FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 39, No 4 (2024), 721–744 https://doi.org/10.22190/FUMI231101048S **Original Scientific Paper**

ON AN OVER-RING $C(X)$ ^{Δ} **OF** $C(X)$

Ritu Sen and Rudra Pratap Saha

Department of Mathematics, Presidency University, 700073 Kolkata, India

ORCID IDs: Ritu Sen Rudra Pratap Saha https://orcid.org/0000-0002-3804-8355 \mathbb{D} N/A

Abstract. Our aim in this paper is to introduce a ring of functions defined on a topological space *X* having a special property. By $C(X)$ _△ we denote the set of all realvalued functions defined on the topological space X , the discontinuity set of elements of which are members of $\Delta \subseteq \mathcal{P}(X)$, where Δ satisfies the following properties: *(i)* for each $x \in X, \{x\} \in \Delta$, (*ii*) for $A, B \in \mathcal{P}(X)$ with $A \subseteq B, B \in \Delta$ implies that $A \in \Delta$ and (*iii*) for $A, B \in \Delta, A \cup B \in \Delta$. This $C(X)_{\Delta}$ is an over-ring of $C(X)$, moreover, $C(X) \subseteq C(X)_{F} \subseteq C(X)_{\Delta} \subseteq \mathbb{R}^{X}$. The ring $C(X)_{\Delta}$ is also almost regular. We study the ∆-completely separated sets and *C*[∆] -embedded subsets of *X*. Complete characterizations of fixed maximal ideals are then done and algebraic properties of $C(X)$ _∧ have been studied. In [6], the authors have introduced *FP*-spaces, for which the ring $C(X)_F$ is regular. Here we have generalized the notion of $\mathcal{FP}\text{-spaces}$ in the context of $C(X)_{\Delta}$, so that the ring in question becomes regular. As a result, ΔP spaces have been introduced, it has been proved that every *P*-space is a ΔP -space and examples are given in support of the fact that there exist ∆*P*-spaces which are not *P*-spaces.

Keywords: $C(X)_{\Delta}$, $C^*(X)_{\Delta}$, Δ -completely separated sets, Z_{Δ} -ideals, Z_{Δ} -filters, ΔP spaces.

1. Introduction

Unless otherwise mentioned, all topological spaces are assumed to be T_1 . Let \mathbb{R}^X be the ring of all real-valued functions defined on a nonempty topological space

*⃝*c 2024 by University of Niˇs, Serbia *|* Creative Commons License: CC BY-NC-ND

Received November 01, 2023, revised: January 12, 2024, accepted: January 26, 2024 Communicated by Dimitris Georgiou

Corresponding Author: Ritu Sen. E-mail addresses: ritu sen29@yahoo.co.in, ritu.maths@presiuniv.ac.in (R. Sen), rudrapratapsaha1997@gmail.com (R. P. Saha) 2020 *Mathematics Subject Classification.* Primary 54C30; Secondary 54C40, 13C99

X with pointwise addition and multiplication. We here note that all subrings of \mathbb{R}^X are reduced (see [8]), in the sense that they have no non-zero nilpotent elements. Also recall that the ring $T'(X)$ [1] of all $f \in \mathbb{R}^X$, where for each f there is an open dense subset *D* of *X* such that $f|_D$ is continuous on *D*, is a (Von Neumann) regular ring, where a ring *R* is called regular if for any $a \in R$, there exists $b \in R$ such that $a = aba$. In this sequel, we also want to mention about the ring $T(X)$ [1] of all $f \in \mathbb{R}^X$ such that $f|_D \in C(D)$, for a dense subspace *D* of *X*. Also the collection of all continuous members of \mathbb{R}^X is denoted by $C(X)$, and the collection of all bounded members of $C(X)$ is denoted by $C^*(X)$. In this connection, we refer to the reader [7], where these two rings have been studied extensively. If *f* is a function from a topological space (X, τ) to the real line R which is not necessarily continuous, it is well known that the set $D_f = \{x \in X : f$ is discontinuous at x w.r.t the topology τ *}* is an F_{σ} -subset of *X*. The proof of this fact is followed by some simple modification in the arguments to prove that for a function $f : \mathbb{R} \to \mathbb{R}$, the set of all points of discontinuity of f is an F_{σ} -set (see [11]). Gharebaghi, Ghirati and Taherifar in [6] first introduced and studied the ring $C(X)_F$ of all real-valued functions on X which are discontinuous on some finite subset of X , i.e. all those members $f \in \mathbb{R}^X$ for which D_f is a finite subset of *X*. After that this ring has been further studied by M. R. Ahmadi Zand and Z. Khosravi in [2]. Very recently, the authors in [3] investigated the family $\mathcal{M}_0(X, \mu)$ of all those functions *f* of $\mathcal{M}(X, \mathcal{A})$ (*≡* the ring of all real-valued measurable functions defined over a measurable space (X, \mathcal{A}) , for which $\mu(D_f) = 0$. Fortunately, using the properties of the measure μ . it can be checked that $\mathcal{M}_0(X,\mu)$ is a commutative lattice ordered ring with unity if the relevant operations are defined pointwise on *X*. In this connection, one can go through [4], where the authors have studied the ring of functions which are discontinuous on a countable set. Regarding the rings $C(X)_F$, $T(X)$ and $\mathcal{M}_0(X,\mu)$, the most common features are that the discontinuity set D_f , for any f in all these rings are closed under finite unions and forming subsets. These particular properties motivate us to consider a subcollection $\mathcal{D} \subseteq \mathcal{P}(X)$ closed under forming subsets and finite unions. [These urge us to consider a collection $C(X)$ ^D of all those members *f* of \mathbb{R}^X for which $D_f \in \mathcal{D}$. This $C(X)_D$ also happens to be a commutative ring with unity if the relevant operations are defined pointwise on *X*. Note that, if $\mathcal{D} =$ the collection of all finite subsets of *X* (resp., set of all nowhere dense subsets of *X*), then $C(X)$ _D reduces to $C(X)$ _F (resp., $T(X)$) and if $\mathcal{D} =$ the collection of all sets having measure zero in a complete measure space, then $C(X)_D = \mathcal{M}_0(X, \mu)$. We now impose another condition on D mainly, D is closed under containing singletons, i.e. for any $x \in X$, $\{x\} \in \mathcal{D}$. So, in this paper our key element is a subcollection $\Delta \subseteq \mathcal{P}(X)$ with the following properties:

