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Abstract. Our aim in this paper is to introduce a ring of functions defined on a
topological space X having a special property. By C'(X), we denote the set of all real-
valued functions defined on the topological space X, the discontinuity set of elements
of which are members of A C P(X), where A satisfies the following properties: ()
for each z € X,{z} € A,(i1) for A,B € P(X) with A C B,B € A implies that
A € A and (iii) for A,B € A,AUB € A. This C(X), is an over-ring of C(X),
moreover, C(X) C C(X), C C(X), C R¥. The ring C(X), is also almost regular.
We study the A-completely separated sets and C, -embedded subsets of X. Complete
characterizations of fixed maximal ideals are then done and algebraic properties of
C(X), have been studied. In [6], the authors have introduced FP-spaces, for which
the ring C'(X),, is regular. Here we have generalized the notion of FP-spaces in the
context of C'(X),, so that the ring in question becomes regular. As a result, AP-
spaces have been introduced, it has been proved that every P-space is a AP-space and
examples are given in support of the fact that there exist AP-spaces which are not
P-spaces.

Keywords: C(X),, c” (X) A, A-completely separated sets, Z , -ideals, Z , -filters, AP-
spaces.

1. Introduction

Unless otherwise mentioned, all topological spaces are assumed to be T7. Let
RX be the ring of all real-valued functions defined on a nonempty topological space
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X with pointwise addition and multiplication. We here note that all subrings of R
are reduced (see [8]), in the sense that they have no non-zero nilpotent elements.
Also recall that the ring 7"(X) [1] of all f € RX, where for each f there is an
open dense subset D of X such that f|p is continuous on D, is a (Von Neumann)
regular ring, where a ring R is called regular if for any a € R, there exists b € R
such that a = aba. In this sequel, we also want to mention about the ring T'(X)
[1] of all f € R¥ such that f|p € C(D), for a dense subspace D of X. Also the
collection of all continuous members of RX is denoted by C'(X), and the collection
of all bounded members of C(X) is denoted by C” (X). In this connection, we refer
to the reader [7], where these two rings have been studied extensively. If f is a
function from a topological space (X, 7) to the real line R which is not necessarily
continuous, it is well known that the set Dy = {& € X : f is discontinuous at x
w.r.t the topology 7} is an F,-subset of X. The proof of this fact is followed by
some simple modification in the arguments to prove that for a function f: R — R,
the set of all points of discontinuity of f is an Fi,-set (see [11]). Gharebaghi, Ghirati
and Taherifar in [6] first introduced and studied the ring C(X),. of all real-valued
functions on X which are discontinuous on some finite subset of X, i.e. all those
members f € R¥ for which Dy is a finite subset of X. After that this ring has been
further studied by M. R. Ahmadi Zand and Z. Khosravi in [2]. Very recently, the
authors in [3] investigated the family M (X, p) of all those functions f of M(X, .A)
(= the ring of all real-valued measurable functions defined over a measurable space
(X, A)), for which pu(Dys) = 0. Fortunately, using the properties of the measure ,
it can be checked that Mo (X, i) is a commutative lattice ordered ring with unity if
the relevant operations are defined pointwise on X. In this connection, one can go
through [4], where the authors have studied the ring of functions which are discon-
tinuous on a countable set. Regarding the rings C'(X),, T(X) and My(X, i), the
most common features are that the discontinuity set Dy, for any f in all these rings
are closed under finite unions and forming subsets. These particular properties mo-
tivate us to consider a subcollection D C P(X) closed under forming subsets and
finite unions. [These urge us to consider a collection C'(X), of all those members f
of RX for which Dy € D. This C(X),, also happens to be a commutative ring with
unity if the relevant operations are defined pointwise on X. Note that, if D = the
collection of all finite subsets of X (resp., set of all nowhere dense subsets of X),
then C(X), reduces to C(X),. (resp., T(X)) and if D = the collection of all sets
having measure zero in a complete measure space, then C(X), = Mo(X, p)]. We
now impose another condition on D mainly, D is closed under containing singletons,
ie. for any x € X, {x} € D. So, in this paper our key element is a subcollection
A C P(X) with the following properties:

1) For each z € X, {z} € A.
2) For A, B € P(X) with A C B, B € A implies that A € A.
3) For A, Be A, AUB € A.

As mentioned before, C(X), becomes a commutative ring with unity. Now, the
benefits of switching to A from D yield the following results.
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1) X is discrete if and only if C(X) = C(X),.

2) X is connected if and only if 0 and 1 are the only idempotent elements of C'(X)
(where for any r € R, T denotes the constant function f(z) = r, for all x € X),
whereas in the case of C(X),, {2} becomes an idempotent element, for each z € X,
irrespective of the connectedness of X.

3) Any element of C(X), is either a unit or a zero-divisor.

4) Also while studying ideals and z-filters, a necessary and sufficient condition for
a proper ideal as well as a maximal ideal to be fixed can be solved.

Let us now briefly explain the organization of the paper. Section 2 starts with
the definition of the rings C(X), and C"(X),. It is shown that unlike the ring
C(X), the equality C(X), = C" (X), is only a sufficient condition for the pseudo-
compactness of X but not necessary. We define the zero sets Z, (f), for a function
f € C(X),. Examples are given in support of the fact that Z, (f) is not necessarily
closed as well as not G, like the case of the ring C'(X). In fact, it is shown that for
any f € C(X),, Z,(f) can be written as a disjoint union of a Gs-subset of X and
a member of A. It is proved that C(X), is an almost regular ring. This section
ends with some dissimilarities between C'(X) and C'(X),.

In section 3, we introduce the notion of A-completely separated sets and char-
acterize them in terms of zero sets of C'(X),. It has been shown that A-complete
separation is a generalization of both F-complete separation and that of complete

s

separation of subsets of X. Next we introduce C,-embedded and C, -embedded

*

subsets of X. A necesarry and sufficient condition is obtained for a C', -embedded
subset to be C,-embedded. Also it is established that if a discrete zero set is
C,-embedded, then all its subsets are also zero sets.

In section 4, we introduce the notions of ideals of C'(X), and Z, -filters on X.
Naturally it is shown that there is a one-to-one correspondence between the set
of all maximal ideals of C'(X), and the set of all Z,-ultrafilters of X. After the
introduction of Z, -ideals it is shown that every Z,-ideal is a radical ideal. That the
sum of two Z, -ideals is a Z, -ideal is established, as a consequence of which we have

that, if {I, }aeca be a collection of Z, -ideals in C(X),, then either Z I,=C(X),

acA
or Z I, is a Z,-ideal.
a€A
In section 5, the complete list of fixed maximal ideals of C(X), and C(X) are

given in terms of MpA and MpA respectively. Here with the help of MPA, we give
another description of Z,-ideals. Finally a finite space is characterized as one in
which every proper ideal of C(X), is fixed and also every maximal ideal of C'(X),
is fixed.

