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Abstract. Our aim in this paper is to introduce a ring of functions defined on a
topological space X having a special property. By C(X)∆ we denote the set of all real-
valued functions defined on the topological space X, the discontinuity set of elements
of which are members of ∆ ⊆ P(X), where ∆ satisfies the following properties: (i)
for each x ∈ X, {x} ∈ ∆, (ii) for A,B ∈ P(X) with A ⊆ B,B ∈ ∆ implies that
A ∈ ∆ and (iii) for A,B ∈ ∆, A ∪ B ∈ ∆. This C(X)∆ is an over-ring of C(X),
moreover, C(X) ⊆ C(X)F ⊆ C(X)∆ ⊆ RX . The ring C(X)∆ is also almost regular.
We study the ∆-completely separated sets and C∆ -embedded subsets of X. Complete
characterizations of fixed maximal ideals are then done and algebraic properties of
C(X)∆ have been studied. In [6], the authors have introduced FP-spaces, for which
the ring C(X)F is regular. Here we have generalized the notion of FP-spaces in the
context of C(X)∆ , so that the ring in question becomes regular. As a result, ∆P -
spaces have been introduced, it has been proved that every P -space is a ∆P -space and
examples are given in support of the fact that there exist ∆P -spaces which are not
P -spaces.
Keywords: C(X)∆ , C

∗
(X)∆ , ∆-completely separated sets, Z∆ -ideals, Z∆ -filters, ∆P -

spaces.

1. Introduction

Unless otherwise mentioned, all topological spaces are assumed to be T1. Let
RX be the ring of all real-valued functions defined on a nonempty topological space
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X with pointwise addition and multiplication. We here note that all subrings of RX

are reduced (see [8]), in the sense that they have no non-zero nilpotent elements.
Also recall that the ring T ′(X) [1] of all f ∈ RX , where for each f there is an
open dense subset D of X such that f |D is continuous on D, is a (Von Neumann)
regular ring, where a ring R is called regular if for any a ∈ R, there exists b ∈ R
such that a = aba. In this sequel, we also want to mention about the ring T (X)
[1] of all f ∈ RX such that f |D ∈ C(D), for a dense subspace D of X. Also the
collection of all continuous members of RX is denoted by C(X), and the collection
of all bounded members of C(X) is denoted by C

∗
(X). In this connection, we refer

to the reader [7], where these two rings have been studied extensively. If f is a
function from a topological space (X, τ) to the real line R which is not necessarily
continuous, it is well known that the set Df = {x ∈ X : f is discontinuous at x
w.r.t the topology τ} is an Fσ-subset of X. The proof of this fact is followed by
some simple modification in the arguments to prove that for a function f : R → R,
the set of all points of discontinuity of f is an Fσ-set (see [11]). Gharebaghi, Ghirati
and Taherifar in [6] first introduced and studied the ring C(X)F of all real-valued
functions on X which are discontinuous on some finite subset of X, i.e. all those
members f ∈ RX for which Df is a finite subset of X. After that this ring has been
further studied by M. R. Ahmadi Zand and Z. Khosravi in [2]. Very recently, the
authors in [3] investigated the family M0(X,µ) of all those functions f of M(X,A)
(≡ the ring of all real-valued measurable functions defined over a measurable space
(X,A)), for which µ(Df ) = 0. Fortunately, using the properties of the measure µ,
it can be checked that M0(X,µ) is a commutative lattice ordered ring with unity if
the relevant operations are defined pointwise on X. In this connection, one can go
through [4], where the authors have studied the ring of functions which are discon-
tinuous on a countable set. Regarding the rings C(X)

F
, T (X) and M0(X,µ), the

most common features are that the discontinuity set Df , for any f in all these rings
are closed under finite unions and forming subsets. These particular properties mo-
tivate us to consider a subcollection D ⊆ P(X) closed under forming subsets and
finite unions. [These urge us to consider a collection C(X)

D
of all those members f

of RX for which Df ∈ D. This C(X)D also happens to be a commutative ring with
unity if the relevant operations are defined pointwise on X. Note that, if D = the
collection of all finite subsets of X (resp., set of all nowhere dense subsets of X),
then C(X)

D
reduces to C(X)

F
(resp., T (X)) and if D = the collection of all sets

having measure zero in a complete measure space, then C(X)D = M0(X,µ)]. We
now impose another condition on D mainly, D is closed under containing singletons,
i.e. for any x ∈ X, {x} ∈ D. So, in this paper our key element is a subcollection
∆ ⊆ P(X) with the following properties:

1) For each x ∈ X, {x} ∈ ∆.
2) For A,B ∈ P(X) with A ⊆ B, B ∈ ∆ implies that A ∈ ∆.
3) For A,B ∈ ∆, A ∪B ∈ ∆.

As mentioned before, C(X)∆ becomes a commutative ring with unity. Now, the
benefits of switching to ∆ from D yield the following results.
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1) X is discrete if and only if C(X) = C(X)∆ .
2) X is connected if and only if 0̄ and 1̄ are the only idempotent elements of C(X)
(where for any r ∈ R, r denotes the constant function f(x) = r, for all x ∈ X),
whereas in the case of C(X)∆ , χ{x} becomes an idempotent element, for each x ∈ X,
irrespective of the connectedness of X.
3) Any element of C(X)∆ is either a unit or a zero-divisor.
4) Also while studying ideals and z-filters, a necessary and sufficient condition for
a proper ideal as well as a maximal ideal to be fixed can be solved.

Let us now briefly explain the organization of the paper. Section 2 starts with
the definition of the rings C(X)∆ and C

∗
(X)∆ . It is shown that unlike the ring

C(X), the equality C(X)∆ = C
∗
(X)∆ is only a sufficient condition for the pseudo-

compactness of X but not necessary. We define the zero sets Z
∆
(f), for a function

f ∈ C(X)∆ . Examples are given in support of the fact that Z∆(f) is not necessarily
closed as well as not G

δ
, like the case of the ring C(X). In fact, it is shown that for

any f ∈ C(X)∆ , Z∆(f) can be written as a disjoint union of a Gδ-subset of X and
a member of ∆. It is proved that C(X)∆ is an almost regular ring. This section
ends with some dissimilarities between C(X) and C(X)∆ .

In section 3, we introduce the notion of ∆-completely separated sets and char-
acterize them in terms of zero sets of C(X)∆ . It has been shown that ∆-complete
separation is a generalization of both F-complete separation and that of complete
separation of subsets of X. Next we introduce C∆-embedded and C

∗

∆
-embedded

subsets of X. A necesarry and sufficient condition is obtained for a C
∗

∆
-embedded

subset to be C∆-embedded. Also it is established that if a discrete zero set is
C

∗

∆
-embedded, then all its subsets are also zero sets.

In section 4, we introduce the notions of ideals of C(X)∆ and Z∆-filters on X.
Naturally it is shown that there is a one-to-one correspondence between the set
of all maximal ideals of C(X)∆ and the set of all Z∆-ultrafilters of X. After the
introduction of Z∆-ideals it is shown that every Z∆-ideal is a radical ideal. That the
sum of two Z∆-ideals is a Z∆ -ideal is established, as a consequence of which we have

that, if {Iα}α∈Λ be a collection of Z∆-ideals in C(X)∆ , then either
∑
α∈Λ

Iα = C(X)∆

or
∑
α∈Λ

Iα is a Z∆-ideal.

In section 5, the complete list of fixed maximal ideals of C(X)∆ and C(X)
∗

∆
are

given in terms of M
∆

p
and M

∆
∗

p
respectively. Here with the help of M

∆

p
, we give

another description of Z∆-ideals. Finally a finite space is characterized as one in
which every proper ideal of C(X)∆ is fixed and also every maximal ideal of C(X)∆
is fixed.