- 1) For each $x \in X$, $\{x\} \in \Delta$.
- 2) For $A, B \in \mathcal{P}(X)$ with $A \subseteq B, B \in \Delta$ implies that $A \in \Delta$.
- 3) For $A, B \in \Delta$, $A \cup B \in \Delta$.

As mentioned before, $C(X)$ _△ becomes a commutative ring with unity. Now, the benefits of switching to Δ from $\mathcal D$ yield the following results.

1) *X* is discrete if and only if $C(X) = C(X)_{\Delta}$.

2) *X* is connected if and only if $\bar{0}$ and $\bar{1}$ are the only idempotent elements of $C(X)$ (where for any $r \in \mathbb{R}$, **r** denotes the constant function $f(x) = r$, for all $x \in X$), whereas in the case of $C(X)_{\Delta}$, $\chi_{\{x\}}$ becomes an idempotent element, for each $x \in X$, irrespective of the connectedness of *X*.

3) Any element of $C(X)$ _∧ is either a unit or a zero-divisor.

4) Also while studying ideals and *z*-filters, a necessary and sufficient condition for a proper ideal as well as a maximal ideal to be fixed can be solved.

Let us now briefly explain the organization of the paper. Section 2 starts with the definition of the rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$. It is shown that unlike the ring $C(X)$, the equality $C(X)$ _△ = $C^*(X)$ _△ is only a sufficient condition for the pseudocompactness of *X* but not necessary. We define the zero sets $Z_{\lambda}(f)$, for a function $f \in C(X)$ _△. Examples are given in support of the fact that $Z_{\Delta}(f)$ is not necessarily closed as well as not G_{δ} , like the case of the ring $C(X)$. In fact, it is shown that for any $f \in C(X)_{\Delta}$, $Z_{\Delta}(f)$ can be written as a disjoint union of a G_{δ} -subset of X and a member of Δ . It is proved that $C(X)_{\Delta}$ is an almost regular ring. This section ends with some dissimilarities between $C(X)$ and $C(X)_{\Delta}$.

In section 3, we introduce the notion of ∆-completely separated sets and characterize them in terms of zero sets of $C(X)_{\Delta}$. It has been shown that ∆-complete separation is a generalization of both *F*-complete separation and that of complete separation of subsets of *X*. Next we introduce C_{Δ} -embedded and C_{Δ}^* ∆ -embedded subsets of *X*. A necesarry and sufficient condition is obtained for a C^* ∆ -embedded subset to be C_{Δ} -embedded. Also it is established that if a discrete zero set is *C ∗* \int_{Δ}^{∞} -embedded, then all its subsets are also zero sets.

In section 4, we introduce the notions of ideals of $C(X)$ _△ and Z _△-filters on X. Naturally it is shown that there is a one-to-one correspondence between the set of all maximal ideals of $C(X)$ _△ and the set of all Z _△-ultrafilters of *X*. After the introduction of Z_{Δ} -ideals it is shown that every Z_{Δ} -ideal is a radical ideal. That the sum of two Z_{Δ} -ideals is a Z_{Δ} -ideal is established, as a consequence of which we have that, if $\{I_\alpha\}_{\alpha \in \Lambda}$ be a collection of Z_Δ -ideals in $C(X)_\Delta$, then either \sum *α∈*Λ $I_\alpha = C(X)_{\Delta}$

or ∑ *α∈*Λ I_{α} is a Z_{Δ} -ideal.

In section 5, the complete list of fixed maximal ideals of $C(X)_{\Delta}$ and $C(X)_{\Delta}^*$ \int_{Δ}^{∞} are given in terms of M ^{\triangle} \int_{p}^{Δ} and $M_{p}^{\Delta^{*}}$ $r_{p}^{\Delta^{*}}$ respectively. Here with the help of $M_{p}^{\Delta^{*}}$ \int_{p}^{∞} , we give another description of Z_{Δ} -ideals. Finally a finite space is characterized as one in which every proper ideal of $C(X)$ _△ is fixed and also every maximal ideal of $C(X)$ _△ is fixed.