Section 6 is devoted to the study of residue class rings of C'(X), modulo ideals.
It is shown that every Z, -ideal is absolutely convex, and for every maximal ideal M
in C(X),, the quotient ring C'(X), /M is a lattice ordered ring. Also for a Z, -ideal
I in C(X), which is prime, the lattice ordered ring C'(X), /I is totally ordered. It

A
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is proved that every hyper-real residue class field C'(X), /M is non-archimedean and
each maximal ideal M in C”(X), is real. Lastly it is established that f € C(X),
is unbounded on X if and only if there exists a maximal ideal M in C'(X), such
that |M(f)| is infinitely large in C(X), /M.

Section 7 deals with some algebraric aspects of C(X),. Relations between the
rings C'(X), C(X), and T'(X) have been investigated.

Section 8 studies AP-spaces. It has been shown that every P-space is a AP-
space. Examples are provided in support of the fact that the converse is not true
in general.

A

Throughout the paper R, Q and N respectively denote the set of reals, the set
of rationals and the set of natural numbers.

2. The rings C(X), and C"(X),

In this section our main interest is to explore the properties of the ring C(X),.
We then introduce a subring C" (X), of C(X), and also discuss about the zero
sets for functions in C(X),.

Definition 2.1. For a topological space X and a subcollection A of P(X) (=
the power set of X), where A is closed under forming subsets, finite unions and
containing all singletons, we define,

C(X), = {f € R¥X : the set of points of discontinuities of f is a member of A}.

It can be easily observed that C(X), is a commutative ring with unity (with
respect to pointwise addition and multiplication) containing C(X), in addition,
C(X), is a super-ring or an over-ring of C(X), 2 C(X), ie. C(X) C C(X), C
c(X)

A

A

We note that C(X), is a sublattice of R, in fact, (C(X),,+,.,V,A) is a
lattice-ordered ring if for any f,g € C(X),, one defines (f V g)(z) = f(z) V g(z)
and (fAg)(z) = f(z) Ag(x), z € X. Also fVg = H%H € C(X),, for all
f,ge C(X),. For f € C(X), and f > 0, we note that there exists h € C(X),
such that f = h%. Also, whenever f € C(X), and f" is defined where r € R, then
frel(X),.

Definition 2.2. We next define,

*

C(X),={feC(X),: fisbounded}

which is obviously closed under the algebraic and order operations as discussed
above. Hence C” (X), is a subring as well as a sublattice of C'(X),.
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Remark 2.1. We see that unlike the ring C'(X), the equality C(X), = C" (X), is only
a sufficient condition for the pseudocompactness of X but not necessary, as it follows from
the next example.

Example 2.1. Consider X = [0, 1] equipped with the subspace topology of the usual
topology of reals and take A = {A C X : A is nowhere dense in X}. Take the function

f:10,1] — R defined by,
%, x#0
fx) =

1, z=0.
Clearly f € C(X),, but f ¢ C"(X),. But here X is pseudocompact.

Definition 2.3. For f € O(X),, the set f~1(0) = {z € X : f(z) = 0} will be
called the zero set of f, to be denoted by Z, (f).

We will use the notation Z, (C(X),) (or, Z,(X)) for the collection {Z, (f)
: feC(X),} of all zero sets in X.

Some elementary properties of the zero sets of functions of C(X), are listed
below, which are trivial to check as in the classical setting of C(X) (see, 1.10,1.11

of [7]).
Theorem 2.1. For f,g € C(X), and r € R, the following holds.

i) Z(

f)= (If\) Z. (f™), for all n €N.
ii) Z,(0)

=X and Z,(1) = @.
i) Z,(fg) = 2, (f) U Zs(9).
) Z(F 4 %) = Z,(f) N Z,(g).

){xe fx )>r} and {x € X : f(x) <r} are zero sets in X.
vi) Also for a given f € C(X),, the function h = |f|A1 € C(X),, so that
Z,(f) = Z,(h) and hence we can conclude that C(X), and C"(X), produce the
same zero sets.

Remark 2.2. Unlike C(X), Z, (f) is not necessarily closed as is seen below.

Example 2.2. Consider X = [0, 1] with the subspace topology of the usual topology of
reals and A = {A C X : A is nowhere dense in X }. Take the function f: X — R defined

by, for any n € N,
1, x# %
flz) =

0, =+,
n

Then the set of points of discontinuities of f is {0} U{ : n € N} € A, so that f € C(X),,
but Z, (f) = {% : n € N} which is not closed in X.
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Remark 2.3. Z,(f) need not be a Gs-set as in the case of C'(X) as is seen below.

Example 2.3. Consider X = R with the cofinite topology. Then no finite set in R is a
Gs-set. Take the function f: R — R defined by,

{ 1, zeR\{0}

0, x=0.
Then f € C(X), for any subcollection A C P(X) and Z, (f) = {0}, which is not a Gs-set.

flz) =

The following theorem gives the nature of a zero set for a function in C'(X),.
Theorem 2.2. For any f € C(X),, Z,(f) can be written as a disjoint union of
a Gg-subset of X and a member of A.

Proof. Write Z,(f) = PUQ, where P =Z,(f)N (X \ Dy) and Q = Z,(f) N Dy.
As Dy € A,Q € A. Now the function h = f|x\p, is a continuous function. Hence
P = Z(h) is a Gs-subset of X \ Dy (where Z(h) as usual denotes the zero set for
the continuous function h in X \ Dy). Also D; being an F,-subset of X, P is a
Gs-set in X. Hence the proof. O

Theorem 2.3. For an arbitrary topological space X (i.e. X does not have any
separation azioms), whenever f € C(X), and Z,(f) € X \ Dy, Z,(f) becomes a
Gs-set in X.

Proof. From Theorem 2.2, we have Z, (f) = PU(Q), where P is a Gs-set in X and
Q= Z,(f)N Dy is a member of A. Now if Z, (f) € X \ Dy, then Q = @, so that
Z,(f) =P, a Gs-set in X. Hence the proof. O

The following example shows that the converse of Theorem 2.3 is not true in
general.

Example 2.4. Let X = [0, 1] with the subspace topology of the usual topology of reals
and A = {A C[0,1] : A is countable}. Take the function f: X — R defined by,

1, x#0
o
0, z = 0.

