal ideals of $C(X)_{\Delta}$ and the set of all Z_{Δ} -ultrafilters of X. After the introduction of Z_{Δ} -ideals it is shown that every Z_{Δ} -ideal is a radical ideal. That the sum of two Z_{Δ} -ideals is a Z_{Δ} -ideal is established, as a consequence of which we have that, if $\{I_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of Z_{Δ} -ideals in $C(X)_{\Delta}$, then either $\sum_{\alpha \in \Lambda} I_{\alpha} = C(X)_{\Delta}$

 $\text{ or } \sum_{\alpha \in \Lambda} I_{\alpha} \text{ is a } Z_{\Delta} \text{-ideal}.$

In section 5, the complete list of fixed maximal ideals of $C(X)_{\Delta}$ and $C(X)_{\Delta}^*$ are given in terms of M_p^{Δ} and $M_p^{\Delta^*}$ respectively. Here with the help of M_p^{Δ} , we give another description of Z_{Δ} -ideals. Finally a finite space is characterized as one in which every proper ideal of $C(X)_{\Delta}$ is fixed and also every maximal ideal of $C(X)_{\Delta}$ is fixed.

Section 6 is devoted to the study of residue class rings of $C(X)_{\Delta}$ modulo ideals. It is shown that every Z_{Δ} -ideal is absolutely convex, and for every maximal ideal M in $C(X)_{\Delta}$, the quotient ring $C(X)_{\Delta}/M$ is a lattice ordered ring. Also for a Z_{Δ} -ideal I in $C(X)_{\Delta}$ which is prime, the lattice ordered ring $C(X)_{\Delta}/I$ is totally ordered. It is proved that every hyper-real residue class field $C(X)_{\Delta}/M$ is non-archimedean and each maximal ideal M in $C^*(X)_{\Delta}$ is real. Lastly it is established that $f \in C(X)_{\Delta}$ is unbounded on X if and only if there exists a maximal ideal M in $C(X)_{\Delta}$ such that |M(f)| is infinitely large in $C(X)_{\Delta}/M$.

Section 7 deals with some algebraic aspects of $C(X)_{\Delta}$. Relations between the rings C(X), $C(X)_{\Delta}$ and T'(X) have been investigated.

Section 8 studies ΔP -spaces. It has been shown that every P-space is a ΔP -space. Examples are provided in support of the fact that the converse is not true in general.

Throughout the paper \mathbb{R} , \mathbb{Q} and \mathbb{N} respectively denote the set of reals, the set of rationals and the set of natural numbers.

2. The rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$

In this section our main interest is to explore the properties of the ring $C(X)_{\Delta}$. We then introduce a subring $C^*(X)_{\Delta}$ of $C(X)_{\Delta}$ and also discuss about the zero sets for functions in $C(X)_{\Delta}$.

Definition 2.1. For a topological space X and a subcollection Δ of $\mathcal{P}(X)$ (\equiv the power set of X), where Δ is closed under forming subsets, finite unions and containing all singletons, we define,

 $C(X)_{\Delta} = \{ f \in \mathbb{R}^X : \text{the set of points of discontinuities of } f \text{ is a member of } \Delta \}.$

It can be easily observed that $C(X)_{\Delta}$ is a commutative ring with unity (with respect to pointwise addition and multiplication) containing C(X), in addition, $C(X)_{\Delta}$ is a super-ring or an over-ring of $C(X)_F \supseteq C(X)$, i.e. $C(X) \subseteq C(X)_F \subseteq C(X)_{\Delta}$.

We note that $C(X)_{\Delta}$ is a sublattice of \mathbb{R}^X , in fact, $(C(X)_{\Delta}, +, ., \vee, \wedge)$ is a lattice-ordered ring if for any $f, g \in C(X)_{\Delta}$, one defines $(f \vee g)(x) = f(x) \vee g(x)$ and $(f \wedge g)(x) = f(x) \wedge g(x)$, $x \in X$. Also $f \vee g = \frac{f+g+|f-g|}{2} \in C(X)_{\Delta}$, for all $f, g \in C(X)_{\Delta}$. For $f \in C(X)_{\Delta}$ and f > 0, we note that there exists $h \in C(X)_{\Delta}$ such that $f = h^2$. Also, whenever $f \in C(X)_{\Delta}$ and f^r is defined where $r \in \mathbb{R}$, then $f^r \in C(X)_{\Delta}$.

Definition 2.2. We next define,

$$C^*(X)_{\Delta} = \{ f \in C(X)_{\Delta} : f \text{ is bounded} \}$$

which is obviously closed under the algebraic and order operations as discussed above. Hence $C^*(X)_{\Delta}$ is a subring as well as a sublattice of $C(X)_{\Delta}$.

Remark 2.1. We see that unlike the ring C(X), the equality $C(X)_{\Delta} = C^*(X)_{\Delta}$ is only a sufficient condition for the pseudocompactness of X but not necessary, as it follows from the next example.

Example 2.1. Consider X = [0, 1] equipped with the subspace topology of the usual topology of reals and take $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$. Take the function $f : [0, 1] \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} & \frac{1}{x}, & x \neq 0 \\ & 1, & x = 0. \end{cases}$$

Clearly $f \in C(X)_{\Delta}$, but $f \notin C^*(X)_{\Delta}$. But here X is pseudocompact.

Definition 2.3. For $f \in C(X)_{\Delta}$, the set $f^{-1}(0) = \{x \in X : f(x) = 0\}$ will be called the zero set of f, to be denoted by $Z_{\Delta}(f)$.

We will use the notation $Z_{\Delta}(C(X)_{\Delta})$ (or, $Z_{\Delta}(X)$) for the collection $\{Z_{\Delta}(f) : f \in C(X)_{\Delta}\}$ of all zero sets in X.

Some elementary properties of the zero sets of functions of $C(X)_{\Delta}$ are listed below, which are trivial to check as in the classical setting of C(X) (see, 1.10, 1.11 of [7]).

Theorem 2.1. For $f, g \in C(X)_{\Delta}$ and $r \in \mathbb{R}$, the following holds.

i) $Z_{\Delta}(f) = Z_{\Delta}(|f|) = Z_{\Delta}(f^n)$, for all $n \in \mathbb{N}$. ii) $Z_{\Delta}(\overline{\mathbf{0}}) = X$ and $Z_{\Delta}(\overline{\mathbf{1}}) = \emptyset$. iii) $Z_{\Delta}(fg) = Z_{\Delta}(f) \cup Z_{\Delta}(g)$. iv) $Z_{\Delta}(f^2 + g^2) = Z_{\Delta}(f) \cap Z_{\Delta}(g)$. v) $\{x \in X : f(x) \ge r\}$ and $\{x \in X : f(x) \le r\}$ are zero sets in X. vi) Also for a given $f \in C(X)_{\Delta}$, the function $h = |f| \land \overline{\mathbf{1}} \in C(X)_{\Delta}$, so that $Z_{\Delta}(f) = Z_{\Delta}(h)$ and hence we can conclude that $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ produce the same zero sets.

Remark 2.2. Unlike C(X), $Z_{\Delta}(f)$ is not necessarily closed as is seen below.

Example 2.2. Consider X = [0, 1] with the subspace topology of the usual topology of reals and $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$. Take the function $f : X \to \mathbb{R}$ defined by, for any $n \in \mathbb{N}$,

$$f(x) = \begin{cases} 1, & x \neq \frac{1}{n} \\ 0, & x = \frac{1}{n} \end{cases}$$

Then the set of points of discontinuities of f is $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \in \Delta$, so that $f \in C(X)_{\Delta}$, but $Z_{\Delta}(f) = \{\frac{1}{n} : n \in \mathbb{N}\}$ which is not closed in X.

Remark 2.3. $Z_{\Delta}(f)$ need not be a G_{δ} -set as in the case of C(X) as is seen below.

Example 2.3. Consider $X = \mathbb{R}$ with the cofinite topology. Then no finite set in \mathbb{R} is a G_{δ} -set. Take the function $f : \mathbb{R} \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} 1, & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0. \end{cases}$$

Then $f \in C(X)_{\Delta}$ for any subcollection $\Delta \subseteq \mathcal{P}(X)$ and $Z_{\Delta}(f) = \{0\}$, which is not a G_{δ} -set.

The following theorem gives the nature of a zero set for a function in $C(X)_{\Delta}$.

Theorem 2.2. For any $f \in C(X)_{\Delta}$, $Z_{\Delta}(f)$ can be written as a disjoint union of a G_{δ} -subset of X and a member of Δ .