Section 6 is devoted to the study of residue class rings of $C(X)$ _∆ modulo ideals. It is shown that every Z_{Δ} -ideal is absolutely convex, and for every maximal ideal M in $C(X)_{\Delta}$, the quotient ring $C(X)_{\Delta}/M$ is a lattice ordered ring. Also for a Z_{Δ} -ideal *I* in $C(X)$ _△ which is prime, the lattice ordered ring $C(X)$ _△ /*I* is totally ordered. It is proved that every hyper-real residue class field $C(X)_{\Delta}/M$ is non-archimedean and each maximal ideal *M* in $C^*(X)_{\Delta}$ is real. Lastly it is established that $f \in C(X)_{\Delta}$ is unbounded on *X* if and only if there exists a maximal ideal *M* in $C(X)$ ^{Δ} such that $|M(f)|$ is infinitely large in $C(X)_{\Lambda}/M$.

Section 7 deals with some algebraric aspects of $C(X)_{\Delta}$. Relations between the rings $C(X)$, $C(X)$ _△ and $T'(X)$ have been investigated.

Section 8 studies ΔP -spaces. It has been shown that every *P*-space is a ΔP space. Examples are provided in support of the fact that the converse is not true in general.

Throughout the paper \mathbb{R} , \mathbb{O} and \mathbb{N} respectively denote the set of reals, the set of rationals and the set of natural numbers.

2. The rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$

In this section our main interest is to explore the properties of the ring $C(X)_{\lambda}$. We then introduce a subring $C^*(X)_{\Delta}$ of $C(X)_{\Delta}$ and also discuss about the zero sets for functions in $C(X)_{\Delta}$.

Definition 2.1. For a topological space *X* and a subcollection Δ of $\mathcal{P}(X)$ (≡ the power set of *X*), where Δ is closed under forming subsets, finite unions and containing all singletons, we define,

 $C(X)_{\Delta} = \{f \in \mathbb{R}^X : \text{the set of points of discontinuities of } f \text{ is a member of } \Delta\}.$

It can be easily observed that $C(X)_{\Delta}$ is a commutative ring with unity (with respect to pointwise addition and multiplication) containing $C(X)$, in addition, *C*(*X*)_∆ is a super-ring or an over-ring of $C(X)_F$ ⊇ $C(X)$, i.e. $C(X) \subseteq C(X)_F$ $C(X)_{\Delta}$.

We note that $C(X)_{\Delta}$ is a sublattice of \mathbb{R}^{X} , in fact, $(C(X)_{\Delta}, +,., \vee, \wedge)$ is a lattice-ordered ring if for any $f, g \in C(X)_{\Delta}$, one defines $(f \vee g)(x) = f(x) \vee g(x)$ and $(f \wedge g)(x) = f(x) \wedge g(x), x \in X$. Also $f \vee g = \frac{f + g + |f - g|}{2}$ $\frac{P|I-g|}{2}$ ∈ $C(X)_{\Delta}$, for all $f, g \in C(X)_{\Delta}$. For $f \in C(X)_{\Delta}$ and $f > 0$, we note that there exists $h \in C(X)_{\Delta}$ such that $f = h^2$. Also, whenever $f \in C(X)$ _△ and f^r is defined where $r \in \mathbb{R}$, then $f^r \in C(X)_{\Delta}$.

Definition 2.2. We next define,

$$
C^*(X)_{\Delta} = \{ f \in C(X)_{\Delta} : f \text{ is bounded} \}
$$

which is obviously closed under the algebraic and order operations as discussed above. Hence $C^*(X)_{\Delta}$ is a subring as well as a sublattice of $C(X)_{\Delta}$.

Remark 2.1. We see that unlike the ring $C(X)$, the equality $C(X)_{\Delta} = C^*(X)_{\Delta}$ is only a sufficient condition for the pseudocompactness of *X* but not necessary, as it follows from the next example.

Example 2.1. Consider $X = [0, 1]$ equipped with the subspace topology of the usual topology of reals and take $\Delta = \{A \subseteq X : A$ is nowhere dense in X $\}$. Take the function $f:[0,1] \to \mathbb{R}$ defined by,

$$
f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 1, & x = 0. \end{cases}
$$

Clearly $f \in C(X)_{\Delta}$, but $f \notin C^*(X)_{\Delta}$. But here *X* is pseudocompact.

Definition 2.3. For *f* ∈ $C(X)_{\Delta}$, the set $f^{-1}(0) = \{x \in X : f(x) = 0\}$ will be called the zero set of *f*, to be denoted by $Z_{\Delta}(f)$.

We will use the notation $Z_{\Delta}(C(X)_{\Delta})$ (or, $Z_{\Delta}(X)$) for the collection $\{Z_{\Delta}(f)$: $f \in C(X)$, $\}$ of all zero sets in X.

Some elementary properties of the zero sets of functions of $C(X)$ [\] are listed below, which are trivial to check as in the classical setting of $C(X)$ (see, 1.10*,* 1.11 of [7]).