Section 6 is devoted to the study of residue class rings of C(X)∆ modulo ideals.
It is shown that every Z∆-ideal is absolutely convex, and for every maximal idealM
in C(X)∆ , the quotient ring C(X)∆/M is a lattice ordered ring. Also for a Z∆-ideal
I in C(X)∆ which is prime, the lattice ordered ring C(X)∆/I is totally ordered. It
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is proved that every hyper-real residue class field C(X)∆/M is non-archimedean and
each maximal ideal M in C

∗
(X)∆ is real. Lastly it is established that f ∈ C(X)∆

is unbounded on X if and only if there exists a maximal ideal M in C(X)∆ such
that |M(f)| is infinitely large in C(X)∆/M .

Section 7 deals with some algebraric aspects of C(X)∆ . Relations between the
rings C(X), C(X)

∆
and T ′(X) have been investigated.

Section 8 studies ∆P -spaces. It has been shown that every P -space is a ∆P -
space. Examples are provided in support of the fact that the converse is not true
in general.

Throughout the paper R, Q and N respectively denote the set of reals, the set
of rationals and the set of natural numbers.

2. The rings C(X)∆ and C
∗
(X)∆

In this section our main interest is to explore the properties of the ring C(X)∆ .
We then introduce a subring C

∗
(X)∆ of C(X)∆ and also discuss about the zero

sets for functions in C(X)∆ .

Definition 2.1. For a topological space X and a subcollection ∆ of P(X) (≡
the power set of X), where ∆ is closed under forming subsets, finite unions and
containing all singletons, we define,

C(X)∆ = {f ∈ RX : the set of points of discontinuities of f is a member of ∆}.

It can be easily observed that C(X)∆ is a commutative ring with unity (with
respect to pointwise addition and multiplication) containing C(X), in addition,
C(X)

∆
is a super-ring or an over-ring of C(X)

F
⊇ C(X), i.e. C(X) ⊆ C(X)

F
⊆

C(X)∆ .

We note that C(X)∆ is a sublattice of RX , in fact, (C(X)∆ ,+, .,∨,∧) is a
lattice-ordered ring if for any f, g ∈ C(X)∆ , one defines (f ∨ g)(x) = f(x) ∨ g(x)
and (f ∧ g)(x) = f(x) ∧ g(x), x ∈ X. Also f ∨ g = f+g+|f−g|

2 ∈ C(X)∆ , for all
f, g ∈ C(X)∆ . For f ∈ C(X)∆ and f > 0, we note that there exists h ∈ C(X)∆
such that f = h2. Also, whenever f ∈ C(X)∆ and fr is defined where r ∈ R, then
fr ∈ C(X)∆ .

Definition 2.2. We next define,

C
∗
(X)∆ = {f ∈ C(X)∆ : f is bounded}

which is obviously closed under the algebraic and order operations as discussed
above. Hence C

∗
(X)∆ is a subring as well as a sublattice of C(X)∆ .
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Remark 2.1. We see that unlike the ring C(X), the equality C(X)∆ = C
∗
(X)∆ is only

a sufficient condition for the pseudocompactness of X but not necessary, as it follows from
the next example.

Example 2.1. Consider X = [0, 1] equipped with the subspace topology of the usual
topology of reals and take ∆ = {A ⊆ X : A is nowhere dense in X}. Take the function
f : [0, 1] → R defined by,

f(x) =


1
x
, x ̸= 0

1, x = 0.

Clearly f ∈ C(X)∆ , but f /∈ C
∗
(X)∆ . But here X is pseudocompact.

Definition 2.3. For f ∈ C(X)∆ , the set f−1(0) = {x ∈ X : f(x) = 0} will be
called the zero set of f , to be denoted by Z∆(f).

We will use the notation Z∆(C(X)∆) (or, Z∆(X)) for the collection {Z∆(f)
: f ∈ C(X)∆} of all zero sets in X.

Some elementary properties of the zero sets of functions of C(X)∆ are listed
below, which are trivial to check as in the classical setting of C(X) (see, 1.10, 1.11
of [7]).

Theorem 2.1. For f, g ∈ C(X)∆ and r ∈ R, the following holds.

i) Z∆(f) = Z∆(|f |) = Z∆(f
n), for all n ∈ N.

ii) Z∆(0̄) = X and Z∆(1̄) = ∅.
iii) Z∆(fg) = Z∆(f) ∪ Z∆(g).
iv) Z∆(f

2 + g2) = Z∆(f) ∩ Z∆(g).
v) {x ∈ X : f(x) ≥ r} and {x ∈ X : f(x) ≤ r} are zero sets in X.
vi) Also for a given f ∈ C(X)∆ , the function h = |f | ∧ 1̄ ∈ C(X)∆ , so that
Z∆(f) = Z∆(h) and hence we can conclude that C(X)∆ and C

∗
(X)∆ produce the

same zero sets.

Remark 2.2. Unlike C(X), Z∆(f) is not necessarily closed as is seen below.

Example 2.2. Consider X = [0, 1] with the subspace topology of the usual topology of
reals and ∆ = {A ⊆ X : A is nowhere dense in X}. Take the function f : X → R defined
by, for any n ∈ N,

f(x) =


1, x ̸= 1

n

0, x = 1
n
.

Then the set of points of discontinuities of f is {0}∪{ 1
n
: n ∈ N} ∈ ∆, so that f ∈ C(X)∆ ,

but Z∆(f) = { 1
n
: n ∈ N} which is not closed in X.
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Remark 2.3. Z∆(f) need not be a Gδ-set as in the case of C(X) as is seen below.

Example 2.3. Consider X = R with the cofinite topology. Then no finite set in R is a
Gδ-set. Take the function f : R → R defined by,

f(x) =


1, x ∈ R \ {0}

0, x = 0.

Then f ∈ C(X)∆ for any subcollection ∆ ⊆ P(X) and Z∆(f) = {0}, which is not a Gδ-set.

The following theorem gives the nature of a zero set for a function in C(X)∆ .

Theorem 2.2. For any f ∈ C(X)∆ , Z∆(f) can be written as a disjoint union of
a Gδ-subset of X and a member of ∆.

Proof. Write Z∆(f) = P ∪Q, where P = Z∆(f) ∩ (X \Df ) and Q = Z∆(f) ∩Df .
As Df ∈ ∆, Q ∈ ∆. Now the function h = f |X\Df

is a continuous function. Hence
P = Z(h) is a Gδ-subset of X \Df (where Z(h) as usual denotes the zero set for
the continuous function h in X \ Df ). Also Df being an Fσ-subset of X, P is a
Gδ-set in X. Hence the proof.

Theorem 2.3. For an arbitrary topological space X (i.e. X does not have any
separation axioms), whenever f ∈ C(X)

∆
and Z

∆
(f) ⊆ X \Df , Z∆

(f) becomes a
Gδ-set in X.

Proof. From Theorem 2.2, we have Z∆(f) = P ∪Q, where P is a Gδ-set in X and
Q = Z∆(f) ∩Df is a member of ∆. Now if Z∆(f) ⊆ X \Df , then Q = ∅, so that
Z∆(f) = P , a Gδ-set in X. Hence the proof.

The following example shows that the converse of Theorem 2.3 is not true in
general.

Example 2.4. Let X = [0, 1] with the subspace topology of the usual topology of reals
and ∆ = {A ⊆ [0, 1] : A is countable}. Take the function f : X → R defined by,

f(x) =


1, x ̸= 0

0, x = 0.

Then f ∈ C(X)∆ and Z∆(f) = {0} is a Gδ-set but Z∆(f) ̸⊆ X \Df .

Remark 2.4. In [2], in the discussion after Theorem 2.1, the authors have mentioned
that if X is a T1 space, f ∈ C(X)F and Z(f) ⊆ X \Df , then Z(f) is Gδ. But from the
above theorem, we can say that if we consider ∆ = the set of all finite subsets of X there,
then the same is true without assuming any separation axioms (in particular, T1-ness) of
X.