Proof. Write $Z_{\Delta}(f) = P \cup Q$, where $P = Z_{\Delta}(f) \cap (X \setminus D_f)$ and $Q = Z_{\Delta}(f) \cap D_f$. As $D_f \in \Delta, Q \in \Delta$. Now the function $h = f|_{X \setminus D_f}$ is a continuous function. Hence P = Z(h) is a G_{δ} -subset of $X \setminus D_f$ (where Z(h) as usual denotes the zero set for the continuous function h in $X \setminus D_f$). Also D_f being an F_{σ} -subset of X, P is a G_{δ} -set in X. Hence the proof. \Box

Theorem 2.3. For an arbitrary topological space X (i.e. X does not have any separation axioms), whenever $f \in C(X)_{\Delta}$ and $Z_{\Delta}(f) \subseteq X \setminus D_f$, $Z_{\Delta}(f)$ becomes a G_{δ} -set in X.

Proof. From Theorem 2.2, we have $Z_{\Delta}(f) = P \cup Q$, where P is a G_{δ} -set in X and $Q = Z_{\Delta}(f) \cap D_f$ is a member of Δ . Now if $Z_{\Delta}(f) \subseteq X \setminus D_f$, then $Q = \emptyset$, so that $Z_{\Delta}(f) = P$, a G_{δ} -set in X. Hence the proof. \Box

The following example shows that the converse of Theorem 2.3 is not true in general.

Example 2.4. Let X = [0, 1] with the subspace topology of the usual topology of reals and $\Delta = \{A \subseteq [0, 1] : A \text{ is countable}\}$. Take the function $f : X \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Then $f \in C(X)_{\Delta}$ and $Z_{\Delta}(f) = \{0\}$ is a G_{δ} -set but $Z_{\Delta}(f) \not\subseteq X \setminus D_f$.

Remark 2.4. In [2], in the discussion after Theorem 2.1, the authors have mentioned that if X is a T_1 space, $f \in C(X)_F$ and $\mathcal{Z}(f) \subseteq X \setminus D_f$, then $\mathcal{Z}(f)$ is G_{δ} . But from the above theorem, we can say that if we consider $\Delta =$ the set of all finite subsets of X there, then the same is true without assuming any separation axioms (in particular, T_1 -ness) of X.

Theorem 2.4. For a topological space X and a subcollection $\Delta \subseteq \mathcal{P}(X)$, the following statements hold.

i) $C(X)_{\Delta}$ is a reduced ring.

ii) $f \in C(X)_{\Delta}$ is a unit if and only if $Z_{\Delta}(f) = \varnothing$.

iii) Any element of $C(X)_{\Delta}$ is either a zero-divisor or a unit.

iv) For $f, g \in C(X)_{\Delta}$, if $|\overline{f}| < |g|^r$ for some real number r > 1, then f is a multiple of g. In particular, if |f| < |g| and $r \in \mathbb{R}$ with r > 1 be such that f^r is defined, then f^r is a multiple of g.

Proof. i) It is trivial.

ii) Let $f \in C(X)_{\Delta}$ be a unit. Then there exists $g \in C(X)_{\Delta}$ such that $f.g = \overline{\mathbf{1}}$, so that $Z_{\Delta}(f) = \emptyset$. Conversely, if $Z_{\Delta}(f) = \emptyset$, then the function $g = \frac{1}{f} \in C(X)_{\Delta}$ is the required inverse of f, so that f becomes a unit in $C(X)_{\Delta}$.

iii) Let $f \in C(X)_{\Delta}$ be not a unit. Then $Z_{\Delta}(f) \neq \emptyset$. Choose $p \in Z_{\Delta}(f)$ and define a function $g: X \to \mathbb{R}$ by g(p) = 0 and $g(X \setminus \{p\}) = \{1\}$. Then $g \in C(X)_{\Delta}$ and $X \setminus Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$, which implies that fg = 0, i.e. f is a zero-divisor of $C(X)_{\Delta}$. *iv*) Let $|f| < |g|^r$ for some real number r > 1, where $f, g \in C(X)_{\Delta}$. Clearly

 $Z_{\Delta}(g) \subseteq Z_{\Delta}(f)$. Take $D = D_f \cup D_g$. Then $D \in \Delta$ and f, g are continuous on $X \setminus D$. Define a function $h: X \to \mathbb{R}$ by

$$h(x) = \begin{cases} & \frac{f(x)}{g(x)}, & x \in X \setminus Z_{\Delta}(g) \\ & \\ & 0, & x \in Z_{\Delta}(g). \end{cases}$$

We now show that h is continuous on the set $X \setminus D$. Let $x \in (X \setminus D) \setminus Z_{\Delta}(g)$. Since f and g are continuous at x and $g(x) \neq 0$, so $\frac{f}{g}$ is continuous at x, i.e. h is continuous at x.

Now $|f| < |g|^r$ implies that $\frac{|f(x)|}{|g(x)|} < |g(x)|^{r-1}$, for all $x \in X \setminus Z_{\Delta}(g)$ which gives that $|h(x)| < |g(x)|^{r-1}$, for all $x \in X \setminus Z_{\Delta}(g)$. Again, $x \in Z_{\Delta}(g)$ implies that g(x) = 0, so that h(x) = 0. Hence $|h| \le |g|^{r-1}$, for all $x \in X$.

Let $x \in (X \setminus D) \cap Z_{\Delta}(g)$. Then $h(x) = 0 \in (-\epsilon, \epsilon)$. Also we have g(x) = 0 and g is continuous at x, so there exists a neighbourhood U of x such that $g(U) \subseteq (-\epsilon^{\frac{1}{r-1}}, \epsilon^{\frac{1}{r-1}})$ which implies that $|g(x)| < \epsilon^{\frac{1}{r-1}}$, for all $x \in U$. Thus $|g(x)|^{r-1} < \epsilon$, for all $x \in U$ which implies that $|h(x)| < \epsilon$, for all $x \in U$. Hence h is continuous on $X \setminus D$ so that $h \in C(X)_{\Delta}$ and f = gh.

The second part follows from the first part. $\hfill \square$

Remark 2.5. In $C(X)_F$, we have seen that $C(X)_F = C^*(X)_F$ if and only if for any finite subset F of $X, X \setminus F$ is pseudocompact ([6], Lemma 2.4). That means if we consider Δ = the set of all finite subsets of X, then $C(X)_{\Delta} = C^*(X)_{\Delta}$ if and only if for any $F \in \Delta$, $X \setminus F$ is pseudocompact. But for any arbitrary Δ , it is not necessarily true as is seen below.

Example 2.5. Let $X = \mathbb{N}$ be endowed with the cofinite topology. Consider $\Delta = \{P : P \text{ is a countable subset of } \mathbb{N}\}$. Then $\mathbb{R}^{\mathbb{N}} = C(\mathbb{N})_{\Delta} \neq C^*(\mathbb{N})_{\Delta}$. Now the function f defined by

f(n) = n, for all $n \in \mathbb{N}$, is a member of $C(\mathbb{N})_{\Delta}$, but $f \notin C^*(\mathbb{N})_{\Delta}$. But for any countable set $F, X \setminus F$ is always pseudocompact.

Remark 2.6. In view of Theorem 2.4, we can conclude that $C(X)_{\Delta}$ is an almost regular ring.

Next we give an example to show that the result analogous to Theorem 2.4 ii) is not true if we replace $C(X)_{\Delta}$ by $C^*(X)_{\Delta}$.

Example 2.6. In the view of Example 2.1, the function $\frac{1}{f} = h$ has an empty zero set. This function $h \in C^*(X)_{\Delta}$, whereas $\frac{1}{h} = f \notin C^*(X)_{\Delta}$.

The nature of the units of $C^*(X)_{\Delta}$ is given by the following theorem.

Theorem 2.5. A function $f \in C^*(X)_{\Delta}$ is a unit in $C^*(X)_{\Delta}$ if and only if f is bounded away from zero, i.e. there exists r > 0 such that $|f(x)| \ge r$, for all $x \in X$.

Proof. Just take into account that whenever for some $f \in C^*(X)_{\Delta}$, $Z_{\Delta}(f) = \emptyset$, then $D_f = D_{\frac{1}{\epsilon}}$. \Box

Remark 2.7. We next provide two dissimilarities between C(X) and $C(X)_{\Delta}$.

Example 2.7. $C(X)_{\Delta}$ is not closed under uniform limits: Consider X = [0, 1] with the subspace topology of the usual topology of \mathbb{R} and $\Delta =$ set of all finite subsets of [0, 1]. Enummerate $[0, 1] \cap \mathbb{Q}$ as, $[0, 1] \cap \mathbb{Q} = \{x_1, x_2, ..., x_n, ...\}, n \in \mathbb{N}$. Now define a sequence of functions $\{f_n\}$ on X by,

$$f_n(x) = \begin{cases} \frac{1}{i}, & x = x_i, 1 \le i \le n \\ 0, & otherwise. \end{cases}$$

Clearly each $f_n \in C(X)_{\Delta}$ and this sequence of functions converges uniformly to the function f given by,

$$f(x) = \begin{cases} \frac{1}{n}, & x = x_n \\ 0, & otherwise \end{cases}$$

But $f \notin C(X)_{\Delta}$, as f is discontinuous on \mathbb{Q} . Hence $C(X)_{\Delta}$ is not closed under uniform limits.