Theorem 2.1. *For* $f, g \in C(X)$ _△ *and* $r \in \mathbb{R}$ *, the following holds.*

i) $Z_{\Delta}(f) = Z_{\Delta}(|f|) = Z_{\Delta}(f^n)$ *, for all* $n \in \mathbb{N}$ *.* $\widetilde{Z}_{\Delta}(\vec{\mathbf{0}}) = \overline{X}$ *and* $Z_{\Delta}(\overline{\mathbf{1}}) = \emptyset$ *.* χ *iii*) $Z_{\Delta}(fg) = Z_{\Delta}(f) \cup Z_{\Delta}(g)$. $iv)$ $Z_{\Delta}(f^2 + g^2) = Z_{\Delta}(f) \cap Z_{\Delta}(g)$. v) $\{x \in X : f(x) \ge r\}$ and $\{x \in X : f(x) \le r\}$ are zero sets in X. *vi*) *Also for a given* $f \in C(X)_{\Delta}$, the function $h = |f| \wedge \overline{1} \in C(X)_{\Delta}$, so that $Z_{\Delta}(f) = Z_{\Delta}(h)$ *and hence we can conclude that* $C(X)_{\Delta}$ *and* $C^*(X)_{\Delta}$ *produce the same zero sets.*

Remark 2.2. Unlike $C(X)$, $Z_{\Lambda}(f)$ is not necessarily closed as is seen below.

Example 2.2. Consider $X = [0, 1]$ with the subspace topology of the usual topology of reals and $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$. Take the function $f : X \to \mathbb{R}$ defined by, for any $n \in \mathbb{N}$,

$$
f(x) = \begin{cases} 1, & x \neq \frac{1}{n} \\ 0, & x = \frac{1}{n}. \end{cases}
$$

Then the set of points of discontinuities of *f* is $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\} \in \Delta$, so that $f \in C(X)_{\Delta}$, but $Z_{\Delta}(f) = \{\frac{1}{n} : n \in \mathbb{N}\}\$ which is not closed in X.

Remark 2.3. $Z_{\Delta}(f)$ need not be a G_{δ} -set as in the case of $C(X)$ as is seen below.

Example 2.3. Consider $X = \mathbb{R}$ with the cofinite topology. Then no finite set in \mathbb{R} is a G_{δ} -set. Take the function $f : \mathbb{R} \to \mathbb{R}$ defined by,

$$
f(x) = \begin{cases} 1, & x \in \mathbb{R} \setminus \{0\} \\ 0, & x = 0. \end{cases}
$$

Then $f \in C(X)$ _△ for any subcollection $\Delta \subseteq \mathcal{P}(X)$ and $Z_{\Delta}(f) = \{0\}$, which is not a G_{δ} -set.

The following theorem gives the nature of a zero set for a function in $C(X)_{\Delta}$.

Theorem 2.2. *For any* $f \in C(X)_{\Delta}$, $Z_{\Delta}(f)$ *can be written as a disjoint union of* $a \ G_{\delta}$ -subset of X *and a member of* Δ *.*

Proof. Write $Z_{\Delta}(f) = P \cup Q$, where $P = Z_{\Delta}(f) \cap (X \setminus D_f)$ and $Q = Z_{\Delta}(f) \cap D_f$. As $D_f \in \Delta$, $Q \in \Delta$. Now the function $h = f|_{X \setminus D_f}$ is a continuous function. Hence $P = Z(h)$ is a G_{δ} -subset of $X \setminus D_f$ (where $Z(h)$ as usual denotes the zero set for the continuous function *h* in $X \setminus D_f$. Also D_f being an F_{σ} -subset of *X*, *P* is a G_{δ} -set in *X*. Hence the proof. \square

Theorem 2.3. *For an arbitrary topological space X (i.e. X does not have any separation axioms), whenever* $f \in C(X)_{\Delta}$ *and* $Z_{\Delta}(f) \subseteq X \setminus D_f$, $Z_{\Delta}(f)$ *becomes a Gδ-set in X.*

Proof. From Theorem 2.2, we have $Z_{\Delta}(f) = P \cup Q$, where *P* is a G_{δ} -set in *X* and *Q* = *Z*_△(*f*) ∩ *D_f* is a member of Δ . Now if $Z_{\Delta}(f) \subseteq X \setminus D_f$, then $Q = \emptyset$, so that Z _Δ(*f*) = *P*, a *G*_δ-set in *X*. Hence the proof. $□$

The following example shows that the converse of Theorem 2.3 is not true in general.

Example 2.4. Let $X = [0,1]$ with the subspace topology of the usual topology of reals and $\Delta = \{A \subseteq [0,1]: A \text{ is countable}\}.$ Take the function $f: X \to \mathbb{R}$ defined by,

$$
f(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$

Then $f \in C(X)_{\Delta}$ and $Z_{\Delta}(f) = \{0\}$ is a G_{δ} -set but $Z_{\Delta}(f) \not\subseteq X \setminus D_f$.

Remark 2.4. In [2], in the discussion after Theorem 2.1, the authors have mentioned that if *X* is a T_1 space, $f \in C(X)$ _{*F*} and $\mathcal{Z}(f) \subseteq X \setminus D_f$, then $\mathcal{Z}(f)$ is G_δ . But from the above theorem, we can say that if we consider $\Delta =$ the set of all finite subsets of X there, then the same is true without assuming any separation axioms (in particular, *T*1-ness) of *X*.