On an Over-ring C(X)∆ of C(X) 727

Theorem 2.4. For a topological space X and a subcollection ∆ ⊆ P(X), the fol-
lowing statements hold.

i) C(X)∆ is a reduced ring.
ii) f ∈ C(X)∆ is a unit if and only if Z∆(f) = ∅.
iii) Any element of C(X)∆ is either a zero-divisor or a unit.
iv) For f, g ∈ C(X)∆ , if |f | < |g|r for some real number r > 1, then f is a multiple
of g. In particular, if |f | < |g| and r ∈ R with r > 1 be such that fr is defined, then
fr is a multiple of g.

Proof. i) It is trivial.
ii) Let f ∈ C(X)∆ be a unit. Then there exists g ∈ C(X)∆ such that f.g = 1̄, so
that Z∆(f) = ∅. Conversely, if Z∆(f) = ∅, then the function g = 1

f ∈ C(X)∆ is

the required inverse of f , so that f becomes a unit in C(X)∆ .
iii) Let f ∈ C(X)∆ be not a unit. Then Z∆(f) ̸= ∅. Choose p ∈ Z∆(f) and define
a function g : X → R by g(p) = 0 and g(X \ {p}) = {1}. Then g ∈ C(X)∆ and
X \ Z∆(f) ⊆ Z∆(g), which implies that fg = 0, i.e. f is a zero-divisor of C(X)∆ .
iv) Let |f | < |g|r for some real number r > 1, where f, g ∈ C(X)∆ . Clearly
Z∆(g) ⊆ Z∆(f). Take D = Df ∪ Dg. Then D ∈ ∆ and f, g are continuous on
X \D. Define a function h : X → R by

h(x) =


f(x)
g(x) , x ∈ X \ Z∆(g)

0, x ∈ Z∆(g).

We now show that h is continuous on the set X \ D. Let x ∈ (X \ D) \ Z∆(g).
Since f and g are continuous at x and g(x) ̸= 0, so f

g is continuous at x, i.e. h is
continuous at x.
Now |f | < |g|r implies that |f(x)|

|g(x)| < |g(x)|r−1, for all x ∈ X \Z∆(g) which gives that

|h(x)| < |g(x)|r−1, for all x ∈ X \ Z∆(g). Again, x ∈ Z∆(g) implies that g(x) = 0,
so that h(x) = 0. Hence |h| ≤ |g|r−1, for all x ∈ X.
Let x ∈ (X \ D) ∩ Z∆(g). Then h(x) = 0 ∈ (−ϵ, ϵ). Also we have g(x) = 0 and
g is continuous at x, so there exists a neighbourhood U of x such that g(U) ⊆
(−ϵ

1
r−1 , ϵ

1
r−1 ) which implies that |g(x)| < ϵ

1
r−1 , for all x ∈ U . Thus |g(x)|r−1 < ϵ,

for all x ∈ U which implies that |h(x)| < ϵ, for all x ∈ U . Hence h is continuous on
X \D so that h ∈ C(X)

∆
and f = gh.

The second part follows from the first part.

Remark 2.5. In C(X)F , we have seen that C(X)F = C
∗
(X)F if and only if for any

finite subset F of X, X \F is pseudocompact ([6], Lemma 2.4). That means if we consider
∆ = the set of all finite subsets of X, then C(X)∆ = C

∗
(X)∆ if and only if for any F ∈ ∆,

X \ F is pseudocompact. But for any arbitrary ∆, it is not necessarily true as is seen
below.

Example 2.5. Let X = N be endowed with the cofinite topology. Consider ∆ = {P : P
is a countable subset of N}. Then RN = C(N)∆ ̸= C

∗
(N)∆ . Now the function f defined by
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f(n) = n, for all n ∈ N, is a member of C(N)∆ , but f /∈ C
∗
(N)∆ . But for any countable

set F , X \ F is always pseudocompact.

Remark 2.6. In view of Theorem 2.4, we can conclude that C(X)∆ is an almost regular
ring.

Next we give an example to show that the result analogous to Theorem 2.4 ii)
is not true if we replace C(X)∆ by C

∗
(X)∆ .

Example 2.6. In the view of Example 2.1, the function 1
f
= h has an empty zero set.

This function h ∈ C
∗
(X)∆ , whereas 1

h
= f /∈ C

∗
(X)∆ .

The nature of the units of C
∗
(X)∆ is given by the following theorem.

Theorem 2.5. A function f ∈ C
∗
(X)∆ is a unit in C

∗
(X)∆ if and only if f is

bounded away from zero, i.e. there exists r > 0 such that |f(x)| ≥ r, for all x ∈ X.

Proof. Just take into account that whenever for some f ∈ C
∗
(X)∆ , Z∆(f) = ∅,

then Df = D 1
f
.

Remark 2.7. We next provide two dissimilarities between C(X) and C(X)∆ .

Example 2.7. C(X)∆ is not closed under uniform limits: Consider X = [0, 1] with the
subspace topology of the usual topology of R and ∆ = set of all finite subsets of [0, 1].
Enummerate [0, 1] ∩Q as, [0, 1] ∩Q = {x1, x2, ..., xn, ...}, n ∈ N. Now define a sequence of
functions {fn} on X by,

fn(x) =


1
i
, x = xi, 1 ≤ i ≤ n

0, otherwise.

Clearly each fn ∈ C(X)∆ and this sequence of functions converges uniformly to the func-
tion f given by,

f(x) =


1
n
, x = xn

0, otherwise.

But f /∈ C(X)∆ , as f is discontinuous on Q. Hence C(X)∆ is not closed under uniform
limits.

Example 2.8. Z∆(C(X)∆) is not closed under countable intersections: Let X = [0, 1]
with the subspace topology of the usual topology of R and ∆ = set of all finite subsets of
[0, 1]. Consider [0, 1] ∩ Q = {x1, x2, ..., xn, ...}, n ∈ N. Now define a sequence of functions
{fn} on X by,

fn(x) =


1, x = x1, x2, ..., xn

0, otherwise.
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Clearly each fn ∈ C(X)∆ , n ∈ N.

Now,

∞∩
n=1

Z∆(fn) =

∞∩
n=1

([0, 1] \ {x1, x2, ..., xn}) = [0, 1] \
∞∪

n=1

{x1, x2, ..., xn} = [0, 1]
∩

Qc.

Now we show that there does not exist any f ∈ C(X)∆ such that Z∆(f) = [0, 1]
∩

Qc.

If possible, let there exist f ∈ C(X)∆ with Z∆(f) = [0, 1]
∩

Qc. Choose c ∈ [0, 1]
∩

Q,
then f(c) ̸= 0. Without loss of generality, let f(c) > 0. Choose ϵ > 0 such that f(c)−ϵ > 0.
If f is continuous at c, then there exists an open set G ⊆ [0, 1] containing c such that
|f(x)− f(c)| < ϵ, for all x ∈ G which implies that f(x) > f(c)− ϵ > 0, for all x ∈ G, i.e.
f(x) > 0, for all x ∈ G, which contradicts the fact that [0, 1]

∩
Qc is dense in [0, 1]. Hence

f is not continuous at any rational number, so that f /∈ C(X)∆ .

Remark 2.8. From the definition of ∆ it can be easily observed that if the set of all
non-isolated points of X is a member of ∆, then C(X)∆ = RX = C(Y ), where X = Y is
equipped with the discrete topology. So in this case we can say that C(X)∆ is a C-ring..

3. ∆-completely separated and C∆-embedded subsets of X

Recall that two subsets A and B of a topological space X are said to be com-
pletely separated in X ([7], Theorem 1.15) if there exists a function f ∈ C

∗
(X)

such that f(A) = {0} and f(B) = {1}, with 0̄ ≤ f ≤ 1̄.