Example 2.8. $Z_{\Delta}(C(X)_{\Delta})$ is not closed under countable intersections: Let X = [0, 1] with the subspace topology of the usual topology of \mathbb{R} and $\Delta =$ set of all finite subsets of [0, 1]. Consider $[0, 1] \cap \mathbb{Q} = \{x_1, x_2, ..., x_n, ...\}, n \in \mathbb{N}$. Now define a sequence of functions $\{f_n\}$ on X by,

$$f_n(x) = \begin{cases} 1, & x = x_1, x_2, ..., x_n \\ 0, & otherwise. \end{cases}$$

Clearly each $f_n \in C(X)_{\Delta}$, $n \in \mathbb{N}$. Now, $\bigcap_{n=1}^{\infty} Z_{\Delta}(f_n) = \bigcap_{n=1}^{\infty} ([0,1] \setminus \{x_1, x_2, ..., x_n\}) = [0,1] \setminus \bigcup_{n=1}^{\infty} \{x_1, x_2, ..., x_n\} = [0,1] \bigcap \mathbb{Q}^c$. Now we show that there does not exist any $f \in C(X)_{\Delta}$ such that $Z_{\Delta}(f) = [0,1] \bigcap \mathbb{Q}^c$.

If possible, let there exist $f \in C(X)_{\Delta}$ with $Z_{\Delta}(f) = [0,1] \bigcap \mathbb{Q}^{c}$. Choose $c \in [0,1] \bigcap \mathbb{Q}$, then $f(c) \neq 0$. Without loss of generality, let f(c) > 0. Choose $\epsilon > 0$ such that $f(c) - \epsilon > 0$. If f is continuous at c, then there exists an open set $G \subseteq [0,1]$ containing c such that $|f(x) - f(c)| < \epsilon$, for all $x \in G$ which implies that $f(x) > f(c) - \epsilon > 0$, for all $x \in G$, i.e. f(x) > 0, for all $x \in G$, which contradicts the fact that $[0,1] \cap \mathbb{Q}^{c}$ is dense in [0,1]. Hence f is not continuous at any rational number, so that $f \notin C(X)_{\Delta}$.

Remark 2.8. From the definition of Δ it can be easily observed that if the set of all non-isolated points of X is a member of Δ , then $C(X)_{\Delta} = \mathbb{R}^X = C(Y)$, where X = Y is equipped with the discrete topology. So in this case we can say that $C(X)_{\Delta}$ is a C-ring.

3. Δ -completely separated and C_{Δ} -embedded subsets of X

Recall that two subsets A and B of a topological space X are said to be completely separated in X ([7], Theorem 1.15) if there exists a function $f \in C^*(X)$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$, with $\overline{\mathbf{0}} \leq f \leq \overline{\mathbf{1}}$.

Analogously we define the following.

Definition 3.1. Two subsets A and B of X are said to be Δ -completely separated in X, if there exists a function f in $C^*(X)_{\Delta}$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

In C(X), it is true that two sets A and B are completely separated if and only if their respective closures \overline{A} and \overline{B} are also completely separated. But we here notice that \overline{A} and \overline{B} are Δ -completely separated in X implies that A and B are Δ -completely separated. That the converse is not true in general, is seen by the following example.

Example 3.1. Take X = [0, 1] with the subspace topology of the usual topology of reals, $A = [0, 1), B = \{1\}$. Then A and B are Δ -completely separated by the function $f : X \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} 1, & 0 \le x < 1 \\ 2, & x = 1, \end{cases}$$

where $f \in C^*(X)_{\Delta}$, for any arbitrary subcollection $\Delta \subseteq \mathcal{P}(X)$, but \overline{A} , \overline{B} are not Δ completely separated, as $\overline{A} \cap \overline{B} \neq \emptyset$.

Also in this connection we want to mention the notion of \mathcal{F} -completely separated sets (see [6]), where any two completely separated sets are \mathcal{F} -completely separated but not the converse.

Remark 3.1. Any two \mathcal{F} -completely separated sets are Δ -completely separated but not conversely as is seen by the following example.

Example 3.2. Consider X = [0, 1] with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$ and $K = \text{Cantor set. Define } f : X \to \mathbb{R}$ by,

$$f(x) = \begin{cases} 1, & x \in K \\ 0, & x \notin K, \end{cases}$$

i.e. $f = \chi_K$. Then $D_f = K \in \Delta$, so that $f \in C(X)_{\Delta}$. Now, the sets K and $X \setminus K$ are Δ -completely separated but not \mathcal{F} -completely separated, as K is uncountable.

The next result is the counterpart of ([7], Theorem 1.15) and can be proved in a similar manner.

Theorem 3.1. Two subsets A, B of a space X are Δ -completely separated if and only if they are contained in disjoint members of $Z_{\Delta}(X)$.

Corollary 3.1. If A and A' are Δ -completely separated, then there exist zero sets Z and H in $Z_{\Delta}(X)$ such that

$$A \subseteq X \setminus Z \subseteq H \subseteq X \setminus A'.$$

Theorem 3.2. If two disjoint subsets A and B of X are Δ -completely separated, then there is a member D of Δ such that $A \setminus D$ and $B \setminus D$ are completely separated in $X \setminus D$.

Proof. Assume that *A*, *B* are Δ-completely separated. Then by Theorem 3.1, there exist two disjoint zero sets $Z_{\Delta}(f_1)$ and $Z_{\Delta}(f_2)$ in $Z_{\Delta}(X)$ such that $A \subseteq Z_{\Delta}(f_1)$ and $B \subseteq Z_{\Delta}(f_2)$. Let D_{f_1} and D_{f_2} be the sets of points of discontinuities of f_1 and f_2 respectively. Then $f_1 \in C(X \setminus D_{f_1})$, $f_2 \in C(X \setminus D_{f_2})$. Consider $D = D_{f_1} \cup D_{f_2}$. Then $D \in \Delta$ and $f_1, f_2 \in C(X \setminus D)$. Also, $A \setminus D \subseteq Z_{\Delta}(f_1) \setminus D$, $B \setminus D \subseteq Z_{\Delta}(f_2) \setminus D$, where $Z_{\Delta}(f_1) \setminus D$ and $Z_{\Delta}(f_2) \setminus D$ are disjoint zero-sets in $X \setminus D$. By ([7], Theorem 1.15), $A \setminus D$ and $B \setminus D$ are completely separated in $X \setminus D$. □

Remark 3.2. The converse of the above theorem holds good if D is closed. For let, $A \setminus D$ and $B \setminus D$ be completely separated in $X \setminus D$, where $D \in \Delta$ and D is closed. Then there exists $f \in C^*(X \setminus D)$ with $f(A \setminus D) = \{0\}$ and $f(B \setminus D) = \{1\}$. Now consider the function $g: X \to \mathbb{R}$ defined as follows:

$$g(x) = \begin{cases} f(x), & x \in X \setminus D \\ 0, & x \in D \cap A \\ 1, & x \in D \cap B. \end{cases}$$

Since D is closed, $g \in C^*(X)_{\Delta}$ with $g(A) = \{0\}$ and $g(B) = \{1\}$. Hence A and B are Δ -completely separated in X.

731

Next, we introduce the analogues of *C*-embedding and C^* -embedding in our settings, called C_{Δ} -embedding and C^*_{Δ} -embedding to deal with the problem of extension of functions belonging to such rings.

Definition 3.2. A subset Y of a topological space X is said to be C_{Δ} -embedded in X, if each $f \in C(Y)_{\Delta_Y}$ has an extension to a $g \in C(X)_{\Delta}$, i.e. there exists $g \in C(X)_{\Delta}$ such that $g|_Y = f$, where $\Delta \subseteq \mathcal{P}(X)$ and $\Delta_Y = \Delta|_{\mathcal{P}(Y)}$.

Likewise, Y is said to be C^*_{Δ} -embedded in X, if each $f \in C^*(Y)_{\Delta}$ has an extension to a $g \in C^*(X)_{\Delta}$.

Remark 3.3. It is noteworthy to mention here that any C_{Δ} -embedbed subset is C_{Δ}^{*} -embedbed also.

Example 3.3. Consider $X = \mathbb{R}^2$ with the Euclidean topology, $\Delta = \{A \subseteq \mathbb{R}^2 : A \text{ is nowhere dense in } \mathbb{R}^2\}$, $S = \mathbb{R}^2 \setminus \mathbb{R} \times \{0\}$ and a function $f : S \to \mathbb{R}$ defined by,

$$f(x,y) = \frac{1}{u}, (x,y) \in \mathbb{R}^2 \setminus \mathbb{R} \times \{0\}$$

As $f \in C(S)$, clearly $f \in C(S)_{\Delta}$. But there does not exist any $g \in C(\mathbb{R}^2)_F$ such that $g|_S = f$. Hence S is not C_F -embedded (see [2], Definition 2.15) and hence not C-embedded in X. Now, consider the function $g: X \to \mathbb{R}$ defined by $g(X \setminus S) = f$ and g(S) = 0. Then S is C_{Δ} -embedded but not C_F -embedded and hence not C-embedded.