Then f € C(X), and Z, (f) = {0} is a Gs-set but Z, (f) € X \ Dy.

Remark 2.4. In [2], in the discussion after Theorem 2.1, the authors have mentioned
that if X is a T3 space, f € C(X), and Z(f) C X \ Dy, then Z(f) is Gs. But from the
above theorem, we can say that if we consider A = the set of all finite subsets of X there,
then the same is true without assuming any separation axioms (in particular, T1-ness) of
X.
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Theorem 2.4. For a topological space X and a subcollection A C P(X), the fol-
lowing statements hold.

i) C(X), is a reduced ring.

1) f e C(X), is a unit if and only if Z,(f) = @.

iii) Any element of C(X), is either a zero-divisor or a unit.

w) For f,g € C(X),, if | f| <l|g|" for some real number r > 1, then f is a multiple
of g. In particular, if | f] < |g| and r € R with r > 1 be such that " is defined, then
f7 is a multiple of g.

Proof. i) Tt is trivial.

i) Let f € C(X), be a unit. Then there exists g € C(X), such tha
that Z, (f) = @. Conversely, if Z, (f) = @, then the function g = %
the required inverse of f, so that f becomes a unit in C(X),.

iii) Let f € C(X), be not a unit. Then Z, (f) # @. Choose p € Z,(f) and define
a function g : X — R by ¢g(p) = 0 and ¢g(X \ {p}) = {1}. Then g € C(X), and
X\Z,(f) € Z,(g), which implies that fg =0, i.e. f is a zero-divisor of C'(X),.
iv) Let |f| < |g|" for some real number r > 1, where f,g € C(X),. Clearly
Z,(9) € Z,(f). Take D = Dy U Dy. Then D € A and f,g are continuous on
X \ D. Define a function h: X — R by

t fg=1, so
e C(X), is

M ze X\ 2Z,(9)
h(z) =
0, x € Z,(9).

We now show that h is continuous on the set X \ D. Let z € (X \ D)\ Z,(9).
Since f and g are continuous at x and g(z) # 0, so g is continuous at z, i.e. h is
continuous at z.

Now |f| < |g|” implies that “583“ < |g(z)|"~1, for all x € X \ Z, (g) which gives that

|h(z)] < |g(z)|"~t, for all 2 € X \ Z,(g). Again, x € Z,(g) implies that g(z) = 0,
so that h(x) = 0. Hence |h| < |g|" 7!, for all z € X.

Let z € (X\ D)NZ,(g9). Then h(z) =0 € (—¢,€). Also we have g(x) = 0 and
g is continuous at z, so there exists a neighbourhood U of x such that g(U) C
(—eﬁxﬁ) which implies that |g(z)| < e, for all # € U. Thus lg(x)|"7t <€,
for all © € U which implies that |h(z)| < ¢, for all x € U. Hence h is continuous on
X\ D so that h € C(X), and f = gh.

The second part follows from the first part. [

Remark 2.5. In C(X),, we have seen that C(X), = C (X), if and only if for any
finite subset F' of X, X \ F is pseudocompact ([6], Lemma 2.4). That means if we consider
A = the set of all finite subsets of X, then C(X), = C" (X), if and only if for any F € A,
X \ F is pseudocompact. But for any arbitrary A, it is not necessarily true as is seen
below.

Example 2.5. Let X = N be endowed with the cofinite topology. Consider A = {P : P
is a countable subset of N}. Then RY = C(N), # C" (N),. Now the function f defined by



728 R. Sen and R. P. Saha

f(n) =mn, for all n € N, is a member of C(N),, but f ¢ C"(N),. But for any countable
set F, X \ F is always pseudocompact.

Remark 2.6. In view of Theorem 2.4, we can conclude that C(X), is an almost regular
ring.

Next we give an example to show that the result analogous to Theorem 2.4 ii)
is not true if we replace C(X), by C"(X),.

Example 2.6. In the view of Example 2.1, the function % = h has an empty zero set.
This function h € C™(X),, whereas 1=rf¢ C (X)),

The nature of the units of C” (X), is given by the following theorem.

Theorem 2.5. A function f € C"(X), is a unit in C" (X), if and only if f is
bounded away from zero, i.e. there exists r > 0 such that |f(x)| > r, for all x € X.

Proof. Just take into account that whenever for some f € C™(X),, Z,(f) = @,
then Dy = D%. O

Remark 2.7. We next provide two dissimilarities between C(X) and C(X),.

Example 2.7. C(X), is not closed under uniform limits: Consider X = [0, 1] with the
subspace topology of the usual topology of R and A = set of all finite subsets of [0, 1].
Enummerate [0,1]NQ as, [0,1] NQ = {z1, z2, ..., Tn, ...},n € N. Now define a sequence of
functions {f»} on X by,

L r=z;,1<i<n
K2

falx) =

0, otherwise.

Clearly each f, € C(X), and this sequence of functions converges uniformly to the func-
tion f given by,

T =T

0, otherwise.

But f ¢ C(X),, as f is discontinuous on Q. Hence C(X), is not closed under uniform
limits.

Example 2.8. Z,(C(X),) is not closed under countable intersections: Let X = [0, 1]
with the subspace topology of the usual topology of R and A = set of all finite subsets of
[0,1]. Consider [0,1] N Q = {x1,x2,...,Zn,...},n € N. Now define a sequence of functions
{fn} on X by,
1, T =1T1,T2,..., Ty
fule) =

0, otherwise.
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Clearly each fn, € C(X),,n €N
Now, () Za(fa) = ()10, 1]\ {z1,22, .,z }) = [0, 1]\ | {z1, 22, ...z} = [0,1][ ) Q".

n=1 n=1

n=1
Now we show that there does not exist any f € C'(X), such that Z, (f) = [0,1] (N Q°.

If possible, let there exist f € C(X), with Z, (f) = [0,1](Q°. Choose c € [0,1]NQ,
then f(c) # 0. Without loss of generality, let f(c) > 0. Choose € > 0 such that f(c)—e > 0.
If f is continuous at ¢, then there exists an open set G C [0, 1] containing ¢ such that
|f(x) — f(e)| < ¢, for all z € G which implies that f(z) > f(c) —e >0, for all z € G, i.e.
f(z) >0, for all z € G, which contradicts the fact that [0,1] () Q¢ is dense in [0, 1]. Hence
f is not continuous at any rational number, so that f ¢ C(X),.

Remark 2.8. From the definition of A it can be easily observed that if the set of all
non-isolated points of X is a member of A, then C(X), = R* = C(Y), where X =Y is
equipped with the discrete topology. So in this case we can say that C(X), is a C-ring..