Analogously we define the following.

Definition 3.1. Two subsets A and B of X are said to be ∆-completely separated
in X, if there exists a function f in C

∗
(X)

∆ such that f(A) = {0} and f(B) = {1}.

In C(X), it is true that two sets A and B are completely separated if and only
if their respective closures A and B are also completely separated. But we here
notice that A and B are ∆-completely separated in X implies that A and B are
∆-completely separated. That the converse is not true in general, is seen by the
following example.

Example 3.1. Take X = [0, 1] with the subspace topology of the usual topology of reals,
A = [0, 1), B = {1}. Then A and B are ∆-completely separated by the function f : X → R
defined by,

f(x) =


1, 0 ≤ x < 1

2, x = 1,

where f ∈ C
∗
(X)∆ , for any arbitrary subcollection ∆ ⊆ P(X), but A, B are not ∆-

completely separated, as A ∩B ̸= ∅.

Also in this connection we want to mention the notion of F-completely separated
sets (see [6]), where any two completely separated sets are F-completely separated
but not the converse.
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Remark 3.1. Any two F-completely separated sets are ∆-completely separated but not
conversely as is seen by the following example.

Example 3.2. Consider X = [0, 1] with the subspace topology of the usual topology of
reals, ∆ = {A ⊆ X : A is nowhere dense in X} and K = Cantor set. Define f : X → R
by,

f(x) =


1, x ∈ K

0, x /∈ K,

i.e. f = χK . Then Df = K ∈ ∆, so that f ∈ C(X)∆ . Now, the sets K and X \ K are
∆-completely separated but not F-completely separated, as K is uncountable.

The next result is the counterpart of ([7], Theorem 1.15) and can be proved in
a similar manner.

Theorem 3.1. Two subsets A,B of a space X are ∆-completely separated if and
only if they are contained in disjoint members of Z

∆
(X).

Corollary 3.1. If A and A′ are ∆-completely separated, then there exist zero sets
Z and H in Z∆(X) such that

A ⊆ X \ Z ⊆ H ⊆ X \A′.

Theorem 3.2. If two disjoint subsets A and B of X are ∆-completely separated,
then there is a member D of ∆ such that A \D and B \D are completely separated
in X \D.

Proof. Assume that A, B are ∆-completely separated. Then by Theorem 3.1, there
exist two disjoint zero sets Z∆(f1) and Z∆(f2) in Z∆(X) such that A ⊆ Z∆(f1) and
B ⊆ Z∆(f2). Let Df1 and Df2 be the sets of points of discontinuities of f1 and f2
respectively. Then f1 ∈ C(X \Df1), f2 ∈ C(X \Df2). Consider D = Df1 ∪Df2 .
Then D ∈ ∆ and f1, f2 ∈ C(X \D). Also, A\D ⊆ Z∆(f1)\D, B \D ⊆ Z∆(f2)\D,
where Z∆(f1) \D and Z∆(f2) \D are disjoint zero-sets in X \D. By ([7], Theorem
1.15), A \D and B \D are completely separated in X \D.

Remark 3.2. The converse of the above theorem holds good if D is closed. For let, A\D
and B \D be completely separated in X \D, where D ∈ ∆ and D is closed. Then there
exists f ∈ C

∗
(X \D) with f(A\D) = {0} and f(B \D) = {1}. Now consider the function

g : X → R defined as follows:

g(x) =


f(x), x ∈ X \D

0, x ∈ D ∩A

1, x ∈ D ∩B.

Since D is closed, g ∈ C
∗
(X)∆ with g(A) = {0} and g(B) = {1}. Hence A and B are

∆-completely separated in X.
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Next, we introduce the analogues of C-embedding and C
∗
-embedding in our

settings, called C∆ -embedding and C
∗

∆
-embedding to deal with the problem of ex-

tension of functions belonging to such rings.

Definition 3.2. A subset Y of a topological space X is said to be C∆-embedded
in X, if each f ∈ C(Y )∆Y

has an extension to a g ∈ C(X)∆ , i.e. there exists
g ∈ C(X)∆ such that g|

Y
= f , where ∆ ⊆ P(X) and ∆Y = ∆|P(Y ).

Likewise, Y is said to be C
∗

∆
-embedded in X, if each f ∈ C

∗
(Y )∆ has an

extension to a g ∈ C
∗
(X)∆ .

Remark 3.3. It is noteworthy to mention here that any C∆ -embebbed subset is C
∗

∆
-

embebbed also.

Example 3.3. Consider X = R2 with the Euclidean topology, ∆ = {A ⊆ R2 : A is
nowhere dense in R2}, S = R2 \ R× {0} and a function f : S → R defined by,

f(x, y) = 1
y
, (x, y) ∈ R2 \ R× {0}.

As f ∈ C(S), clearly f ∈ C(S)∆. But there does not exist any g ∈ C(R2)F such that
g|S = f . Hence S is not CF -embedded (see [2], Definition 2.15) and hence not C-embedded
in X. Now, consider the function g : X → R defined by g(X \S) = f and g(S) = 0. Then
S is C∆ -embedded but not CF -embedded and hence not C-embedded.

In view of the above example we observe that if S is a closed subset of a topo-
logical space X with X \ S ∈ ∆, then S is both C

∗

∆
-embedded and C∆-embedded.

As a converse of Remark 3.3, we have the following.

Theorem 3.3. A C
∗

∆
-embedded subset is C∆-embedded if and only if it is ∆-

completely separated from every zero set disjoint from it.

Proof. First, let S be C
∗

∆
-embedded in X and h ∈ C(X)∆ be such that Z∆(h)∩S =

∅. Define a function f : S → R by f(s) = 1
h(s) , s ∈ S. Then f ∈ C(S)∆ . By the

given condition, there exists g ∈ C(X)∆ such that g|S = f . Hence gh ∈ C(X)∆ .
Also gh(S) = {1} and gh(Z∆(h)) = {0}, so that Z∆(h) and S are ∆-completely
separated in X.

Conversely, let f ∈ C(S)∆ . As arctan ◦f ∈ C
∗
(S)∆ , there exists g ∈ C(X)∆

such that g|S = arctan ◦f . Now, the set Z = {x ∈ X : |g(x)| ≥ π
2 } is a member

of Z∆(X) with Z ∩ S = ∅. So by hypothesis, there exists h ∈ C
∗
(X)∆ such that

h(S) = {1} and h(Z) = {0}. We see that g · h ∈ C(X)∆ and for all x ∈ X,
|(g · h)(x)| < π

2 . Hence, tan(g · h) ∈ C(X)∆ and for all s ∈ S, tan(g · h)(s) = f(s).
So S is C∆ -embedded.

Corollary 3.2. For any topological space X, a zero set Z ∈ Z∆(X) is C
∗

∆
-embedded

if and only if it is C∆-embedded.
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Example 3.4. (i) If a discrete zero set is C
∗

∆
-embedded, then all of its subsets are zero

sets: for if Z ∈ Z∆(X) be a discrete, C
∗

∆
-embedded subset of X, then for any Y ⊆ Z, Y

is also discrete. Define a function f : Z → R by,

f(x) =


1, x /∈ Y

0, x ∈ Y.

Then f ∈ C(Z)∆ . As Z is C
∗

∆
-embedded, there exists h ∈ C

∗
(X)∆ such that h|Z = f .

Also, as Z is a zero set, Z = Z∆(g), for some g ∈ C
∗
(X)∆ . Now, consider the function

k ∈ C
∗
(X)∆ by k = g2 + h2. Certainly, Z∆(k) = Z ∩ Z∆(h) = Y , so that Y becomes a

zero set in X.