In view of the above example we observe that if S is a closed subset of a topological space X with $X \setminus S \in \Delta$, then S is both C^*_{Δ} -embedded and C_{Δ} -embedded.

As a converse of Remark 3.3, we have the following.

Theorem 3.3. A C^*_{Δ} -embedded subset is C_{Δ} -embedded if and only if it is Δ completely separated from every zero set disjoint from it.

Proof. First, let S be C^*_{Δ} -embedded in X and $h \in C(X)_{\Delta}$ be such that $Z_{\Delta}(h) \cap S = \emptyset$. Define a function $f: S \to \mathbb{R}$ by $f(s) = \frac{1}{h(s)}, s \in S$. Then $f \in C(S)_{\Delta}$. By the given condition, there exists $g \in C(X)_{\Delta}$ such that $g|_S = f$. Hence $gh \in C(X)_{\Delta}$. Also $gh(S) = \{1\}$ and $gh(Z_{\Delta}(h)) = \{0\}$, so that $Z_{\Delta}(h)$ and S are Δ -completely separated in X.

Conversely, let $f \in C(S)_{\Delta}$. As $\arctan \circ f \in C^*(S)_{\Delta}$, there exists $g \in C(X)_{\Delta}$ such that $g|_S = \arctan \circ f$. Now, the set $Z = \{x \in X : |g(x)| \ge \frac{\pi}{2}\}$ is a member of $Z_{\Delta}(X)$ with $Z \cap S = \emptyset$. So by hypothesis, there exists $h \in C^*(X)_{\Delta}$ such that $h(S) = \{1\}$ and $h(Z) = \{0\}$. We see that $g \cdot h \in C(X)_{\Delta}$ and for all $x \in X$, $|(g \cdot h)(x)| < \frac{\pi}{2}$. Hence, $\tan(g \cdot h) \in C(X)_{\Delta}$ and for all $s \in S$, $\tan(g \cdot h)(s) = f(s)$. So S is C_{Δ} -embedded. \Box

Corollary 3.2. For any topological space X, a zero set $Z \in Z_{\Delta}(X)$ is C_{Δ}^* -embedded if and only if it is C_{Δ} -embedded.

Example 3.4. (i) If a discrete zero set is C^*_{Δ} -embedded, then all of its subsets are zero sets: for if $Z \in Z_{\Delta}(X)$ be a discrete, C^*_{Δ} -embedded subset of X, then for any $Y \subseteq Z$, Y is also discrete. Define a function $f : Z \to \mathbb{R}$ by,

$$f(x) = \begin{cases} 1, & x \notin Y \\ 0, & x \in Y. \end{cases}$$

Then $f \in C(Z)_{\Delta}$. As Z is C_{Δ}^* -embedded, there exists $h \in C^*(X)_{\Delta}$ such that $h|_Z = f$. Also, as Z is a zero set, $Z = Z_{\Delta}(g)$, for some $g \in C^*(X)_{\Delta}$. Now, consider the function $k \in C^*(X)_{\Delta}$ by $k = g^2 + h^2$. Certainly, $Z_{\Delta}(k) = Z \cap Z_{\Delta}(h) = Y$, so that Y becomes a zero set in X.

(ii) If for every $f \in C^{*}(X)_{\Delta}$, f(X) is compact, then X becomes pseudocompact. But the converse is not true. Consider X = [0, 1] with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq [0, 1] : A \text{ is nowhere dense in } X\}$ and a function $f : X \to \mathbb{R}$ defined by, for $n \in \mathbb{N}$,

$$f(x) = \begin{cases} \frac{1}{n}, & x = \frac{1}{n} \\ 1, & x \neq \frac{1}{n}. \end{cases}$$

Then $D_f = \{0\} \cup \{\frac{1}{n} : n \ge 2\} \in \Delta$ and $f \in C^*(X)_{\Delta}$. But $f(X) = \{\frac{1}{n} : n \in \mathbb{N}\}$, which is not compact.

4. Ideals of $C(X)_{\Delta}$ and Z_{Δ} -filters on X

Throughout our discussion, an ideal I, unmodified in any of the two rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ will always mean a proper ideal.

Definition 4.1. A nonempty subcollection \mathcal{F} of $Z_{\Delta}(X)$ is called a Z_{Δ} -filter on X if it satisfies the following conditions:

 $(i) \varnothing \notin \mathcal{F}.$

(*ii*) $Z_1, Z_2 \in \mathcal{F}$ implies that $Z_1 \cap Z_2 \in \mathcal{F}$. (*iii*) If $Z \in \mathcal{T}$, $Z' \in \mathcal{T}$, (*X*) with $Z \in \mathcal{Z}'$ thus Z

(*iii*) If $Z \in \mathcal{F}, Z' \in Z_{\Delta}(X)$ with $Z \subset Z'$, then $Z' \in \mathcal{F}$.

A Z_{Δ} -filter on X which is not properly contained in any Z_{Δ} -filter on X is called a Z_{Δ} -ultrafilter on X.

Applying Zorn's lemma one can show that a $Z_{\Delta}\text{-filter}$ on X can be extended to a $Z_{\Delta}\text{-ultrafilter}$ on X.

There is a nice interplay between ideals (maximal ideals) in $C(X)_{\Delta}$ and the Z_{Δ} -filters (resp., Z_{Δ} -ultrafilters) on X. This fact is observed in the following theorem.

Theorem 4.1. For the ring $C(X)_{\Delta}$, the following hold.

i) If I is an ideal in $C(X)_{\Delta}$, then $Z_{\Delta}(I) = \{Z_{\Delta}(f) : f \in I\}$ is a Z_{Δ} -filter on X. Dually, if \mathcal{F} is a Z_{Δ} -filter on X, then $Z_{\Delta}^{-1}(\mathcal{F})$ is an ideal in $C(X)_{\Delta}$. ii) If M is a maximal ideal in $C(X)_{\Delta}$, then $Z_{\Delta}(M)$ is a Z_{Δ} -ultrafilter on X. If \mathcal{U} is a Z_{Δ} -ultrafilter on X, then $Z_{\Delta}^{-1}(\mathcal{U})$ is a maximal ideal in $C(X)_{\Delta}$. iii) The assignment : $M \to Z_{\Delta}(M)$ is a bijection from the set of all maximal ideals of $C(X)_{\Delta}$ to the set of all Z_{Δ} -ultrafilter on X.

of $C(X)_{\wedge}$ to the set of all Z_{\wedge} -ultrafilters on X.

Proof. Can be done in same way as in Theorems 2.3 and 2.5 of [7]. \Box

Remark 4.1. The assignment : $I \to Z_{\Delta}(I)$ from the set of all ideals on $C(X)_{\Delta}$ to the set of all Z_{Δ} -filters on X is a surjection but not an injection. In fact, for any ideal I in $C(X)_{\Delta}, Z_{\Delta}^{-1}Z_{\Delta}(I) \supseteq I$.

We therefore concentrate on those ideals of $C(X)_{\Delta}$ for which the above inclusion becomes an equality.

Definition 4.2. An ideal I of $C(X)_{\Delta}$ is called a Z_{Δ} -ideal if $Z_{\Delta}^{-1}Z_{\Delta}(I) = I$. Equivalently, $Z_{\Delta}(f) = Z_{\Delta}(g)$, for $f \in I$ and $g \in C(X)_{\Delta}$ implies that $g \in I$.

Remark 4.2. It thus follows that

i) Every maximal ideal in $C(X)_{\Delta}$ is a Z_{Δ} -ideal but not the converse (as shown below in Example 4.1).

ii) The mapping : $I \to Z_{\Delta}(I)$ is a bijection from the set of Z_{Δ} -ideals onto the set of all $Z_{\Delta}\text{-filters.}$

Example 4.1. Consider $I = \{f \in C(X)_{\Delta} : f(p) = f(q) = 0\}$, for $p, q \in \mathbb{R}$ with $p \neq q$. Then I is a Z_{Δ} -ideal in $C(X)_{\Delta}$. But I is not maximal, as $I \subset \{f \in C(X)_{\Delta} : f(p) = 0\}$. The ideal I is not a prime ideal also, as the function (x-p)(x-q) belongs to I but neither the function x - p nor the function x - q belongs to I.