Theorem 2.4. *For a topological space X and a subcollection* $\Delta \subseteq \mathcal{P}(X)$ *, the following statements hold.*

i) $C(X)_{\Delta}$ *is a reduced ring.*

ii) $f \in C(X)$ *is a unit if and only if* $Z_{\Delta}(f) = \emptyset$ *.*

iii) *Any element of* $C(X)$ ^{*is either a zero-divisor or a unit.*}

iv) For $f, g \in C(X)_{\Delta}$, if $|f| < |g|^{r}$ for some real number $r > 1$, then f is a multiple *of g.* In particular, if $|f| < |g|$ *and* $r \in \mathbb{R}$ *with* $r > 1$ *be such that* f^r *is defined, then f r is a multiple of g.*

Proof. i) It is trivial.

ii) Let *f* ∈ $C(X)$ _∧ be a unit. Then there exists *g* ∈ $C(X)$ _∧ such that *f.g* = $\overline{1}$, so that $Z_{\Delta}(f) = \emptyset$. Conversely, if $Z_{\Delta}(f) = \emptyset$, then the function $g = \frac{1}{f} \in C(X)_{\Delta}$ is the required inverse of *f*, so that *f* becomes a unit in $C(X)_{\Delta}$.

iii) Let $f \in C(X)$ ∆ be not a unit. Then $Z_$ triangle(f) \neq ∅. Choose $p \in Z_$ triangle(f) and define a function $g: X \to \mathbb{R}$ by $g(p) = 0$ and $g(X \setminus \{p\}) = \{1\}$. Then $g \in C(X)_{\Delta}$ and $X \setminus Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$, which implies that $fg = 0$, i.e. *f* is a zero-divisor of $C(X)_{\Delta}$. *iv*) Let $|f| < |g|$ ^{*r*} for some real number *r* > 1, where $f, g \in C(X)_{\Delta}$. Clearly

*Z*_△(*g*) \subseteq *Z*_△(*f*). Take *D* = *D_f* \cup *D_g*. Then *D* \in \triangle and *f, g* are continuous on $X \setminus D$. Define a function $h: X \to \mathbb{R}$ by

$$
h(x) = \begin{cases} & \frac{f(x)}{g(x)}, & x \in X \setminus Z_{\Delta}(g) \\ & \\ & 0, & x \in Z_{\Delta}(g). \end{cases}
$$

We now show that *h* is continuous on the set $X \setminus D$. Let $x \in (X \setminus D) \setminus Z_{\Delta}(g)$. Since *f* and *g* are continuous at *x* and $g(x) \neq 0$, so $\frac{f}{g}$ is continuous at *x*, i.e. *h* is continuous at *x*.

Now $|f| < |g|^r$ implies that $\frac{|f(x)|}{|g(x)|} < |g(x)|^{r-1}$, for all $x \in X \setminus Z_{\Delta}(g)$ which gives that $|h(x)| < |g(x)|^{r-1}$, for all $x \in X \setminus Z_{\Delta}(g)$. Again, $x \in Z_{\Delta}(g)$ implies that $g(x) = 0$, so that $h(x) = 0$. Hence $|h| \leq |g|^{r-1}$, for all $x \in X$. Let $x \in (X \setminus D) \cap Z_{\Delta}(g)$. Then $h(x) = 0 \in (-\epsilon, \epsilon)$. Also we have $g(x) = 0$ and

g is continuous at *x*, so there exists a neighbourhood *U* of *x* such that $q(U) \subseteq$ $(-\epsilon^{\frac{1}{r-1}}, \epsilon^{\frac{1}{r-1}})$ which implies that $|g(x)| < \epsilon^{\frac{1}{r-1}}$, for all $x \in U$. Thus $|g(x)|^{r-1} < \epsilon$, for all $x \in U$ which implies that $|h(x)| < \epsilon$, for all $x \in U$. Hence *h* is continuous on $X \setminus D$ so that $h \in C(X)_{\Delta}$ and $f = gh$.

The second part follows from the first part. \Box

Remark 2.5. In $C(X)_{F}$, we have seen that $C(X)_{F} = C^{*}(X)_{F}$ if and only if for any finite subset *F* of *X*, $X \ F$ is pseudocompact ([6], Lemma 2.4). That means if we consider Δ = the set of all finite subsets of *X*, then $C(X)_{\Delta} = C^*(X)_{\Delta}$ if and only if for any $F \in \Delta$, *X* \setminus *F* is pseudocompact. But for any arbitrary Δ , it is not necessarily true as is seen below.

Example 2.5. Let $X = \mathbb{N}$ be endowed with the cofinite topology. Consider $\Delta = \{P : P\}$ is a countable subset of \mathbb{N} . Then $\mathbb{R}^{\mathbb{N}} = C(\mathbb{N})_{\Delta} \neq C^*(\mathbb{N})_{\Delta}$. Now the function *f* defined by

f(*n*) = *n*, for all *n* ∈ N, is a member of $C(\mathbb{N})_{\Delta}$, but $f \notin C^*(\mathbb{N})_{\Delta}$. But for any countable set $F, X \setminus F$ is always pseudocompact.