(ii) If for every f ∈ C
∗
(X)∆ , f(X) is compact, then X becomes pseudocompact. But

the converse is not true. Consider X = [0, 1] with the subspace topology of the usual
topology of reals, ∆ = {A ⊆ [0, 1] : A is nowhere dense in X} and a function f : X → R
defined by, for n ∈ N,

f(x) =


1
n
, x = 1

n

1, x ̸= 1
n
.

Then Df = {0} ∪ { 1
n
: n ≥ 2} ∈ ∆ and f ∈ C

∗
(X)∆ . But f(X) = { 1

n
: n ∈ N}, which is

not compact.

4. Ideals of C(X)∆ and Z∆-filters on X

Throughout our discussion, an ideal I, unmodified in any of the two rings C(X)∆
and C

∗
(X)∆ will always mean a proper ideal.

Definition 4.1. A nonempty subcollection F of Z∆(X) is called a Z∆ -filter on X
if it satisfies the following conditions:

(i) ∅ /∈ F .
(ii) Z1, Z2 ∈ F implies that Z1 ∩ Z2 ∈ F .
(iii) If Z ∈ F , Z ′ ∈ Z∆(X) with Z ⊂ Z ′, then Z ′ ∈ F .

A Z∆-filter on X which is not properly contained in any Z∆-filter on X is called
a Z∆-ultrafilter on X.

Applying Zorn’s lemma one can show that a Z∆-filter on X can be extended to
a Z∆-ultrafilter on X.

There is a nice interplay between ideals (maximal ideals) in C(X)∆ and the Z∆-
filters (resp., Z

∆
-ultrafilters) on X. This fact is observed in the following theorem.

Theorem 4.1. For the ring C(X)∆ , the following hold.
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i) If I is an ideal in C(X)∆ , then Z∆(I) = {Z∆(f) : f ∈ I} is a Z∆-filter on
X. Dually, if F is a Z∆-filter on X, then Z−1

∆
(F) is an ideal in C(X)∆ .

ii) If M is a maximal ideal in C(X)∆ , then Z∆(M) is a Z∆-ultrafilter on X. If U
is a Z∆-ultrafilter on X, then Z−1

∆
(U) is a maximal ideal in C(X)∆ .

iii) The assignment : M → Z∆(M) is a bijection from the set of all maximal ideals
of C(X)∆ to the set of all Z∆-ultrafilters on X.

Proof. Can be done in same way as in Theorems 2.3 and 2.5 of [7].

Remark 4.1. The assignment : I → Z∆(I) from the set of all ideals on C(X)∆ to the
set of all Z∆ -filters on X is a surjection but not an injection. In fact, for any ideal I in
C(X)∆ , Z−1

∆
Z∆(I) ⊇ I.

We therefore concentrate on those ideals of C(X)∆ for which the above inclusion
becomes an equality.

Definition 4.2. An ideal I of C(X)∆ is called a Z∆-ideal if Z
−1
∆
Z∆(I) = I. Equiv-

alently, Z∆(f) = Z∆(g), for f ∈ I and g ∈ C(X)∆ implies that g ∈ I.

Remark 4.2. It thus follows that
i) Every maximal ideal in C(X)∆ is a Z∆ -ideal but not the converse (as shown below in
Example 4.1).
ii) The mapping : I → Z∆(I) is a bijection from the set of Z∆ -ideals onto the set of all
Z∆ -filters.

Example 4.1. Consider I = {f ∈ C(X)∆ : f(p) = f(q) = 0}, for p, q ∈ R with p ̸= q.
Then I is a Z∆ -ideal in C(X)∆ . But I is not maximal, as I ⊂ {f ∈ C(X)∆ : f(p) = 0}.
The ideal I is not a prime ideal also, as the function (x−p)(x−q) belongs to I but neither
the function x− p nor the function x− q belongs to I.

Remark 4.3. Clearly every Z∆ -ideal in C(X)∆ is an intersection of prime ideals in
C(X)∆ .

The next result establishes the relation between prime ideals and Z∆-ideals to
some extent.

Theorem 4.2. Let I be a Z∆-ideal in C(X)∆ . Then the following statements are
equivalent:

i) I is prime.
ii) I contains a prime ideal.
iii) For all f, g ∈ C(X)∆ , if fg = 0, then either f ∈ I or g ∈ I.
iv) For each f ∈ C(X)∆ , there exists a zero set in Z∆(I) on which f does not
change its sign.

Proof. Similar to the counterpart of Theorem 2.9 in [7].
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Corollary 4.1. Every prime ideal in C(X)∆ is contained in a unique maximal
ideal in C(X)∆ , i.e. C(X)∆ is a Gelfand ring.

Definition 4.3. A Z
∆
-filter F on X is called a prime Z

∆
-filter if whenever A∪B ∈

F , for some A,B ∈ Z∆(C(X)∆), then either A ∈ F or B ∈ F .

The next theorem is analogous to Theorem 2.12 of [7] and we therefore omit the
proof.

Theorem 4.3. For a space X, the following hold.

i) If P is a prime ideal in C(X)∆ , then Z∆(P ) is a prime Z∆-filter.
ii) If F is a prime Z∆-filter on X, then Z−1

∆
(F) is a prime Z∆-ideal.

Corollary 4.2. For a space X, the following hold.

i) Every prime Z∆-filter is contained in a unique Z∆-ultrafilter.
ii) Every Z∆-ultrafilter is a prime Z∆-filter.

It is known that in a commutative ring R with unity, the intersection of all prime
ideals of R containing an ideal I is said to be the radical of I to be denoted by

√
I.

For any ideal I,
√
I = {a ∈ R : an ∈ I, for some n ∈ N} (see [7]) and also I ⊆

√
I.

Also I is called radical if I =
√
I.

Theorem 4.4. Every Z
∆
-ideal I in C(X)

∆
is a radical ideal.

Proof. Only to use the definition of a Z∆-ideal.

It is well known that the sum of two z-ideals in C(X) is a z-ideal, (see [7],
Lemma 14.8 and [12]). This result can be modified in C(X)∆ as follows.

Theorem 4.5. The sum of two Z∆-ideals in C(X)∆ is a Z∆-ideal.

Proof. Let I, J be two Z∆ -ideals in C(X)∆ , f ∈ I, g ∈ J , h ∈ C(X)∆ and Z∆(f +
g) ⊆ Z∆(h). First note that, Z∆(f) ∩ Z∆(g) ⊆ Z∆(h) and there exists a subset
P ∈ ∆ such that f, g, h ∈ C(X \ P ). Define

k(x) =


0, x ∈ (Z∆(f) ∩ Z∆(g)) \ P

hf2

f2+g2 , x ∈ (X \ P ) \ (Z∆(f) ∩ Z∆(g))

h(x), x ∈ P
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l(x) =


0, x ∈ (Z∆(f) ∩ Z∆(g)) \ P

hg2

f2+g2 , x ∈ (X \ P ) \ (Z∆(f) ∩ Z∆(g))

0, x ∈ P.

We first prove that k is continuous on X \ P . So it requires only to prove that k
is continuous at any point x ∈ (Z∆(f) ∩ Z∆(g)) \ P . As h(x) = 0, for any given
ϵ > 0, there exists a neighbourhood U of x such that h(U) ⊆ (−ϵ, ϵ). Also for any
x ∈ U , |k(x)| ≤ |h(x)|, which means that k is continuous on X \ P . Similarly l is
continuous on X \ P . Then we have l, k ∈ C(X)∆ , Z∆(f) ⊆ Z∆(k), Z∆(g) ⊆ Z∆(l)
and h = l + k. Since I, J are Z∆-ideals, k ∈ I and l ∈ J , hence h ∈ I + J .

Corollary 4.3. Let {Iα}α∈Λ be a collection of Z∆-ideals in C(X)∆ . Then either∑
α∈Λ

Iα = C(X)∆ or
∑
α∈Λ

Iα is a Z∆-ideal.