Remark 4.3. Clearly every Z_{Δ} -ideal in $C(X)_{\Delta}$ is an intersection of prime ideals in $C(X)_{\Delta}.$

The next result establishes the relation between prime ideals and Z_{Δ} -ideals to some extent.

Theorem 4.2. Let I be a Z_{Δ} -ideal in $C(X)_{\Delta}$. Then the following statements are equivalent:

i) I is prime. ii) I contains a prime ideal. iii) For all $f, g \in C(X)_{\Delta}$, if fg = 0, then either $f \in I$ or $g \in I$. iv) For each $f \in C(X)_{\Delta}$, there exists a zero set in $Z_{\Delta}(I)$ on which f does not change its sign.

Proof. Similar to the counterpart of Theorem 2.9 in [7]. \Box

Corollary 4.1. Every prime ideal in $C(X)_{\Delta}$ is contained in a unique maximal ideal in $C(X)_{\Delta}$, i.e. $C(X)_{\Delta}$ is a Gelfand ring.

Definition 4.3. A Z_{Δ} -filter \mathcal{F} on X is called a prime Z_{Δ} -filter if whenever $A \cup B \in \mathcal{F}$, for some $A, B \in Z_{\Delta}(C(X)_{\Delta})$, then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

The next theorem is analogous to Theorem 2.12 of $\left[7\right]$ and we therefore omit the proof.

Theorem 4.3. For a space X, the following hold.

i) If P is a prime ideal in $C(X)_{\Delta}$, then $Z_{\Delta}(P)$ is a prime Z_{Δ} -filter. ii) If \mathcal{F} is a prime Z_{Δ} -filter on X, then $Z_{\Delta}^{-1}(\mathcal{F})$ is a prime Z_{Δ} -ideal.

Corollary 4.2. For a space X, the following hold.

i) Every prime Z_∆-filter is contained in a unique Z_∆-ultrafilter.
ii) Every Z_∆-ultrafilter is a prime Z_∆-filter.

It is known that in a commutative ring R with unity, the intersection of all prime ideals of R containing an ideal I is said to be the radical of I to be denoted by \sqrt{I} . For any ideal I, $\sqrt{I} = \{a \in R : a^n \in I, \text{ for some } n \in \mathbb{N}\}$ (see [7]) and also $I \subseteq \sqrt{I}$. Also I is called radical if $I = \sqrt{I}$.

Theorem 4.4. Every Z_{Δ} -ideal I in $C(X)_{\Delta}$ is a radical ideal.

Proof. Only to use the definition of a Z_{Δ} -ideal. \Box

It is well known that the sum of two z-ideals in C(X) is a z-ideal, (see [7], Lemma 14.8 and [12]). This result can be modified in $C(X)_{\Delta}$ as follows.

Theorem 4.5. The sum of two Z_{Δ} -ideals in $C(X)_{\Delta}$ is a Z_{Δ} -ideal.

Proof. Let I, J be two Z_{Δ} -ideals in $C(X)_{\Delta}, f \in I, g \in J, h \in C(X)_{\Delta}$ and $Z_{\Delta}(f + g) \subseteq Z_{\Delta}(h)$. First note that, $Z_{\Delta}(f) \cap Z_{\Delta}(g) \subseteq Z_{\Delta}(h)$ and there exists a subset $P \in \Delta$ such that $f, g, h \in C(X \setminus P)$. Define

$$k(x) = \begin{cases} 0, & x \in (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \setminus P \\\\ \frac{hf^2}{f^2 + g^2}, & x \in (X \setminus P) \setminus (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \\\\ h(x), & x \in P \end{cases}$$

$$l(x) = \begin{cases} 0, & x \in (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \setminus P \\\\ \frac{hg^2}{f^2 + g^2}, & x \in (X \setminus P) \setminus (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \\\\ 0, & x \in P. \end{cases}$$

We first prove that k is continuous on $X \setminus P$. So it requires only to prove that k is continuous at any point $x \in (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \setminus P$. As h(x) = 0, for any given $\epsilon > 0$, there exists a neighbourhood U of x such that $h(U) \subseteq (-\epsilon, \epsilon)$. Also for any $x \in U$, $|k(x)| \leq |h(x)|$, which means that k is continuous on $X \setminus P$. Similarly l is continuous on $X \setminus P$. Then we have $l, k \in C(X)_{\Delta}, Z_{\Delta}(f) \subseteq Z_{\Delta}(k), Z_{\Delta}(g) \subseteq Z_{\Delta}(l)$ and h = l + k. Since I, J are Z_{Δ} -ideals, $k \in I$ and $l \in J$, hence $h \in I + J$. \Box

Corollary 4.3. Let $\{I_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of Z_{Δ} -ideals in $C(X)_{\Delta}$. Then either $\sum_{\alpha \in \Lambda} I_{\alpha} = C(X)_{\Delta}$ or $\sum_{\alpha \in \Lambda} I_{\alpha}$ is a Z_{Δ} -ideal.

Lemma 4.1. [10] If P is minimal in the class of prime ideals containing a z-ideal I, then P is a z-ideal.

In view of the above result, we can have,

Corollary 4.4. Let $\{P_{\alpha}\}_{\alpha \in \Lambda}$ be a collection of minimal prime ideals in $C(X)_{\Delta}$. Then either $\sum_{\alpha \in \Lambda} P_{\alpha} = C(X)_{\Delta}$ or $\sum_{\alpha \in \Lambda} P_{\alpha}$ is a prime ideal in $C(X)_{\Delta}$.

The following result can be obtained in the same way as is done in ([12], Lemma 5.1).

Corollary 4.5. The sum of a collection of semi prime ideals in $C(X)_{\Delta}$ is either a semiprime ideal or the entire ring $C(X)_{\Delta}$.

5. Fixed and Free ideals in $C(X)_{\Delta}$

In this section, we introduce fixed and free ideals of $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ and completely characterize the fixed maximal ideals of $C(X)_{\Delta}$ and that of $C^*(X)_{\Delta}$.

Definition 5.1. A proper ideal I of $C(X)_{\Delta}$ (resp., $C^*(X)_{\Delta}$) is called fixed if $\cap Z_{\Delta}(I) \neq \emptyset$, where $\cap Z_{\Delta}(I) = \bigcap_{f \in I} Z_{\Delta}(f)$. If I is not fixed, then it is called free.

Let us now characterize the fixed maximal ideals of $C(X)_{\Delta}$ and those of $C^*(X)_{\Delta}$.

Theorem 5.1. $\{M_p^{\Delta} : p \in X\}$ is a complete list of fixed maximal ideals of $C(X)_{\Delta}$, where $M_p^{\Delta} = \{f \in C(X)_{\Delta} : f(p) = 0\}$. Moreover, the ideals M_p^{Δ} are distinct for distinct p.

Proof. First choose $p \in X$. The map $\psi : C(X)_{\Delta} \to \mathbb{R}$ defined by $\psi_p(f) = f(p)$ is a ring homomorphism. Also ψ_p is surjective and $\ker \psi_p = \{f \in C(X)_{\Delta} : \psi_p(f) = 0\} = M_p^{\Delta}$ (say). Hence by the First Isomorphism theorem of rings, we have $C(X)_{\Delta}/M_p^{\Delta}$ is isomorphic to the field \mathbb{R} , so that M_p^{Δ} is a maximal ideal in $C(X)_{\Delta}$. Also, as $p \in \cap Z_{\Delta}[M_p^{\Delta}]$, M_p^{Δ} is a fixed ideal.

Now, $p \neq q$ implies that $\chi_{\{p\}} \neq \chi_{\{q\}}$, where $\chi_{\{p\}}, \chi_{\{q\}} \in C(X)_{\Delta}$ (since X is T_1). As $\chi_{\{p\}} \in M_q^{\Delta}$ but $\chi_{\{p\}} \notin M_p^{\Delta}$, it thus follows that for $p \neq q$, $M_p^{\Delta} \neq M_q^{\Delta}$. \Box

Similarly we have,

Theorem 5.2. $\{M_p^{\Delta^*} : p \in X\}$ is a complete list of fixed maximal ideals of $C^*(X)_{\Delta}$, where $M_p^{\Delta^*} = \{f \in C^*(X)_{\Delta} : f(p) = 0\}$. Moreover, $p \neq q$ implies that $M_p^{\Delta^*} \neq M_q^{\Delta^*}$.

From above it follows that the Jacobson radical of the ring $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ is zero. Also the interrelation between fixed ideals of $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ are as follows.

Corollary 5.1. If I is a fixed maximal ideal of $C(X)_{\Delta}$, then $I \cap C^*(X)_{\Delta}$ is so in $C^*(X)_{\Delta}$. Also, if $I \cap C^*(X)_{\Delta}$ is a fixed ideal of $C^*(X)_{\Delta}$, for some ideal I of $C(X)_{\Delta}$, then I is a fixed ideal of $C(X)_{\Delta}$.