Remark 2.6. In view of Theorem 2.4, we can conclude that $C(X)$ ^{\oti} is an almost regular ring.

Next we give an example to show that the result analogous to Theorem 2.4 ii) is not true if we replace $C(X)_{\Delta}$ by $C^*(X)_{\Delta}$.

Example 2.6. In the view of Example 2.1, the function $\frac{1}{f} = h$ has an empty zero set. This function $h \in C^*(X)_{\Delta}$, whereas $\frac{1}{h} = f \notin C^*(X)_{\Delta}$.

The nature of the units of $C^*(X)_{\Delta}$ is given by the following theorem.

Theorem 2.5. *A function* $f \in C^*(X)_{\Delta}$ *is a unit in* $C^*(X)_{\Delta}$ *if and only if f is bounded away from zero, i.e. there exists* $r > 0$ *such that* $|f(x)| \geq r$, *for all* $x \in X$ *.*

Proof. Just take into account that whenever for some $f \in C^*(X)_{\Delta}, Z_{\Delta}(f) = \emptyset$, then $D_f = D_{\frac{1}{f}}$.

Remark 2.7. We next provide two dissimilarities between $C(X)$ and $C(X)_{\Delta}$.

Example 2.7. $C(X)$ _△ is not closed under uniform limits: Consider $X = [0, 1]$ with the subspace topology of the usual topology of R and $\Delta =$ set of all finite subsets of [0, 1]. Enummerate $[0,1] \cap \mathbb{Q}$ as, $[0,1] \cap \mathbb{Q} = \{x_1, x_2, ..., x_n, ...\}$, $n \in \mathbb{N}$. Now define a sequence of functions ${f_n}$ on *X* by,

$$
f_n(x) = \begin{cases} \frac{1}{i}, & x = x_i, 1 \le i \le n \\ 0, & otherwise. \end{cases}
$$

Clearly each $f_n \in C(X)$ _∆ and this sequence of functions converges uniformly to the function *f* given by,

$$
f(x) = \begin{cases} \frac{1}{n}, & x = x_n \\ 0, & otherwise. \end{cases}
$$

But $f \notin C(X)_{\Delta}$, as *f* is discontinuous on Q. Hence $C(X)_{\Delta}$ is not closed under uniform limits.

Example 2.8. $Z_{\Delta}(C(X)_{\Delta})$ is not closed under countable intersections: Let $X = [0,1]$ with the subspace topology of the usual topology of R and $\Delta =$ set of all finite subsets of [0, 1]. Consider $[0, 1] ∩ Q = \{x_1, x_2, ..., x_n, ...\}$, $n ∈ ℕ$. Now define a sequence of functions *{fn}* on *X* by,

$$
f_n(x) = \begin{cases} 1, & x = x_1, x_2, ..., x_n \\ 0, & otherwise. \end{cases}
$$

Clearly each $f_n \in C(X)_{\Delta}$, $n \in \mathbb{N}$. Now, [∩]*[∞] n*=1 $Z_{\Delta}(f_n) = \bigcap^{\infty}$ *n*=1 $([0,1] \setminus \{x_1, x_2, ..., x_n\}) = [0,1] \setminus \bigcup_{n=1}^{\infty}$ *n*=1 ${x_1, x_2, ..., x_n} = [0, 1] \bigcap \mathbb{Q}^c$. Now we show that there does not exist any $f \in C(X)_{\Delta}$ such that $Z_{\Delta}(f) = [0,1] \cap \mathbb{Q}^c$.

If possible, let there exist $f \in C(X)_{\Delta}$ with $Z_{\Delta}(f) = [0,1] \cap \mathbb{Q}^c$. Choose $c \in [0,1] \cap \mathbb{Q}$, then $f(c) \neq 0$. Without loss of generality, let $f(c) > 0$. Choose $\epsilon > 0$ such that $f(c) - \epsilon > 0$. If *f* is continuous at *c*, then there exists an open set $G \subseteq [0,1]$ containing *c* such that $|f(x) - f(c)| < \epsilon$, for all $x \in G$ which implies that $f(x) > f(c) - \epsilon > 0$, for all $x \in G$, i.e. *f*(*x*) > 0, for all *x* ∈ *G*, which contradicts the fact that $[0, 1]$ ∩ \mathbb{Q}^c is dense in [0, 1]. Hence *f* is not continuous at any rational number, so that $f \notin C(X)_{\Delta}$.

Remark 2.8. From the definition of Δ it can be easily observed that if the set of all non-isolated points of *X* is a member of Δ , then $C(X)_{\Delta} = \mathbb{R}^X = C(Y)$, where $X = Y$ is equipped with the discrete topology. So in this case we can say that $C(X)$ ^{\otimes}. is a *C*-ring..

3. ∆-completely separated and C_\wedge -embedded subsets of *X*

Recall that two subsets *A* and *B* of a topological space *X* are said to be completely separated in *X* ([7], Theorem 1.15) if there exists a function $f \in C^*(X)$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$, with $\bar{\mathbf{0}} \leq f \leq \bar{\mathbf{1}}$.

Analogously we define the following.