3. A-completely separated and C,-embedded subsets of X

Recall that two subsets A and B of a topological space X are said to be com-
pletely separated in X ([7], Theorem 1.15) if there exists a function f € C"(X)
such that f(A) = {0} and f(B) = {1}, with 0 < f < 1.

Analogously we define the following.

Definition 3.1. Two subsets A and B of X are said to be A-completely separated
in X, if there exists a function f in C”(X), such that f(A) = {0} and f(B) = {1}.

In C(X), it is true that two sets A and B are completely separated if and only
if their respective closures A and B are also completely separated. But we here
notice that A and B are A-completely separated in X implies that A and B are
A-completely separated. That the converse is not true in general, is seen by the
following example.

Example 3.1. Take X = [0, 1] with the subspace topology of the usual topology of reals,
A=10,1), B={1}. Then A and B are A-completely separated by the function f: X — R
defined by,

1, 0<z<1
fz) =
2, r=1,

where f € C"(X),, for any arbitrary subcollection A C P(X), but A, B are not A-
completely separated, as AN B # @.

Also in this connection we want to mention the notion of F-completely separated
sets (see [6]), where any two completely separated sets are F-completely separated
but not the converse.
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Remark 3.1. Any two F-completely separated sets are A-completely separated but not
conversely as is seen by the following example.

Example 3.2. Consider X = [0, 1] with the subspace topology of the usual topology of
reals, A = {A C X : A is nowhere dense in X} and K = Cantor set. Define f : X — R

by,
1, reK
o
0, z¢K,

ie. f=xg- Then Dy = K € A, so that f € C(X),. Now, the sets K and X \ K are
A-completely separated but not F-completely separated, as K is uncountable.

The next result is the counterpart of ([7], Theorem 1.15) and can be proved in
a similar manner.

Theorem 3.1. Two subsets A, B of a space X are A-completely separated if and
only if they are contained in disjoint members of Z, (X).

Corollary 3.1. If A and A’ are A-completely separated, then there exist zero sets
Z and H in Z,(X) such that

ACX\ZCHCX\A.

Theorem 3.2. If two disjoint subsets A and B of X are A-completely separated,
then there is a member D of A such that A\ D and B\ D are completely separated
in X\ D.

Proof. Assume that A, B are A-completely separated. Then by Theorem 3.1, there
exist two disjoint zero sets Z, (f1) and Z, (f2) in Z, (X) such that A C Z, (f1) and
B C Z,(f2). Let Dy, and Dy, be the sets of points of discontinuities of f; and f>
respectively. Then f; € C(X \ Dy,), fo € C(X \ Dy,). Consider D = Dy, U Dy,.
Then D € A and f1, fo € C(X\ D). Also, A\D C Z,(f1)\D, B\D C Z,(f2)\ D,
where Z, (f1)\ D and Z, (f2) \ D are disjoint zero-sets in X \ D. By ([7], Theorem
1.15), A\ D and B\ D are completely separated in X \ D. O

Remark 3.2. The converse of the above theorem holds good if D is closed. For let, A\ D
and B\ D be completely separated in X \ D, where D € A and D is closed. Then there
exists f € C" (X \ D) with f(A\ D) = {0} and f(B\ D) = {1}. Now consider the function
g : X — R defined as follows:

flx), xzeX\D
g(z) = 0, reDNA

1, re DNB.

Since D is closed, g € C"(X), with g(A) = {0} and g(B) = {1}. Hence A and B are
A-completely separated in X.
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Next, we introduce the analogues of C-embedding and C” -embedding in our
settings, called C, -embedding and C;—embedding to deal with the problem of ex-
tension of functions belonging to such rings.

Definition 3.2. A subset Y of a topological space X is said to be C,-embedded
in X, if each f € C(Y),, has an extension to a g € C(X),, i.e. there exists
g € C(X), such that g|, = f, where A C P(X) and Ay = Alp(y).

Likewise, Y is said to be C’;—embedded in X, if each f € C"(Y), has an
extension to a g € C" (X),.

Remark 3.3. It is noteworthy to mention here that any C,-embebbed subset is C’;—
embebbed also.

Example 3.3. Consider X = R? with the Euclidean topology, A = {A C R? : A is
nowhere dense in R*}, § = R*\ R x {0} and a function f: S — R defined by,

fay) = L (@,y) € B2\ R x {0},

As f € C(S), clearly f € C(S)a. But there does not exist any g € C(R?), such that
gls = f. Hence S is not C,-embedded (see [2], Definition 2.15) and hence not C-embedded
in X. Now, consider the function g : X — R defined by g(X \ S) = f and g(S) = 0. Then
S is C,-embedded but not C',-embedded and hence not C-embedded.

In view of the above example we observe that if S is a closed subset of a topo-
logical space X with X \ S € A, then S is both C’;—embedded and C,-embedded.

As a converse of Remark 3.3, we have the following.

Theorem 3.3. A C;-embedded subset is C, -embedded if and only if it is A-
completely separated from every zero set disjoint from it.

Proof. First, let S be C;—embedded in X and h € C(X), besuch that Z, (h)NS =
@. Define a function f : S — R by f(s) = ﬁ,s € S. Then f € C(S),. By the
given condition, there exists g € C(X), such that g|s = f. Hence gh € C(X),.
Also gh(S) = {1} and gh(Z,(h)) = {0}, so that Z,(h) and S are A-completely
separated in X.

Conversely, let f € C(S),. As arctanof € C (S),, there exists g € C(X),
such that g|s = arctanof. Now, the set Z = {z € X : [g(z)| > §} is a member
of Z,(X) with ZN S = @. So by hypothesis, there exists h € C" (X), such that
h(S) = {1} and h(Z) = {0}. We see that g - h € C(X), and for all z € X,
|(g-h)(x)| < §. Hence, tan(g - h) € C(X), and for all s € S, tan(g - h)(s) = f(s).
So S'is C,-embedded. O

Corollary 3.2. For any topological space X, a zero set Z € Z,(X) is C’; -embedded
if and only if it is C, -embedded.
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Example 3.4. (i) If a discrete zero set is C; -embedded, then all of its subsets are zero

sets: for if Z € Z, (X) be a discrete, C’;—embedded subset of X, then for any Y C Z| Y
is also discrete. Define a function f : Z — R by,

1, z¢Y
o
0, rzeyY.