We now give a result with the help of which we get another description of $Z_{\Delta}\text{-}$ ideals.

Lemma 5.1. For any $f \in C(X)_{\Delta}$, we have $M_f^{\Delta} = \{g \in C(X)_{\Delta} : Z_{\Delta}(f) \subseteq Z_{\Delta}(g)\}$, where M_f^{Δ} is the intersection of all maximal ideas of $C(X)_{\Delta}$ containing f.

Proof. The proof is same as that of Lemma 4.1 of [6]. \Box

The following is the counterpart of ([7], 4A).

Theorem 5.3. A necessary and sufficient condition that an ideal I in $C(X)_{\Delta}$ be a Z_{Δ} -ideal is that, for a given g, if there exists $f \in I$ such that $g \in M_{\ell}^{\Delta}$, then $g \in I$.

Proof. Let I be a Z_{Δ} -ideal and for a given g, there exists $f \in I$ such that $g \in M_f^{\Delta}$. Then $Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$. Also $f \in I$ implies that $Z_{\Delta}(f) \in Z_{\Delta}(I)$, so that $Z_{\Delta}(g) \in Z_{\Delta}(I)$ (as $Z_{\Delta}(I)$ is a Z_{Δ} -filter) which further implies that $g \in I$.

Conversely, let $Z_{\Delta}(g) \in Z_{\Delta}(I)$ imply that $Z_{\Delta}(g) = Z_{\Delta}(f)$, for some $f \in I$. So $g \in M_{f}^{\Delta}$. Thus by the given condition $g \in I$. Hence I is a Z_{Δ} -ideal. \Box

Regarding the existence of free maximal ideals in $C(X)_{\Delta}$ and in $C(X)_{\Delta}$, we now establish the following.

Theorem 5.4. For a space X, the following are equivalent:

i) X is finite.

ii) Every proper ideal of $C(X)_{\Delta}$ is fixed.

iii) Every maximal ideal of $C(X)_{\wedge}$ is fixed.

iv) Every proper ideal of $C^*(X)_{\Delta}$ is fixed.

v) Every maximal ideal of $C^*(X)_{\wedge}$ is fixed.

Proof. i) \Rightarrow ii): Let I be a proper ideal of $C(X)_{\Delta}$. Now $Z[I] (\equiv \{Z(f) : f \in I\})$ is finite and also a Z_{Δ} -filter. Hence I is fixed. ii) \Rightarrow iii): Obvious.

 $iii) \Rightarrow i$: If possible, let X be infinite. Let $S = \{\chi_{\{x\}} : x \in X\}$ and consider the ideal I generated by S in $C(X)_{\Delta}$. We claim that I is proper. If not, then there exists $x_1, x_2, ..., x_n$ and $f_1, f_2, ..., f_n \in C(X)_{\Delta}$ such that $\overline{\mathbf{1}} = f_1\chi_{\{x_1\}} + f_2\chi_{\{x_2\}} + ... + f_n\chi_{\{x_n\}}$. Then $\bigcap_{i=1}^n Z_{\Delta}[\chi_{\{x_i\}}] = \emptyset$. Hence $\bigcap_{i=1}^n (X \setminus \{x_i\}) = \emptyset$ which implies that X is finite, a contradiction. Let M be any maximal ideal of $C(X)_{\Delta}$ containing I. Then $\bigcap Z[M] \subseteq \bigcap Z[I] \subseteq \bigcap_{x \in X} (X \setminus \{x\}) = \emptyset$ which implies that M is a free ideal, a contradiction. Hence X is finite. $i) \Rightarrow iv$: Can be done as in $i) \Rightarrow ii$.

 $v) \Rightarrow i$: Obvious. \Box

In view of Example 4.7 of [7], since $C(X) = C(X)_{\Delta}$, for any discrete space X, we can conclude that

i) For any maximal ideal M of $C(X)_{\Delta}$, $M \cap C^*(X)_{\Delta}$ need not be a maximal ideal in $C^*(X)_{\Delta}$.

ii) All free maximal ideals in $C^*(X)_{\Delta}$ need not be of the form $M \cap C^*(X)_{\Delta}$, where M is a maximal ideal in $C(X)_{\Delta}$.

6. Residue class rings of $C(X)_{\Delta}$ modulo ideals

Let us recall that an ideal I in a partially ordered ring A is called convex if whenever $0 \le x \le y$ and $y \in I$, then $x \in I$. Equivalently, for all $a, b, c \in A$ with $a \le b \le c$ and $a, c \in I$ implies that $b \in I$.

If A is a lattice-ordered ring, then an ideal I of A is said to be absolutely convex if whenever $|x| \leq |y|$ and $y \in I$, then $x \in I$.

For an ideal I of $C(X)_{\Delta}$, we shall denote any member of the quotient ring $C(X)_{\Delta}/I$ by I(f), for $f \in C(X)_{\Delta}$, i.e. I(f) = f + I.

Let us now recall the following.

Theorem 6.1. [7]. Let I be an ideal in a partially ordered ring A. In order that A/I be a partially ordered ring, according to the definition:

 $I(a) \ge 0$ if there exists $x \in A$ such that $x \ge 0$ and $a \equiv x \pmod{I}$,

it is necessary and sufficient that I is convex.

Theorem 6.2. [7]. The following conditions on a convex ideal I in a lattice ordered ring A are equivalent:

i) I is absolutely convex. ii) $x \in I$ implies $|x| \in I$. iii) $x, y \in I$ implies $x \lor y \in I$. iv) $I(a \lor b) = I(a) \lor I(b)$, whence A/I is a lattice. v) $I(a) \ge 0$ if and only if $a \equiv |a| \pmod{I}$.

Remark 6.1. $I(|a|) = |I(a)|, \forall a \in A$, when I is an absolutely convex ideal of A.

Theorem 6.3. Every Z_{Δ} -ideal in $C(X)_{\Delta}$ is absolutely convex.

Proof. Let I be any Z_{Δ} -ideal in $C(X)_{\Delta}$ and $|f| \leq |g|$, where $f \in C(X)_{\Delta}$ and $g \in I$. Then $Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$. As $g \in I$, $Z_{\Delta}(g) \in Z_{\Delta}(I)$ which implies that $Z_{\Delta}(f) \in Z_{\Delta}(I)$. Now I being a Z_{Δ} -ideal, it follows that $f \in I$. \Box

Corollary 6.1. Every maximal ideal in $C(X)_{\Delta}$ is absolutely convex.

Theorem 6.4. For every maximal ideal M in $C(X)_{\Delta}$, the quotient ring $C(X)_{\Delta}/M$ is a lattice ordered ring.

Proof. Obvious. \Box

Next we characterize the non-negative elements in the lattice-ordered ring $C(X)_{\Delta}/I$, for a Z_{Δ} -ideal I.

Theorem 6.5. For a Z_{Δ} -ideal I and $f \in C(X)_{\Delta}$, $I(f) \geq 0$ if and only if there exists $Z \in Z_{\Delta}(I)$, such that $f \geq 0$ on Z.

Proof. First let, $I(f) \ge 0$. By Theorem 6.2, $f \equiv |f| \pmod{I}$, i.e. $f - |f| \in I$. So, $Z_{\Delta}(f - |f|) \in Z_{\Delta}(I)$ and hence $f \ge 0$ on $Z_{\Delta}(f - |f|)$.

Conversely, let $f \geq 0$ on some $Z \in Z_{\Delta}(I)$. Then f = |f| on Z, i.e. $Z \subseteq Z_{\Delta}(f-|f|)$ which implies that $Z_{\Delta}(f-|f|) \in Z_{\Delta}(I)$. Since I is a Z_{Δ} -ideal, $f-|f| \in I$, i.e. I(f) = I(|f|). As $I(|f|) \geq 0$, hence $I(f) \geq 0$. \Box

Theorem 6.6. Let I be a Z_{Δ} -ideal and $f \in C(X)_{\Delta}$. If there exists $Z \in Z_{\Delta}(I)$ such that f(x) > 0, for all $x \in Z$, then I(f) > 0. Converse is true if I is maximal.

Proof. If f is positive on $Z \in Z_{\Delta}(I)$, then $Z_{\Delta}(f) \cap Z = \emptyset$, so that $Z_{\Delta}(f) \notin Z_{\Delta}(I)$. Hence $f \notin I$. So by the previous theorem I(f) > 0.

For the converse, if I is maximal, then there exists some zero set Z' of I such that $Z' \cap Z(f) = \emptyset$. Now $Z \cap Z' \in Z_{\Delta}(I)$, thus f > 0 on the zero set $Z \cap Z'$ of I. \Box

Remark 6.2. The converse part of the above theorem fails if I is not maximal: for let I be non-maximal. Then there exists a proper ideal J of $C(X)_{\Delta}$ such that $I \subset J$. Choose $f \in J \setminus I$. Then $I(f^2) > 0$. Now choose any $Z \in Z_{\Delta}(I)$. Then $Z \in Z_{\Delta}(J)$ also, so that $Z \cap Z(f^2) \neq \emptyset$. Now f is not strictly positive on the whole of Z.