Definition 3.1. Two subsets A and B of X are said to be Δ -completely separated in *X*, if there exists a function *f* in $C^*(X)_{\Delta}$ such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

In $C(X)$, it is true that two sets *A* and *B* are completely separated if and only if their respective closures \overline{A} and \overline{B} are also completely separated. But we here notice that \overline{A} and \overline{B} are Δ -completely separated in *X* implies that *A* and *B* are ∆-completely separated. That the converse is not true in general, is seen by the following example.

Example 3.1. Take $X = \begin{bmatrix} 0 & 1 \end{bmatrix}$ with the subspace topology of the usual topology of reals, $A = [0, 1), B = \{1\}$. Then *A* and *B* are Δ -completely separated by the function $f : X \to \mathbb{R}$ defined by,

$$
f(x) = \begin{cases} 1, & 0 \le x < 1 \\ 2, & x = 1, \end{cases}
$$

where $f \in C^*(X)_{\Delta}$, for any arbitrary subcollection $\Delta \subseteq \mathcal{P}(X)$, but \overline{A} , \overline{B} are not Δ completely separated, as $\overline{A} \cap \overline{B} \neq \emptyset$.

Also in this connection we want to mention the notion of *F*-completely separated sets (see $[6]$), where any two completely separated sets are \mathcal{F} -completely separated but not the converse.

Remark 3.1. Any two *F*-completely separated sets are ∆-completely separated but not conversely as is seen by the following example.

Example 3.2. Consider $X = [0, 1]$ with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq X : A \text{ is nowhere dense in } X\}$ and $K = \text{Cantor set. Define } f : X \to \mathbb{R}$ by,

$$
f(x) = \begin{cases} 1, & x \in K \\ 0, & x \notin K, \end{cases}
$$

i.e. $f = \chi_K$. Then $D_f = K \in \Delta$, so that $f \in C(X)_{\Delta}$. Now, the sets K and $X \setminus K$ are ∆-completely separated but not *F*-completely separated, as *K* is uncountable.

The next result is the counterpart of ([7], Theorem 1.15) and can be proved in a similar manner.

Theorem 3.1. *Two subsets* A, B *of a space* X *are* Δ *-completely separated if and only if they are contained in disjoint members of* $Z_\Lambda(X)$ *.*

Corollary 3.1. *If A and A′ are* ∆*-completely separated, then there exist zero sets Z* and *H* in $Z_{\Lambda}(X)$ *such that*

$$
A \subseteq X \setminus Z \subseteq H \subseteq X \setminus A'.
$$

Theorem 3.2. *If two disjoint subsets* A *and* B *of* X *are* Δ *-completely separated, then there is a member* D *of* Δ *such that* $A \setminus D$ *and* $B \setminus D$ *are completely separated in* $X \setminus D$ *.*

Proof. Assume that A, B are Δ -completely separated. Then by Theorem 3.1, there exist two disjoint zero sets $Z_{\Delta}(f_1)$ and $Z_{\Delta}(f_2)$ in $Z_{\Delta}(X)$ such that $A \subseteq Z_{\Delta}(f_1)$ and $B \subseteq Z_{\Delta}(f_2)$. Let D_{f_1} and D_{f_2} be the sets of points of discontinuities of f_1 and f_2 respectively. Then $f_1 \in C(X \setminus D_{f_1}), f_2 \in C(X \setminus D_{f_2})$. Consider $D = D_{f_1} \cup D_{f_2}$. Then $D \in \Delta$ and $f_1, f_2 \in C(X \setminus D)$. Also, $A \setminus D \subseteq Z_{\Delta}(f_1) \setminus D$, $B \setminus D \subseteq Z_{\Delta}(f_2) \setminus D$, where $Z_{\Delta}(f_1) \setminus D$ and $Z_{\Delta}(f_2) \setminus D$ are disjoint zero-sets in $X \setminus D$. By ([7], Theorem 1.15), $A \setminus D$ and $B \setminus D$ are completely separated in $X \setminus D$.

Remark 3.2. The converse of the above theorem holds good if *D* is closed. For let, $A \setminus D$ and $B \setminus D$ be completely separated in $X \setminus D$, where $D \in \Delta$ and D is closed. Then there exists $f \in C^*(X \setminus D)$ with $f(A \setminus D) = \{0\}$ and $f(B \setminus D) = \{1\}$. Now consider the function $g: X \to \mathbb{R}$ defined as follows:

$$
g(x) = \begin{cases} & f(x), & x \in X \setminus D \\ & 0, & x \in D \cap A \\ & 1, & x \in D \cap B. \end{cases}
$$

Since *D* is closed, $g \in C^*(X)_{\Delta}$ with $g(A) = \{0\}$ and $g(B) = \{1\}$. Hence *A* and *B* are ∆-completely separated in *X*.

Next, we introduce the analogues of *C*-embedding and C^* -embedding in our settings, called C_{Δ} -embedding and C_{Δ}^* \int_{Δ}^{∞} -embedding to deal with the problem of extension of functions belonging to such rings.

Definition 3.2. A subset *Y* of a topological space *X* is said to be C_{Δ} -embedded in *X*, if each $f \in C(Y)_{\Delta_Y}$ has an extension to a $g \in C(X)_{\Delta}$, i.e. there exists $g \in C(X)$ _△ such that $g|_Y = f$, where $\Delta \subseteq \mathcal{P}(X)$ and $\Delta_Y = \Delta|_{\mathcal{P}(Y)}$.