Then f € C(Z),. As Z is C;—embedded, there exists h € C" (X), such that h|z = f.
Also, as Z is a zero set, Z = Z, (g), for some g € C" (X),. Now, consider the function
ke C (X), by k =g+ h% Certainly, Z, (k) = ZN Z,(h) =Y, so that Y becomes a
zero set in X.

(ii) If for every f € C” (X)A, f(X) is compact, then X becomes pseudocompact. But
the converse is not true. Consider X = [0,1] with the subspace topology of the usual
topology of reals, A = {A C [0,1] : A is nowhere dense in X} and a function f: X — R

defined by, for n € N,
1,1
o]

1, T # %
Then Dy = {0}U{2:n>2} € Aand f € C"(X),. But f(X)= {1 :n €N}, which is
not compact.

4. Ideals of C(X), and Z,-filters on X

A

Throughout our discussion, an ideal I, unmodified in any of the two rings C'(X) ,

and C” (X), will always mean a proper ideal.

Definition 4.1. A nonempty subcollection F of Z, (X) is called a Z-filter on X
if it satisfies the following conditions:

(i) @ ¢ F.
(i) Z1,Z> € F implies that Z1 N Zy € F.
(i)t Ze F, 7' € Z,(X) with Z C Z', then Z' € F.
A Z, -filter on X which is not properly contained in any Z, -filter on X is called
a Z -ultrafilter on X.

Applying Zorn’s lemma one can show that a Z, -filter on X can be extended to
a Z -ultrafilter on X.

There is a nice interplay between ideals (maximal ideals) in C'(X), and the Z,-
filters (resp., Z,-ultrafilters) on X. This fact is observed in the following theorem.

Theorem 4.1. For the ring C(X),, the following hold.
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i) If I is an ideal in C(X),, then Z,(I) = {Z,(f) : f € I} is a Z,-filter on
X. Dually, if F is a Z,filter on X, then Z ' (F) is an ideal in C(X),.

it) If M is a mazimal ideal in C(X),, then Z, (M) is a Z, -ultrafilter on X. If U
is a Z -ultrafilter on X, then Z*(U) is a mazimal ideal in C(X),.

1it) The assignment : M — Z, (M) is a bijection from the set of all mazimal ideals
of C(X), to the set of all Z, -ultrafilters on X.

Proof. Can be done in same way as in Theorems 2.3 and 2.5 of [7]. O

Remark 4.1. The assignment : I — Z, (I) from the set of all ideals on C'(X), to the
set of all Z,-filters on X is a surjection but not an injection. In fact, for any ideal I in
C(X)a, Z'Z, (1) D I

We therefore concentrate on those ideals of C'(X), for which the above inclusion
becomes an equality.

Definition 4.2. Anideal I of C(X), is called a Z,-ideal if Z ' Z, (I) = I. Equiv-
alently, Z, (f) = Z.(g), for f € I and g € C(X), implies that g € I.

Remark 4.2. It thus follows that

1) Every maximal ideal in C(X), is a Z,-ideal but not the converse (as shown below in
Example 4.1).

1) The mapping : I — Z,(I) is a bijection from the set of Z,-ideals onto the set of all
Z \-filters.

Example 4.1. Consider [ = {f € C(X), : f(p) = f(q) = 0}, for p,q € R with p # q.
Then I is a Z,-ideal in C(X),. But I is not maximal, as [ C {f € C(X), : f(p) = 0}.
The ideal I is not a prime ideal also, as the function (z — p)(x — ¢) belongs to I but neither
the function x — p nor the function x — ¢ belongs to I.

Remark 4.3. Clearly every Z,-ideal in C(X), is an intersection of prime ideals in
C(X)a-

The next result establishes the relation between prime ideals and Z, -ideals to
some extent.

Theorem 4.2. Let I be a Z, -ideal in C(X),. Then the following statements are
equivalent:

1) I is prime.

it) I contains a prime ideal.

iii) For all f,g € C(X),, if fg =0, then either f €I or g € I.

i) For each f € C(X),, there exists a zero set in Z,(I) on which f does not
change its sign.

Proof. Similar to the counterpart of Theorem 2.9 in [7]. O
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Corollary 4.1. FEwvery prime ideal in C(X), is contained in a unique maximal
ideal in C(X),, i.e. C(X), is a Gelfand ring.

Definition 4.3. A Z,-filter F on X is called a prime Z, -filter if whenever AUB €
F, for some A, B € Z,(C(X),), then either A € F or B € F.

The next theorem is analogous to Theorem 2.12 of [7] and we therefore omit the
proof.

Theorem 4.3. For a space X, the following hold.

i) If P is a prime ideal in C(X) ., then Z,(P) is a prime Z , -filter.
ii) If F is a prime Z, -filter on X, then Z ' (F) is a prime Z -ideal.

Corollary 4.2. For a space X, the following hold.

1) Bvery prime Z , -filter is contained in a unique Z , -ultrafilter.
11) Every Z , -ultrafilter is a prime Z , -filter.

It is known that in a commutative ring R with unity, the intersection of all prime
ideals of R containing an ideal I is said to be the radical of I to be denoted by v/I.
For any ideal I, /I = {a € R: a" € I, for some n € N} (see [7]) and also I C v/T.
Also I is called radical if I = /.

Theorem 4.4. Every Z, -ideal I in C(X), is a radical ideal.
Proof. Only to use the definition of a Z,-ideal. [

It is well known that the sum of two z-ideals in C(X) is a z-ideal, (see [7],
Lemma 14.8 and [12]). This result can be modified in C(X), as follows.

Theorem 4.5. The sum of two Z, -ideals in C(X), is a Z, -ideal.

Proof. Let I,J be two Z,-ideals in C(X),, f€l,ge J, he C(X), and Z,(f +
g) € Z,(h). First note that, Z,(f) N Z,(9) € Z,(h) and there exists a subset
P € A such that f,g,h € C(X \ P). Define

0, IE(ZA(f>mZA(g))\P

ka) =4 #ls,  2e(X\P)\(Z:()NZ,(9))

h(z), =z=e€P
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0, @€ (ZJ(HNZ)\P
(z) =3 s we(X\P)\(Z,(H)NZs(9))
0, x € P.

We first prove that k is continuous on X \ P. So it requires only to prove that k
is continuous at any point z € (Z,(f) N Z,(g)) \ P. As h(z) = 0, for any given
€ > 0, there exists a neighbourhood U of x such that h(U) C (—¢,€). Also for any
x € U, |k(z)| < |h(z)|, which means that k is continuous on X \ P. Similarly [ is
continuous on X \ P. Then we have [,k € C(X),, Z,(f) C Z,(k), Z.(9) € Z,(I)
and h =1+ k. Since I, J are Z, -ideals, k € l andl € J, hence he I +J. [

Corollary 4.3. Let {I,}aca be a collection of Z, -ideals in C(X),. Then either
Z I,=C(X), or Z I, is a Z, -ideal.

aEN a€cA

Lemma 4.1. [10] If P is minimal in the class of prime ideals containing a z-ideal
I, then P is a z-ideal.