We now characterize those ideals I in $C(X)_{\Delta}$ for which $C(X)_{\Delta}/I$ is a totally ordered ring.

Theorem 6.7. For a Z_{Δ} -ideal I in $C(X)_{\Delta}$, the lattice ordered ring $C(X)_{\Delta}/I$ is a totally ordered if I is prime.

Proof. $C(X)_{\Delta}/I$ is totally ordered if and only if for any $f \in C(X)_{\Delta}$, $I(f) \ge 0$ or $I(-f) \ge 0$ if and only if for all $f \in C(X)_{\Delta}$, there exists $Z \in Z_{\Delta}(I)$ such that f does not change its sign of Z if and only if I is a prime ideal in view of Theorem 4.2. \Box

Corollary 6.2. For every maximal ideal M in $C(X)_{\Delta}$, $C(X)_{\Delta}/M$ is a totally ordered ring.

Theorem 6.8. For a prime ideal P in $C(X)_{\Delta}$, the following are true.

i) *P* is absolutely convex.

ii) The residue class ring $C(X)_{\Delta}/P$ is totally ordered.

iii) The mapping : $r \to P(\bar{\mathbf{r}})$ is an order-preserving monomorphism of the real field \mathbb{R} into the residue class rings.

Proof. i) Let $0 \leq |f| \leq |g|$, for some $f \in C(X)_{\Delta}$ and $g \in P$. Then $f^2 = |f|^2 \leq |g|^2$. By Theorem 2.4, $f^2 = h \cdot g$, for some $h \in C(X)_{\Delta}$. Thus $f^2 \in P$ implies that $f \in P$ (as P is prime). Hence P is absolutely convex.

ii) Since *P* is prime, $C(X)_{\Delta}/P$ is a partially ordered ring. Now $(f - |f|)(f + |f|) = \overline{\mathbf{0}}$ which implies that either $f \equiv |f| \pmod{P}$, i.e. either $P(f) \geq 0$ or $P(-f) \geq 0$. Hence $C(X)_{\Delta}/P$ is totally ordered.

iii) Clearly the mapping: $r \to P(\bar{\mathbf{r}})$ is a monomorphism. We only need to show the order preserving property of the mapping. Choose $r, s \in \mathbb{R}$ with r > s. Then r - s > 0, so that $P(\bar{\mathbf{r}} - \bar{\mathbf{s}}) > \mathbf{0}$, i.e. $P(\bar{\mathbf{r}}) > \mathbf{P}(\bar{\mathbf{s}})$. \Box

For a maximal ideal M in $C(X)_{\Delta}$, $C(X)_{\Delta}/M$ can be considered as an extension of the real field \mathbb{R} , or in other words, $C(X)_{\Delta}/M$ contains a cannonical copy of \mathbb{R} .

Definition 6.1. If for a maximal ideal M, the canonical copy of \mathbb{R} is the entire field $C(X)_{\Delta}/M$, (resp. $C^*(X)_{\Delta}/M$), then M is called a real ideal and $C(X)_{\Delta}/M$ is called real residue class field. If M is not real, then it is called hyper-real and $C(X)_{\Delta}/M$ is called a hyper-real residue class field

Definition 6.2. [7] A totally ordered field F is said to be archimedean if for every element a, there exists $n \in \mathbb{N}$ such that $n \geq a$. If F is not archimedean, then it is called non-archimedean. Thus, a non-archimedean field is characterized by the presence of infinitely large elements, i.e. there exists $a \in F$ such that $a > n, n \in \mathbb{N}$. Such elements are called infinitely large elements. The following is an important theorem in the context of archimedean field.

Theorem 6.9. [7] A totally ordered field is archimedean if and only if it is isomorphic to a subfield of the ordered field of \mathbb{R} .

Thus we get that the real residue class field $C(X)_{\Delta}/M$ is archimedean if M is a real maximal ideal of $C(X)_{\Delta}$.

Theorem 6.10. Every hyper-real residue class field $C(X)_{\wedge}/M$ is non-archimedean.

Proof. Since the identity is the only non-zero homomorphism on the ring \mathbb{R} into itself, the proof follows. \Box

Corollary 6.3. A maximal ideal in $C(X)_{\Delta}$ is hyper-real if and only if there exists $f \in C(X)_{\Delta}$ such that M(f) is an infinitely large member of $C(X)_{\Delta}/M$.

Theorem 6.11. Each maximal ideal M in $C^*(X)_{\Delta}$ is real.

Proof. In view of the above discussions, it sufficies to show that $C^*(X)_{\Delta}/M$ is archimedean. Choose $f \in C^*(X)_{\Delta}$. Then $|f(x)| \leq n$, for all $x \in X$ and for some $n \in \mathbb{N}$, i.e. $|M(f)| \leq M(\bar{\mathbf{n}})$. \Box

The following theorem relates to unbounded functions on X with infinitely large elements modulo maximal ideals.

Theorem 6.12. For a given maximal ideal M in $C(X)_{\Delta}$ and $f \in C(X)_{\Delta}$, the following are equivalent:

i) |M(f)| is infinitely large.

ii) f is unbounded on every zero set of M.

iii) For each $n \in \mathbb{N}$, the zero set $Z_n = \{x \in X : |f(x)| \ge n\} \in Z_{\Delta}(M)$.

Proof. i) \iff ii): |M(f)| is not infinitely large in $C(X)_{\Delta}/M$ if and only if there exists $n \in \mathbb{N}$ such that $|M(f)| = M(|f|) \leq M(\bar{\mathbf{n}})$ if and only if $|f| \leq \bar{\mathbf{n}}$ on some $Z \in Z_{\Delta}(M)$ if and only if f is bounded on some $Z \in Z_{\Delta}(M)$.

 $ii) \iff iii$): Choose $n \in \mathbb{N}$. Since Z_n intersects each member in $Z_{\Delta}(M), Z_n \in Z_{\Delta}(M)$, as because $Z_{\Delta}(M)$ is Z_{Δ} -ultrafilter.

iii) \iff *ii*): Since for each $n \in \mathbb{N}$, $|f| \ge n$ on some zero set in $Z_{\Delta}(M)$, $|M(f)| \ge M(\bar{\mathbf{n}})$, for all $n \in \mathbb{N}$. This implies that |M(f)| is an infinitely large element of $C(X)_{\Delta}/M$. \Box

Theorem 6.13. $f \in C(X)_{\Delta}$ is unbounded on X if and only if there exists a maximal ideal M in $C(X)_{\Delta}$ such that |M(f)| is infinitely large in $C(X)_{\Delta}/M$.

Proof. One part follows from Theorem 6.12.

For the other part, let f be unbounded on X. Then each $Z_n = \{x \in X : |f| \ge n\} \neq \emptyset$, for $n \in \mathbb{N}$ and $\{Z_n : n \in \mathbb{N}\}$ has the finite intersection property. So there exists a Z_{Δ} -ultrafilter \mathcal{U} on X containing $\{Z_n : n \in \mathbb{N}\}$. Hence there exists a maximal ideal M in $C(X)_{\Delta}$ such that $\mathcal{U} = Z_{\Delta}(M)$ and so $Z_n \in Z_{\Delta}(M)$, for all $n \in \mathbb{N}$. Now by Theorem 6.12, it follows that |M(f)| is infinitely large. \Box

Remark 6.3. In the case of C(X), the pseudocompactness of X ensures that every maximal ideal of C(X) is real. But in $C(X)_{\Delta}$, this may not hold. Consider X = [0, 1] with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$ and $f: X \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

As f is unbounded on X, by Theorem 6.12, there exists a maximal ideal M (say) such that |M(f)| is infinitely large, so that M is not real.

7. Some algebraric aspects of $C(X)_{\Delta}$

Let us first recall that a ring S containing a reduced ring R is called a ring of quotients of R if and only if for each $0 \neq s \in S$, there exists $r \in R$ such that $0 \neq sr \in R$ (see [8]). Regarding rings of quotients of rings of functions one can go through [9, 5].

Theorem 7.1. For a space X and a subcollection $\Delta \subseteq \mathcal{P}(X)$, the following are equivalent:

i) $C(X) = C(X)_{\Delta}$. ii) X is a discrete space. iii) $C(X)_{\Delta}$ is a ring of quotients of C(X). iv) C(X) = T'(X).

Proof. i) \iff ii): If X is discrete, then obviously $C(X) = C(X)_{\Delta}$. Next suppose that $C(X) = C(X)_{\Delta}$ and $x \in X$. As $\chi_{\{x\}} \in C(X)_{\Delta}$, $\chi_{\{x\}} \in C(X)$, so that X becomes discrete.