Lemma 4.1. [10] If P is minimal in the class of prime ideals containing a z-ideal
I, then P is a z-ideal.

In view of the above result, we can have,

Corollary 4.4. Let {Pα}α∈Λ be a collection of minimal prime ideals in C(X)∆ .

Then either
∑
α∈Λ

Pα = C(X)∆ or
∑
α∈Λ

Pα is a prime ideal in C(X)∆ .

The following result can be obtained in the same way as is done in ([12], Lemma
5.1).

Corollary 4.5. The sum of a collection of semi prime ideals in C(X)∆ is either
a semiprime ideal or the entire ring C(X)∆ .

5. Fixed and Free ideals in C(X)∆

In this section, we introduce fixed and free ideals of C(X)∆ and C
∗
(X)∆ and

completely characterize the fixed maximal ideals of C(X)∆ and that of C
∗
(X)∆ .

Definition 5.1. A proper ideal I of C(X)∆ (resp., C
∗
(X)∆) is called fixed if

∩Z∆(I) ̸= ∅, where ∩Z∆(I) =
∩
f∈I

Z∆(f) . If I is not fixed, then it is called free.

Let us now characterize the fixed maximal ideals of C(X)∆ and those of C
∗
(X)∆ .
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Theorem 5.1. {M∆

p
: p ∈ X} is a complete list of fixed maximal ideals of C(X)∆ ,

where M
∆

p
= {f ∈ C(X)∆ : f(p) = 0}. Moreover, the ideals M

∆

p
are distinct for

distinct p.

Proof. First choose p ∈ X. The map ψ : C(X)
∆

→ R defined by ψp(f) = f(p)
is a ring homomorphism. Also ψp is surjective and ker ψp = {f ∈ C(X)∆ :

ψp(f) = 0} = M
∆

p
(say). Hence by the First Isomorphism theorem of rings, we

have C(X)∆/M
∆

p
is isomorphic to the field R, so that M

∆

p
is a maximal ideal in

C(X)∆ . Also, as p ∈ ∩Z∆ [M
∆

p
], M

∆

p
is a fixed ideal.

Now, p ̸= q implies that χ{p} ̸= χ{q}, where χ{p}, χ{q} ∈ C(X)
∆
(since X is T1).

As χ{p} ∈M
∆

q
but χ{p} ̸∈M

∆

p
, it thus follows that for p ̸= q, M

∆

p
̸=M∆

q .

Similarly we have,

Theorem 5.2. {M∆
∗

p
: p ∈ X} is a complete list of fixed maximal ideals of

C
∗
(X)∆ , where M

∆
∗

p
= {f ∈ C

∗
(X)∆ : f(p) = 0}. Moreover, p ̸= q implies

that M
∆

∗

p
̸=M

∆
∗

q
.

From above it follows that the Jacobson radical of the ring C(X)∆ and C
∗
(X)∆

is zero. Also the interrelation between fixed ideals of C(X)∆ and C
∗
(X)∆ are as

follows.

Corollary 5.1. If I is a fixed maximal ideal of C(X)∆ , then I ∩ C
∗
(X)∆ is so

in C
∗
(X)∆ . Also, if I ∩ C∗

(X)∆ is a fixed ideal of C
∗
(X)∆ , for some ideal I of

C(X)∆ , then I is a fixed ideal of C(X)∆ .

We now give a result with the help of which we get another description of Z∆-
ideals.

Lemma 5.1. For any f ∈ C(X)∆ , we have M
∆

f
= {g ∈ C(X)∆ : Z∆(f) ⊆

Z∆(g)}, where M
∆

f
is the intersection of all maximal ideasl of C(X)∆ containing f .

Proof. The proof is same as that of Lemma 4.1 of [6].

The following is the counterpart of ([7], 4A).

Theorem 5.3. A necessary and sufficient condition that an ideal I in C(X)∆ be

a Z∆-ideal is that, for a given g, if there exists f ∈ I such that g ∈M
∆

f
, then g ∈ I.

Proof. Let I be a Z∆ -ideal and for a given g, there exists f ∈ I such that g ∈M
∆

f
.

Then Z∆(f) ⊆ Z∆(g). Also f ∈ I implies that Z∆(f) ∈ Z∆(I), so that Z∆(g) ∈
Z∆(I) (as Z∆(I) is a Z∆-filter) which further implies that g ∈ I.

Conversely, let Z∆(g) ∈ Z∆(I) imply that Z∆(g) = Z∆(f), for some f ∈ I. So

g ∈M
∆

f
. Thus by the given condition g ∈ I. Hence I is a Z∆-ideal.
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Regarding the existence of free maximal ideals in C(X)∆ and in C(X)∆ , we now
establish the following.

Theorem 5.4. For a space X, the following are equivalent:

i) X is finite.
ii) Every proper ideal of C(X)

∆
is fixed.

iii) Every maximal ideal of C(X)∆ is fixed.
iv) Every proper ideal of C

∗
(X)∆ is fixed.

v) Every maximal ideal of C
∗
(X)∆ is fixed.

Proof. i) ⇒ ii): Let I be a proper ideal of C(X)∆ . Now Z[I](≡ {Z(f) : f ∈ I}) is
finite and also a Z∆-filter. Hence I is fixed.
ii) ⇒ iii): Obvious.
iii) ⇒ i): If possible, let X be infinite. Let S = {χ{x} : x ∈ X} and consider the
ideal I generated by S in C(X)∆ . We claim that I is proper. If not, then there
exists x1, x2, ..., xn and f1, f2, ..., fn ∈ C(X)∆ such that 1̄ = f1χ{x1} + f2χ{x2} +

...+ fnχ{xn}. Then
n∩

i=1

Z∆ [χ{xi}] = ∅. Hence
n∩

i=1

(X \{xi}) = ∅ which implies that

X is finite, a contradiction. Let M be any maximal ideal of C(X)∆ containing I.

Then
∩
Z[M ] ⊆

∩
Z[I] ⊆

∩
x∈X

(X \ {x}) = ∅ which implies that M is a free ideal,

a contradiction. Hence X is finite.
i) ⇒ iv): Can be done as in i) ⇒ ii).
ii) ⇒ v): Obvious.
v) ⇒ i): Obvious.

In view of Example 4.7 of [7], since C(X) = C(X)∆ , for any discrete space X,
we can conclude that

i) For any maximal ideal M of C(X)
∆
, M ∩ C∗

(X)
∆
need not be a maximal ideal

in C
∗
(X)∆ .

ii) All free maximal ideals in C
∗
(X)∆ need not be of the form M ∩C∗

(X)∆ , where
M is a maximal ideal in C(X)∆ .

6. Residue class rings of C(X)∆ modulo ideals

Let us recall that an ideal I in a partially ordered ring A is called convex if
whenever 0 ≤ x ≤ y and y ∈ I, then x ∈ I. Equivalently, for all a, b, c ∈ A with
a ≤ b ≤ c and a, c ∈ I implies that b ∈ I.

If A is a lattice-ordered ring, then an ideal I of A is said to be absolutely convex
if whenever |x| ≤ |y| and y ∈ I, then x ∈ I.
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For an ideal I of C(X)∆ , we shall denote any member of the quotient ring
C(X)∆/I by I(f), for f ∈ C(X)∆ , i.e. I(f) = f + I.

Let us now recall the following.

Theorem 6.1. [7]. Let I be an ideal in a partially ordered ring A. In order that
A/I be a partially ordered ring, according to the definition:

I(a) ≥ 0 if there exists x ∈ A such that x ≥ 0 and a ≡ x (mod I),

it is necessary and sufficient that I is convex.