In view of the above result, we can have,

Corollary 4.4. Let {Py}aca be a collection of minimal prime ideals in C(X),.
Then either Z P, =C(X), or Z P, is a prime ideal in C(X),.
acA aEA

The following result can be obtained in the same way as is done in ([12], Lemma
5.1).

Corollary 4.5. The sum of a collection of semi prime ideals in C(X), is either
a semiprime ideal or the entire ring C(X),.

5. Fixed and Free ideals in C(X),

In this section, we introduce fixed and free ideals of C(X), and C" (X), and
completely characterize the fixed maximal ideals of C'(X), and that of C" (X),.

Definition 5.1. A proper ideal I of C(X), (resp., C"(X),) is called fixed if
NZ,(I) # &, where NZ, (I) = ﬂ Za(f) . I I is not fixed, then it is called free.
fer

Let us now characterize the fixed maximal ideals of C'(X), and those of C" (X),.
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Theorem 5.1. {MpA :p € X} is a complete list of fized mazimal ideals of C(X),,
where MpA ={f e C(X), : f(p) = 0}. Moreover, the ideals MpA are distinct for
distinct p.
Proof. First choose p € X. The map ¢ : C(X), — R defined by ¢,(f) = f(p)
is a ring homomorphism. Also ¢, is surjective and ker ¢, = {f € C(X), :
Yp(f) = 0} = MpA (say). Hence by the First Isomorphism theorem of rings, we
have C’(X)A/MpA is isomorphic to the field R, so that MPA is a maximal ideal in
C(X),. Also, aspenz, [M:], MpA is a fixed ideal.

Now, p ;ég implies that Xgp} # X{q}> Where X (1, X{q} € C(X)AA (since X is T71).
As x(py € M but x(py € M, it thus follows that for p # ¢, M~ # MqA. |

Similarly we have,

Theorem 5.2. {MpA :p € X} is a complete list of fired mazimal ideals of
C"(X),, where M: = {f € C'(X), : f(p) = 0}. Moreover, p # q implies
that M™ # M* .

From above it follows that the Jacobson radical of the ring C'(X), and C" (X),

is zero. Also the interrelation between fixed ideals of C'(X), and C (X), are as
follows.

Corollary 5.1. If I is a fired mazimal ideal of C(X),, then INC (X), is so
in C(X),. Also, if INC (X), is a fized ideal of C"(X),, for some ideal I of
C(X),, then I is a fived ideal of C(X),.

We now give a result with the help of which we get another description of Z, -
ideals.
Lemma 5.1. For any f € C(X),, we have MfA ={g € CX), : Z,(f) C

Z,(g)}, where MfA is the intersection of all mazimal ideasl of C(X), containing f.
Proof. The proof is same as that of Lemma 4.1 of [6]. O
The following is the counterpart of ([7], 4A).

Theorem 5.3. A necessary and sufficient condition that an ideal I in C(X), be
a Z, -ideal is that, for a given g, if there exists f € I such that g € MfA, then g € I.

Proof. Let I be a Z,-ideal and for a given g, there exists f € I such that g € MfA
Then Z,(f) C Z,(g). Also f € I implies that Z,(f) € Z,(I), so that Z,(g) €
Z,(I) (as Z,(I) is a Z,-filter) which further implies that g € I.

Conversely, let Z,(g) € Z,(I) imply that Z, (g9) = Z,(f), for some f € I. So
g€ MfA Thus by the given condition g € I. Hence I is a Z,-ideal. [
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Regarding the existence of free maximal ideals in C'(X), and in C(X),, we now
establish the following.

Theorem 5.4. For a space X, the following are equivalent:

1) X is finite.

it) Every proper ideal of C(X), is fized.
iii) Every mazimal ideal of C(X), is fized.
iv) Every proper ideal of C" (X), is fized.
v) Bvery mazimal ideal of C" (X), is fized.

Proof. i) = ii): Let I be a proper ideal of C(X),. Now Z[I|(={Z(f): f € I}) is
finite and also a Z,-filter. Hence [ is fixed.

1) = 4it): Obvious.

ii1) = 4): If possible, let X be infinite. Let S = {x(;} : # € X} and consider the
ideal I generated by S in C'(X),. We claim that I is proper. If not, then there
exists x1,x2,...,Zy and f1, fa, ..., f € C(X), such that 1 = fix(s,} + foX{a} +

<o+ faX{z,}- Then ﬂ Z A [X{z;}) = . Hence ﬂ(X\{xZ}) = @& which implies that
i=1 1=1

X is finite, a contradiction. Let M be any maximal ideal of C(X), containing I.

Then Z[M] C N Z[I] € () (X \ {z}) = @ which implies that M is a free ideal,

reX

a contradiction. Hence X is finite.

i) = iv): Can be done as in i) = ii).

1) = v): Obvious.

v) = 4): Obvious. O

In view of Example 4.7 of [7], since C'(X) = C(X),, for any discrete space X,
we can conclude that

i) For any maximal ideal M of C(X),, M NC" (X), need not be a maximal ideal
in C"(X),.
ii) All free maximal ideals in C” (X)), need not be of the form M NC™ (X),, where

M is a maximal ideal in C(X),.

A

6. Residue class rings of C(X), modulo ideals

Let us recall that an ideal I in a partially ordered ring A is called convex if
whenever 0 < z < y and y € I, then z € I. Equivalently, for all a,b,c € A with
a <b<cand a,c€ I implies that b € I.

If A is a lattice-ordered ring, then an ideal I of A is said to be absolutely convex
if whenever |z| < |y| and y € I, then z € I.
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For an ideal I of C(X),, we shall denote any member of the quotient ring
C(X) /I by I(f), for feC(X),,ie I(f)=f+1

Let us now recall the following.

Theorem 6.1. [7]. Let I be an ideal in a partially ordered ring A. In order that
A/I be a partially ordered ring, according to the definition:

I(a) > 0 if there exists x € A such that x > 0 and a = x (mod I),

it s mecessary and sufficient that I is convex.

Theorem 6.2. [7]. The following conditions on a convex ideal I in a lattice or-
dered ring A are equivalent:

1) I is absolutely convex.

ii) x € I implies |z| € I.

iii) x,y € I implies xV y € I.

w) I(aVb)=1I(a)V I(), whence A/I is a lattice.
v) I(a) > 0 if and only if a = |a| (mod I).