 $ii) \Rightarrow iii$): Obvious.

 $iii) \Rightarrow iv$): Choose $x_0 \in X$. Then $\chi_{\{x_0\}} \in C(X)_{\Delta}$. Hence there exists $f \in C(X)$ such that $0 \neq f(x)\chi_{\{x_0\}} \in C(X)$. Hence $f(x_0)\chi_{\{x_0\}} = f(x)\chi_{\{x_0\}} \in C(X)$, which implies that $\{x_0\}$ is an isolated point, so that X is discrete.

 $iv) \Rightarrow ii$: If X is not discrete, then there exists a non-isolated point $x_0 \in X$. Now $\chi_{\{x_0\}} \in T'(X)$, but $\chi_{\{x_0\}} \notin C(X)$. Hence $T'(X) \neq C(X)$. \Box

Theorem 7.2. For a space X and a subcollection $\Delta \subseteq \mathcal{P}(X)$, $T'(X) \subseteq C(X)_{\Delta}$ if and only if every open dense subset D of X is of the form $X \setminus G$, for some $G \in \Delta$.

Proof. First let $T'(X) \subseteq C(X)_{\Delta}$ and D be an open dense subset of X. Then $\chi_D \in T'(X)$ implies that $\chi_D \in C(X)_{\Delta}$. Hence the set of points of discontinuities of $\chi_D (\equiv G(\operatorname{say})) = X \setminus D \in \Delta$, so that $D = X \setminus G$, where $G \in \Delta$.

Conversely, choose $f \in T'(X)$. Then there exists an open dense subset D of X such that f is continuous on D and by the given condition $D = X \setminus G$, for $G \in \Delta$. Hence the set D_f of points of discontinuities of f is a subset of $X \setminus D = G \in \Delta$, so that $D_f \in \Delta$. Thus $f \in C(X)_{\Delta}$, and hence $T'(X) \subseteq C(X)_{\Delta}$. \Box

Remark 7.1. If X is T_1 , we always have $C(X)_F \subseteq T'(X)$, but this inclusion is not true in case of $C(X)_{\Delta}$. Consider $X = \mathbb{R}$ with the usual topology of reals and $\Delta = \{A \subseteq X : A \text{ is countable}\}$. Define $f: X \to \mathbb{R}$ by,

$$f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q}, \text{ with g.c.d } (p,q) = 1 \\ 0, & x = 0 \text{ or } x \text{ is an irrational.} \end{cases}$$

Then $f \in C(X)_{\Delta}$, but $f \notin T'(X)$. Hence $C(X)_{\Delta} \not\subseteq T'(X)$.

8. ΔP -space

Recall that a space X is called a P-space (resp., $\mathcal{F}P$ space) if C(X) (resp., $C(X)_F$) is a regular ring, (see [7], 4J and [6]). We next introduce ΔP - spaces which is a generalization of the above types of spaces.

Definition 8.1. A space X is called a ΔP -space if $C(X)_{\Delta}$ is a regular ring.

Observe that any $\mathcal{F}P$ space is one kind of a ΔP -space if we consider $\Delta =$ the set of all finite subsets of X. Now we give an example of a ΔP -space which is not a $\mathcal{F}P$ space.

Example 8.1. Let $X = \mathbb{Q}$ and Δ = the set of all countable subsets of \mathbb{Q} . Then $C(X)_{\Delta} = \mathbb{R}^{\mathbb{Q}}$. So \mathbb{Q} is a ΔP -space. But \mathbb{Q} is not an $\mathcal{F}P$ -space. To establish this, consider $f : \mathbb{Q} \to \mathbb{R}$ defined by,

,

$$f(x) = \begin{cases} 2(x - \overline{n-1}), & n-1 \le x \le \frac{2n-1}{2} \\ -2(x-n), & \frac{2n-1}{2} \le x \le n \\ 1 & otherwise. \end{cases}$$

Here the only point of discontinuity of f is x = 0. So $f \in C(\mathbb{Q})_F$ also. If $C(\mathbb{Q})_F$ be regular, then there exists $g \in C(\mathbb{Q})_F$ such that $f^2g = f$ which implies that $g = \frac{1}{f}$, when $f(x) \neq 0, x \in \mathbb{Q}$. So we get,

$$g(x) = \begin{cases} & \frac{1}{2(x-n-1)}, & n-1 < x < \frac{2n-1}{2} \\ & -\frac{1}{2(x-n)}, & \frac{2n-1}{2} < x < n \\ & 1 & otherwise. \end{cases}$$

So whatever value we choose for g(x), when f(x) = 0, g will be discontinuous at those points. Hence $g \notin C(\mathbb{Q})_F$. So \mathbb{Q} is not an $\mathcal{F}P$ space, and hence not a P-space also.

Proposition 8.1. Every *P*-space is a ΔP -space.

Proof. Let X be a P-space and $f \in C(X)_{\Delta}$. Then $D_f \in \Delta$ and $X \setminus D_f$ is a G_{δ} -set in X. Also $X \setminus D_f$ is a P-space (as any subspace of a P-space is also a P-space), so that $X \setminus D_f$ is an open set in X. Now for $f \in C(X \setminus D_f)$, there exists $g \in C(X \setminus D_f)$ such that $f = f^2 g$. Now we define $g^* : X \to \mathbb{R}$ by,

$$g^*(x) = \begin{cases} g(x), & x \in X \setminus D_f \\ 0, & x \in D_f \cap Z_{\Delta}(f) \\ \frac{1}{f(x)}, & x = \in D_f \setminus Z_{\Delta}(f). \end{cases}$$

Then clearly $g^* \in C(X)_{\Delta}$. So $f = f^2 g^*$ and hence X is a ΔP -space. \Box

It is known from literature that every zero set in C(X) is clopen. The modification of this result in the setting of $C(X)_{\Delta}$ is furnished below.

Theorem 8.1. If X is a ΔP -space, then for any $Z \in Z_{\Delta}(X)$, there exists $H \in \Delta$ such that $Z \setminus H$ is a clopen set in $X \setminus H$.

Proof. Let $Z_{\Delta}(f) \in Z_{\Delta}(X)$, for $f \in C(X)_{\Delta}$. As X is a ΔP-space, there exists $g \in C(X)_{\Delta}$ such that $f^2g = f$. Since $f, g \in C(X)_{\Delta}$, there exists $H \in C(X)_{\Delta}$ such that $f, g \in C(X \setminus H)$. So $f^2(x)g(x) = f(x)$, for all $x \in X \setminus H$ which implies that $Z_{\Delta}(f|_{X\setminus H}) \cup Z_{\Delta}((1-fg)|_{X\setminus H}) = X \setminus H$ and also $Z_{\Delta}(f|_{X\setminus H}) \cap Z_{\Delta}((1-fg)|_{X\setminus H}) = \emptyset$. So $Z_{\Delta}(f) \setminus H$ is clopen in $X \setminus H$. □

Acknowledgement

The authors are thankful to the learned referee for his/her valuable comments which improved the paper. The second author is supported by CSIR, New Delhi, INDIA. File No. - 08/155(0089)/2020-EMR-I.

R. Sen and R. P. Saha

REFERENCES

- M. R. AHMADI ZAND: An algebraic characterization of Blumberg spaces. Quaest. Math. 33 (2010), 1–8.
- M. R. AHMADI ZAND and Z. KHOSRAVI: Remarks on the rings of functions which have a finite number of discontinuities. Appl. Gen. Topol. 22(1) (2021), 139–147.
- S. BAG, S. K. ACHARYYA and D. MANDAL: Rings of functions which are discontinuous on a set of measure zero. Positivity 26(12) (2022).
- M. ELYASI, A. A. ESTAJI and M. R. SARPOUSHI: On functions which are discontinuous on a countable set. The 50th Annual Iranian Mathematics Conference Shiraz University, 26–29 August (2019).
- N. J. FINE, L. GILLMAN and J. LAMBEK: Rings of quotients of rings of functions. McGill University Press, (1965).
- Z. GHAREBAGHI, M. GHIRATI and A. TAHERIFAR: On the rings of functions which are discontinuous on a finite set. Houston J. Math. 44(2) (2018), 721–739.
- 7. L. GILLMAN and M. JERISON. *Rings of Continuous Functions*, Springer, London (1976).
- 8. J. LAMBEK: Lectures on rings and modules. Blaisdell Publishing Company, (1966).
- R. LEVY and J. SHAPIRO: Rings of quotients of rings of functions. Topol. Appl. 146-147 (2005), 253–265.
- 10. G. MASON: Prime z-ideals of C(X) and related rings. Canad. Math. Bull. **23**(4) (1980), 437–443.
- 11. J. C. OXTOBY: Measure and Category. Springer, New York (1980).
- 12. D. RUDD: On two sum theorems for ideals of C(X). Michigan Math. J. 17 (1970), 139–141.