Theorem 6.2. [7]. The following conditions on a convex ideal I in a lattice or-
dered ring A are equivalent:

i) I is absolutely convex.
ii) x ∈ I implies |x| ∈ I.
iii) x, y ∈ I implies x ∨ y ∈ I.
iv) I(a ∨ b) = I(a) ∨ I(b), whence A/I is a lattice.
v) I(a) ≥ 0 if and only if a ≡ |a| (mod I).

Remark 6.1. I(|a|) = |I(a)|, ∀ a ∈ A, when I is an absolutely convex ideal of A.

Theorem 6.3. Every Z∆-ideal in C(X)∆ is absolutely convex.

Proof. Let I be any Z∆-ideal in C(X)∆ and |f | ≤ |g|, where f ∈ C(X)∆ and g ∈ I.
Then Z∆(f) ⊆ Z∆(g). As g ∈ I, Z∆(g) ∈ Z∆(I) which implies that Z∆(f) ∈ Z∆(I).
Now I being a Z∆-ideal, it follows that f ∈ I.

Corollary 6.1. Every maximal ideal in C(X)∆ is absolutely convex.

Theorem 6.4. For every maximal idealM in C(X)∆ , the quotient ring C(X)∆/M
is a lattice ordered ring.

Proof. Obvious.

Next we characterize the non-negative elements in the lattice-ordered ring C(X)
∆
/I,

for a Z∆-ideal I.

Theorem 6.5. For a Z∆-ideal I and f ∈ C(X)∆ , I(f) ≥ 0 if and only if there
exists Z ∈ Z∆(I), such that f ≥ 0 on Z.

Proof. First let, I(f) ≥ 0. By Theorem 6.2, f ≡ |f | (mod I), i.e. f − |f | ∈ I. So,
Z

∆
(f − |f |) ∈ Z

∆
(I) and hence f ≥ 0 on Z

∆
(f − |f |).

Conversely, let f ≥ 0 on some Z ∈ Z∆(I). Then f = |f | on Z, i.e. Z ⊆
Z∆(f−|f |) which implies that Z∆(f−|f |) ∈ Z∆(I). Since I is a Z∆ -ideal, f−|f | ∈ I,
i.e. I(f) = I(|f |). As I(|f |) ≥ 0, hence I(f) ≥ 0.
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Theorem 6.6. Let I be a Z∆-ideal and f ∈ C(X)∆ . If there exists Z ∈ Z∆(I)
such that f(x) > 0, for all x ∈ Z, then I(f) > 0. Converse is true if I is maximal.

Proof. If f is positive on Z ∈ Z∆(I), then Z∆(f) ∩ Z = ∅, so that Z∆(f) /∈ Z∆(I).
Hence f /∈ I. So by the previous theorem I(f) > 0.

For the converse, if I is maximal, then there exists some zero set Z ′ of I such
that Z ′ ∩ Z(f) = ∅. Now Z ∩ Z ′ ∈ Z∆(I), thus f > 0 on the zero set Z ∩ Z ′ of
I.

Remark 6.2. The converse part of the above theorem fails if I is not maximal: for let
I be non-maximal. Then there exists a proper ideal J of C(X)∆ such that I ⊂ J . Choose
f ∈ J \ I. Then I(f2) > 0. Now choose any Z ∈ Z∆(I). Then Z ∈ Z∆(J) also, so that
Z ∩ Z(f2) ̸= ∅. Now f is not strictly positive on the whole of Z.

We now characterize those ideals I in C(X)∆ for which C(X)∆/I is a totally
ordered ring.

Theorem 6.7. For a Z∆-ideal I in C(X)∆ , the lattice ordered ring C(X)∆/I is
a totally ordered if I is prime.

Proof. C(X)∆/I is totally ordered if and only if for any f ∈ C(X)∆ , I(f) ≥ 0 or
I(−f) ≥ 0 if and only if for all f ∈ C(X)

∆
, there exists Z ∈ Z

∆
(I) such that f does

not change its sign of Z if and only if I is a prime ideal in view of Theorem 4.2.

Corollary 6.2. For every maximal ideal M in C(X)∆ , C(X)∆/M is a totally
ordered ring.

Theorem 6.8. For a prime ideal P in C(X)∆ , the following are true.

i) P is absolutely convex.
ii) The residue class ring C(X)∆/P is totally ordered.
iii) The mapping : r → P (r̄) is an order-preserving monomorphism of the real field
R into the residue class rings.

Proof. i) Let 0 ≤ |f | ≤ |g|, for some f ∈ C(X)∆ and g ∈ P . Then f2 = |f |2 ≤ |g|2.
By Theorem 2.4, f2 = h · g, for some h ∈ C(X)∆ . Thus f

2 ∈ P implies that f ∈ P
(as P is prime). Hence P is absolutely convex.
ii) Since P is prime, C(X)∆/P is a partially ordered ring. Now (f−|f |)(f+|f |) = 0̄
which implies that either f ≡ |f | (mod P ), i.e. either P (f) ≥ 0 or P (−f) ≥ 0.
Hence C(X)∆/P is totally ordered.
iii) Clearly the mapping: r → P (r̄) is a monomorphism. We only need to show
the order preserving property of the mapping. Choose r, s ∈ R with r > s. Then
r − s > 0, so that P (r̄− s̄) > 0, i.e. P (r̄) > P(̄s).

For a maximal ideal M in C(X)∆ , C(X)∆/M can be considered as an extension
of the real field R, or in otherwords, C(X)∆/M contains a cannonical copy of R.
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Definition 6.1. If for a maximal ideal M , the canonical copy of R is the entire
field C(X)∆/M , (resp. C

∗
(X)∆/M), then M is called a real ideal and C(X)∆/M

is called real residue class field. If M is not real, then it is called hyper-real and
C(X)∆/M is called a hyper-real residue class field

Definition 6.2. [7] A totally ordered field F is said to be archimedean if for every
element a, there exists n ∈ N such that n ≥ a. If F is not archimedean, then it
is called non-archimedean. Thus, a non-archimedean field is characterized by the
presence of infinitely large elements, i.e. there exists a ∈ F such that a > n, n ∈ N.
Such elements are called infinitely large elements. The following is an important
theorem in the context of archimedean field.

Theorem 6.9. [7] A totally ordered field is archimedean if and only if it is iso-
morphic to a subfield of the ordered field of R.

Thus we get that the real residue class field C(X)∆/M is archimedean if M is a
real maximal ideal of C(X)∆ .

Theorem 6.10. Every hyper-real residue class field C(X)∆/M is non-archimedean.

Proof. Since the identity is the only non-zero homomorphism on the ring R into
itself, the proof follows.

Corollary 6.3. A maximal ideal in C(X)∆ is hyper-real if and only if there exists
f ∈ C(X)∆ such that M(f) is an infinitely large member of C(X)∆/M .

Theorem 6.11. Each maximal ideal M in C
∗
(X)∆ is real.

Proof. In view of the above discussions, it sufficies to show that C
∗
(X)∆/M is

archimedean. Choose f ∈ C
∗
(X)∆ . Then |f(x)| ≤ n, for all x ∈ X and for some

n ∈ N, i.e. |M(f)| ≤M(n̄).

The following theorem relates to unbounded functions on X with infinitely large
elements modulo maximal ideals.

Theorem 6.12. For a given maximal ideal M in C(X)∆ and f ∈ C(X)∆ , the
following are equivalent:

i) |M(f)| is infinitely large.
ii) f is unbounded on every zero set of M .
iii) For each n ∈ N, the zero set Zn = {x ∈ X : |f(x)| ≥ n} ∈ Z∆(M).