Remark 6.1. I(|a|) = |I(a)|, V a € A, when I is an absolutely convex ideal of A.
Theorem 6.3. Every Z, -ideal in C(X), is absolutely convex.

Proof. Let I be any Z,-ideal in C(X), and |f| < |g|, where f € C(X), and g € I.
Then Z,(f) C Z,(g). Asge I, Z,(g) € Z,(I) which implies that Z, (f) € Z,(I).
Now I being a Z,-ideal, it follows that f € I. O

Corollary 6.1. FEvery mazimal ideal in C(X), is absolutely convez.

Theorem 6.4. For every mazimal ideal M in C'(X),, the quotient ring C(X) . /M
is a lattice ordered ring.

Proof. Obvious. O

Next we characterize the non-negative elements in the lattice-ordered ring C'(X), /I,
for a Z,-ideal I.

Theorem 6.5. For a Z,-ideal I and f € C(X),, I(f) > 0 if and only if there
exists Z € Z,(I), such that f >0 on Z.

Proof. First let, I(f) > 0. By Theorem 6.2, f = |f| (mod I), i.e. f—|f| € I. So,
Zs(f = 1f]) € Z5(I) and hence f > 0 on Z, (f —[f])-

Conversely, let f > 0 on some Z € Z,(I). Then f = |f] on Z, ie. Z C
Z,(f—1f|) which implies that Z, (f—|f|) € Z,(I). Since I is a Z,-ideal, f—|f| € I,
ie. I(f)=I(f]). As I(|f]) >0, hence I(f) >0. O
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Theorem 6.6. Let I be a Z, -ideal and f € C(X),. If there exists Z € Z,(I)
such that f(z) > 0, for all x € Z, then I(f) > 0. Converse is true if I is maximal.

Proof. If f is positive on Z € Z, (I), then Z, (f) N Z = &, so that Z, (f) ¢ Z,(I).
Hence f ¢ I. So by the previous theorem I(f) > 0.

For the converse, if I is maximal, then there exists some zero set Z’ of I such
that Z' N Z(f) = @. Now ZNnZ" € Z,(I), thus f > 0 on the zero set Z N Z" of
I. O

Remark 6.2. The converse part of the above theorem fails if I is not maximal: for let
I be non-maximal. Then there exists a proper ideal J of C'(X), such that I C J. Choose
f € J\I. Then I(f?) > 0. Now choose any Z € Z,(I). Then Z € Z, (J) also, so that
ZNZ(f*) # @. Now f is not strictly positive on the whole of Z.

We now characterize those ideals I in C'(X), for which C(X), /I is a totally
ordered ring.

Theorem 6.7. For a Z,-ideal I in C(X),, the lattice ordered ring C(X),/I is
a totally ordered if I is prime.

Proof. C(X), /I is totally ordered if and only if for any f € C(X),, I(f) > 0 or
I(—f) > 01if and only if for all f € C(X),, there exists Z € Z, (I) such that f does
not change its sign of Z if and only if I is a prime ideal in view of Theorem 4.2. [

Corollary 6.2. For every mazimal ideal M in C(X),, C(X),/M is a totally
ordered ring.

Theorem 6.8. For a prime ideal P in C(X),, the following are true.

i) P is absolutely conver.

1) The residue class ring C(X), /P is totally ordered.

1it) The mapping : v — P(T) is an order-preserving monomorphism of the real field
R into the residue class rings.

Proof. i) Let 0 < |f| < |g], for some f € C(X), and g € P. Then f% =|f|* < |g]*.
By Theorem 2.4, f2 = h - g, for some h € C(X),. Thus f? € P implies that f € P
(as P is prime). Hence P is absolutely convex.

i) Since P is prime, C(X), /P is a partially ordered ring. Now (f—|f)(f+|f]) =
which implies that either f = |f| (mod P), i.e. either P(f) > 0 or P(—f) >
Hence C(X), /P is totally ordered.

iii) Clearly the mapping: » — P(T) is a monomorphism. We only need to show
the order preserving property of the mapping. Choose r,s € R with r > s. Then
r—s>0,sothat P(T—8§) >0,ie P(T)>P(). O

0
0.

For a maximal ideal M in C(X),, C(X), /M can be considered as an extension
of the real field R, or in otherwords, C'(X), /M contains a cannonical copy of R.
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Definition 6.1. If for a maximal ideal M, the canonical copy of R is the entire
field C(X), /M, (resp. C (X),/M), then M is called a real ideal and C(X), /M
is called real residue class field. If M is not real, then it is called hyper-real and
C(X),/M is called a hyper-real residue class field

Definition 6.2. [7] A totally ordered field F is said to be archimedean if for every
element a, there exists n € N such that n > a. If F' is not archimedean, then it
is called non-archimedean. Thus, a non-archimedean field is characterized by the
presence of infinitely large elements, i.e. there exists a € F' such that a > n, n € N.
Such elements are called infinitely large elements. The following is an important
theorem in the context of archimedean field.

Theorem 6.9. [7] A totally ordered field is archimedean if and only if it is iso-
morphic to a subfield of the ordered field of R.

Thus we get that the real residue class field C'(X), /M is archimedean if M is a

real maximal ideal of C(X),.

Theorem 6.10. FEvery hyper-real residue class field C(X) . /M is non-archimedean.

Proof. Since the identity is the only non-zero homomorphism on the ring R into
itself, the proof follows. [

Corollary 6.3. A mazimal ideal in C(X), is hyper-real if and only if there exists
feC(X), such that M(f) is an infinitely large member of C(X) /M.

Theorem 6.11. Each mazimal ideal M in C"(X), is real.

Proof. In view of the above discussions, it sufficies to show that C"(X), /M is
archimedean. Choose f € C"(X),. Then |f(x)| < n, for all z € X and for some
neN, ie. |M(f)|<M@@). O

The following theorem relates to unbounded functions on X with infinitely large
elements modulo maximal ideals.

Theorem 6.12. For a given mazimal ideal M in C(X), and f € C(X),, the
following are equivalent:

1) |M(f)| is infinitely large.
1) f is unbounded on every zero set of M.
iii) For each n € N, the zero set Z,, = {x € X : |f(z)| > n} € Z,(M).

Proof. i) <= ii): |M(f)| is not infinitely large in C(X), /M if and only if there
exists n € N such that |[M(f)| = M(|f]) < M(n) if and only if |f] < @i on some
Z € Z,(M) if and only if f is bounded on some Z € Z, (M).
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1) <= iii): Choose n € N. Since Z, intersects each member in Z, (M), Z, €
Z, (M), as because Z, (M) is Z,-ultrafilter.

i) <= 1ii): Since for each n € N, |f| > n on some zero set in Z, (M), |M(f)| >
M(n), for all n € N. This implies that |M(f)| is an infinitely large element of
C(X) /M. O

Theorem 6.13. [ € C(X), is unbounded on X if and only if there exists a
mazimal ideal M in C(X), such that |M(f)| is infinitely large in C'(X), /M.

Proof. One part follows from Theorem 6.12.

For the other part, let f be unbounded on X. Then each Z,, = {z € X : |f| >
n} # &, for n € N and {Z, : n € N} has the finite intersection property. So
there exists a Z,-ultrafilter & on X containing {Z,, : n € N}. Hence there exists
a maximal ideal M in C(X), such that Y = Z, (M) and so Z,, € Z, (M), for all
n € N. Now by Theorem 6.12, it follows that |M(f)]| is infinitely large. O

Remark 6.3. In the case of C(X), the pseudocompactness of X ensures that every
maximal ideal of C'(X) is real. But in C(X),, this may not hold. Consider X = [0, 1]
with the subspace topology of the usual topology of reals, A = {A C X : A is nowhere
dense in X} and f: X — R defined by,

i x#0
o]

As f is unbounded on X, by Theorem 6.12, there exists a maximal ideal M (say) such
that |M(f)| is infinitely large, so that M is not real.

7. Some algebraric aspects of C(X),

Let us first recall that a ring S containing a reduced ring R is called a ring of
quotients of R if and only if for each 0 # s € S, there exists r € R such that
0 # sr € R (see [8]). Regarding rings of quotients of rings of functions one can go
through [9, 5].

Theorem 7.1. For a space X and a subcollection A C P(X), the following are
equivalent:

i) C(X) = C(X),.

it) X is a discrete space.

i) C(X), is a ring of quotients of C(X).
w) O(X)=T'(X).

Proof. i) <= ii): If X is discrete, then obviously C(X) = C(X),. Next suppose
that C(X) = C(X), and v € X. As x,, € C(X),, Xx(,, € C(X), so that X
becomes discrete.
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1) = 4i1): Obvious.

iii) = iv): Choose zg € X. Then x, , € C(X),. Hence there exists f € C(X)
such that 0 # f(z)x,,, , € C(X). Hence f(zo)x,,,, = [(¥)x,,,, € C(X), which
implies that {zo} is an isolated point, so that X is discrete.

iv) = 4): If X is not discrete, then there exists a non-isolated point z¢ € X.
Now x,,,, € T"(X), but x, , ¢ C(X). Hence T"(X) # C(X). O

Theorem 7.2. For a space X and a subcollection A C P(X), T"(X) C C(X), if
and only if every open dense subset D of X is of the form X \ G, for some G € A.

Proof. First let T'(X) C C(X), and D be an open dense subset of X. Then
X, € T'(X) implies that x, € C(X),. Hence the set of points of discontinuities of
Xp,(=G(say)) =X\ D € A, so that D = X \ G, where G € A.

Conversely, choose f € T'(X). Then there exists an open dense subset D of X
such that f is continuous on D and by the given condition D = X \ G, for G € A.
Hence the set Dy of points of discontinuities of f is a subset of X \ D =G € A, so
that Dy € A. Thus f € C(X),, and hence T"(X) C C(X),. O

Remark 7.1. If X is T, we always have C'(X), C T'(X), but this inclusion is not true
in case of C(X),. Consider X = R with the usual topology of reals and A = {A C X : A
is countable}. Define f : X — R by,

1, 2=2 withged (p,q) =1
f(x) =

0, x =0 or z is an irrational.

Then f € C(X),, but f ¢ T'(X). Hence C(X), € T'(X).
8. AP-space

Recall that a space X is called a P-space (resp., FP space) if C(X) (resp.,
C(X),) is a regular ring, (see [7], 4J and [6]). We next introduce AP- spaces
which is a generalization of the above types of spaces.

Definition 8.1. A space X is called a AP-space if C(X), is a regular ring.

A

Observe that any F P space is one kind of a AP-space if we consider A = the
set of all finite subsets of X. Now we give an example of a AP-space which is not
a F P space.

Example 8.1. Let X = Q and A = the set of all countable subsets of Q. Then C(X), =
RY. So Q is a AP-space. But Q is not an F P-space. To establish this, consider f : Q — R
defined by,

2@-n—1), n-1<az< 2L

fle)=19 —2(z—n), Ml <z<n

1 otherwise.
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Here the only point of discontinuity of f is x = 0. So f € C(Q), also. If C
regular, then there exists ¢ € C(Q), such that f?g = f which implies that g =
f(x) # 0,2 € Q. So we get,

—~

Q) be

, when

sl

1 2n—1
o n—1<z< =,
g(z) = —ﬁ, 2"2_1 <z<n
1 otherwise.

So whatever value we choose for g(z), when f(x) = 0, g will be discontinuous at those
points. Hence g ¢ C(Q),. So Q is not an FP space, and hence not a P-space also.

Proposition 8.1. Fvery P-space is a AP-space.

Proof. Let X be a P-space and f € C(X),. Then Dy € A and X \ Dy is a Gs-set
in X. Also X \ Dy is a P-space (as any subspace of a P-space is also a P-space), so
that X'\ Dy is an open set in X. Now for f € C(X\ Dy), there exists g € C(X\Dy)
such that f = f2g. Now we define g* : X — R by,

g(x), xe€X\Ds
g (z) = 0, z€DrNZ,(f)

ﬁv Z‘ZEDf\ZA(f).

Then clearly g* € C(X),. So f = f2g* and hence X is a AP-space. [

It is known from literature that every zero set in C'(X) is clopen. The modifi-
cation of this result in the setting of C(X), is furnished below.

Theorem 8.1. If X is a AP-space, then for any Z € Z,(X), there exists H € A
such that Z \ H is a clopen set in X \ H.

Proof. Let Z,(f) € Z,(X), for f € C(X),. As X is a AP-space, there exists
g € C(X), such that f2g = f. Since f,g € C(X),, there exists H € C(X), such
that f,g € C(X \ H). So f%(z)g(z) = f(z), for all z € X \ H which implies that

Z(flx\m)UZ, (1= f9)|x\zr) = X\H and also Z,, (f|x\z)NZ,((1=f9)|x\u) = 2.
So Z,(f)\ H is clopen in X \ H. O
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