Proof. i) ⇐⇒ ii): |M(f)| is not infinitely large in C(X)∆/M if and only if there
exists n ∈ N such that |M(f)| = M(|f |) ≤ M(n̄) if and only if |f | ≤ n̄ on some
Z ∈ Z∆(M) if and only if f is bounded on some Z ∈ Z∆(M).
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ii) ⇐⇒ iii): Choose n ∈ N. Since Zn intersects each member in Z∆(M), Zn ∈
Z∆(M), as because Z∆(M) is Z∆-ultrafilter.
iii) ⇐⇒ ii): Since for each n ∈ N, |f | ≥ n on some zero set in Z∆(M), |M(f)| ≥
M(n̄), for all n ∈ N. This implies that |M(f)| is an infinitely large element of
C(X)∆/M .

Theorem 6.13. f ∈ C(X)∆ is unbounded on X if and only if there exists a
maximal ideal M in C(X)∆ such that |M(f)| is infinitely large in C(X)∆/M .

Proof. One part follows from Theorem 6.12.

For the other part, let f be unbounded on X. Then each Zn = {x ∈ X : |f | ≥
n} ̸= ∅, for n ∈ N and {Zn : n ∈ N} has the finite intersection property. So
there exists a Z∆-ultrafilter U on X containing {Zn : n ∈ N}. Hence there exists
a maximal ideal M in C(X)∆ such that U = Z∆(M) and so Zn ∈ Z∆(M), for all
n ∈ N. Now by Theorem 6.12, it follows that |M(f)| is infinitely large.

Remark 6.3. In the case of C(X), the pseudocompactness of X ensures that every
maximal ideal of C(X) is real. But in C(X)∆ , this may not hold. Consider X = [0, 1]
with the subspace topology of the usual topology of reals, ∆ = {A ⊆ X : A is nowhere
dense in X} and f : X → R defined by,

f(x) =


1
x
, x ̸= 0

0, x = 0.

As f is unbounded on X, by Theorem 6.12, there exists a maximal ideal M (say) such
that |M(f)| is infinitely large, so that M is not real.

7. Some algebraric aspects of C(X)∆

Let us first recall that a ring S containing a reduced ring R is called a ring of
quotients of R if and only if for each 0 ̸= s ∈ S, there exists r ∈ R such that
0 ̸= sr ∈ R (see [8]). Regarding rings of quotients of rings of functions one can go
through [9, 5].

Theorem 7.1. For a space X and a subcollection ∆ ⊆ P(X), the following are
equivalent:

i) C(X) = C(X)∆ .
ii) X is a discrete space.
iii) C(X)∆ is a ring of quotients of C(X).
iv) C(X) = T ′(X).

Proof. i) ⇐⇒ ii): If X is discrete, then obviously C(X) = C(X)∆ . Next suppose
that C(X) = C(X)∆ and x ∈ X. As χ{x} ∈ C(X)∆ , χ{x} ∈ C(X), so that X
becomes discrete.
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ii) ⇒ iii): Obvious.

iii) ⇒ iv): Choose x0 ∈ X. Then χ{x0} ∈ C(X)∆ . Hence there exists f ∈ C(X)
such that 0 ̸= f(x)χ{x0} ∈ C(X). Hence f(x0)χ{x0} = f(x)χ{x0} ∈ C(X), which
implies that {x0} is an isolated point, so that X is discrete.

iv) ⇒ ii): If X is not discrete, then there exists a non-isolated point x0 ∈ X.
Now χ{x0} ∈ T ′(X), but χ{x0} /∈ C(X). Hence T ′(X) ̸= C(X).

Theorem 7.2. For a space X and a subcollection ∆ ⊆ P(X), T ′(X) ⊆ C(X)∆ if
and only if every open dense subset D of X is of the form X \G, for some G ∈ ∆.

Proof. First let T ′(X) ⊆ C(X)∆ and D be an open dense subset of X. Then
χ

D
∈ T ′(X) implies that χ

D
∈ C(X)∆ . Hence the set of points of discontinuities of

χ
D
(≡ G(say)) = X \D ∈ ∆, so that D = X \G, where G ∈ ∆.

Conversely, choose f ∈ T ′(X). Then there exists an open dense subset D of X
such that f is continuous on D and by the given condition D = X \G, for G ∈ ∆.
Hence the set Df of points of discontinuities of f is a subset of X \D = G ∈ ∆, so
that Df ∈ ∆. Thus f ∈ C(X)∆ , and hence T ′(X) ⊆ C(X)∆ .

Remark 7.1. If X is T1, we always have C(X)F ⊆ T ′(X), but this inclusion is not true
in case of C(X)∆ . Consider X = R with the usual topology of reals and ∆ = {A ⊆ X : A
is countable}. Define f : X → R by,

f(x) =


1
q
, x = p

q
, with g.c.d (p, q) = 1

0, x = 0 or x is an irrational.

Then f ∈ C(X)∆ , but f /∈ T ′(X). Hence C(X)∆ ̸⊆ T ′(X).

8. ∆P -space

Recall that a space X is called a P -space (resp., FP space) if C(X) (resp.,
C(X)

F
) is a regular ring, (see [7], 4J and [6]). We next introduce ∆P - spaces

which is a generalization of the above types of spaces.

Definition 8.1. A space X is called a ∆P -space if C(X)∆ is a regular ring.

Observe that any FP space is one kind of a ∆P -space if we consider ∆ = the
set of all finite subsets of X. Now we give an example of a ∆P -space which is not
a FP space.

Example 8.1. Let X = Q and ∆ = the set of all countable subsets of Q. Then C(X)∆ =
RQ. So Q is a ∆P -space. But Q is not an FP -space. To establish this, consider f : Q → R
defined by,

f(x) =


2(x− n− 1), n− 1 ≤ x ≤ 2n−1

2
,

−2(x− n), 2n−1
2

≤ x ≤ n

1 otherwise.
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Here the only point of discontinuity of f is x = 0. So f ∈ C(Q)F also. If C(Q)F be
regular, then there exists g ∈ C(Q)F such that f2g = f which implies that g = 1

f
, when

f(x) ̸= 0, x ∈ Q. So we get,

g(x) =



1
2(x−n−1)

, n− 1 < x < 2n−1
2

,

− 1
2(x−n)

, 2n−1
2

< x < n

1 otherwise.

So whatever value we choose for g(x), when f(x) = 0, g will be discontinuous at those
points. Hence g /∈ C(Q)F . So Q is not an FP space, and hence not a P -space also.

Proposition 8.1. Every P -space is a ∆P -space.

Proof. Let X be a P -space and f ∈ C(X)∆ . Then Df ∈ ∆ and X \Df is a Gδ-set
in X. Also X \Df is a P -space (as any subspace of a P -space is also a P -space), so
that X \Df is an open set in X. Now for f ∈ C(X \Df ), there exists g ∈ C(X \Df )
such that f = f2g. Now we define g∗ : X → R by,

g∗(x) =


g(x), x ∈ X \Df

0, x ∈ Df ∩ Z∆(f)

1
f(x) , x =∈ Df \ Z∆(f).

Then clearly g∗ ∈ C(X)∆ . So f = f2g∗ and hence X is a ∆P -space.

It is known from literature that every zero set in C(X) is clopen. The modifi-
cation of this result in the setting of C(X)∆ is furnished below.

Theorem 8.1. If X is a ∆P -space, then for any Z ∈ Z∆(X), there exists H ∈ ∆
such that Z \H is a clopen set in X \H.

Proof. Let Z∆(f) ∈ Z∆(X), for f ∈ C(X)∆ . As X is a ∆P -space, there exists
g ∈ C(X)∆ such that f2g = f . Since f, g ∈ C(X)∆ , there exists H ∈ C(X)∆ such
that f, g ∈ C(X \H). So f2(x)g(x) = f(x), for all x ∈ X \H which implies that
Z∆(f |X\H)∪Z∆((1−fg)|X\H) = X\H and also Z∆(f |X\H)∩Z∆((1−fg)|X\H) = ∅.
So Z∆(f) \H is clopen in X \H.
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