Likewise, *Y* is said to be C^* \int_{Δ}^* -embedded in *X*, if each *f* ∈ $C^*(Y)_{\Delta}$ has an extension to a $g \in C^*(X)_{\Delta}$.

Remark 3.3. It is noteworthy to mention here that any C_{Δ} -embebbed subset is C_{Δ}^* ∆ embebbed also.

Example 3.3. Consider $X = \mathbb{R}^2$ with the Euclidean topology, $\Delta = \{A \subseteq \mathbb{R}^2 : A \text{ is } A\}$ nowhere dense in \mathbb{R}^2 , $S = \mathbb{R}^2 \setminus \mathbb{R} \times \{0\}$ and a function $f : S \to \mathbb{R}$ defined by,

$$
f(x,y) = \frac{1}{y}, (x,y) \in \mathbb{R}^2 \setminus \mathbb{R} \times \{0\}.
$$

As $f \in C(S)$, clearly $f \in C(S)$ \triangle . But there does not exist any $g \in C(\mathbb{R}^2)$ _{*F*} such that $g|_S = f$. Hence *S* is not C_F -embedded (see [2], Definition 2.15) and hence not *C*-embedded in *X*. Now, consider the function $g: X \to \mathbb{R}$ defined by $g(X \setminus S) = f$ and $g(S) = 0$. Then *S* is $C_∆$ -embedded but not C_F -embedded and hence not *C*-embedded.

In view of the above example we observe that if *S* is a closed subset of a topological space *X* with $X \setminus S \in \Lambda$, then *S* is both C^*_{Λ} \int_{Δ}^{∞} -embedded and C_{Δ} -embedded.

As a converse of Remark 3.3, we have the following.

Theorem 3.3. *A* C^* ∆ *-embedded subset is C*[∆] *-embedded if and only if it is* ∆ *completely separated from every zero set disjoint from it.*

Proof. First, let *S* be C^* \int_{Δ}^{∞} -embedded in *X* and $h \in C(X)$ _△ be such that Z _△ (*h*) $\cap S =$ \emptyset . Define a function $\overline{f}: S \to \mathbb{R}$ by $f(s) = \frac{1}{h(s)}, s \in S$. Then $f \in C(S)_{\Delta}$. By the given condition, there exists $g \in C(X)_{\Delta}$ such that $g|_{S} = f$. Hence $gh \in C(X)_{\Delta}$. Also $gh(S) = \{1\}$ and $gh(Z_{\Delta}(h)) = \{0\}$, so that $Z_{\Delta}(h)$ and *S* are Δ -completely separated in *X*.

Conversely, let $f \in C(S)_{\Delta}$. As arctan $\circ f \in C^*(S)_{\Delta}$, there exists $g \in C(X)_{\Delta}$ such that $g|_S = \arctan \circ f$. Now, the set $Z = \{x \in X : |g(x)| \geq \frac{\pi}{2}\}$ is a member of $Z_{\Delta}(X)$ with $Z \cap S = \emptyset$. So by hypothesis, there exists $h \in C^{*}(X)_{\Delta}$ such that $h(S) = \{1\}$ and $h(Z) = \{0\}$. We see that $g \cdot h \in C(X)$ _△ and for all $x \in X$, $|(g \cdot h)(x)| < \frac{\pi}{2}$. Hence, $\tan(g \cdot h) \in C(X)_{\Delta}$ and for all $s \in S$, $\tan(g \cdot h)(s) = f(s)$. So *S* is C_{Δ} -embedded. \square

Corollary 3.2. *For any topological space X*, *a zero set* $Z \in Z_{\Delta}(X)$ *is* C_{Δ}^* ∆ *-embedded if and only if it is* C_{Δ} -embedded.

Example 3.4. (i) If a discrete zero set is C^* \int_{Δ}^{∞} -embedded, then all of its subsets are zero sets: for if $Z \in Z_{\Delta}(X)$ be a discrete, C_{Δ}^* \bigcup_{Δ} -embedded subset of *X*, then for any $Y \subseteq Z$, *Y* is also discrete. Define a function $f: Z \to \mathbb{R}$ by,

$$
f(x) = \begin{cases} 1, & x \notin Y \\ 0, & x \in Y. \end{cases}
$$

Then $f \in C(Z)_{\Delta}$. As *Z* is C_{Δ}^* \int_{Δ}^{*} -embedded, there exists $h \in C^{*}(X)_{\Delta}$ such that $h|z = f$. Also, as *Z* is a zero set, $Z = Z_{\Delta}(g)$, for some $g \in C^*(X)_{\Delta}$. Now, consider the function $k \in C^*(X)$ _△ by $k = g^2 + h^2$. Certainly, $Z_{\Delta}(k) = Z \cap Z_{\Delta}(k) = Y$, so that *Y* becomes a zero set in *X*.

(ii) If for every $f \in C^*(X)_{\Delta}$, $f(X)$ is compact, then *X* becomes pseudocompact. But the converse is not true. Consider $X = [0,1]$ with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq [0,1] : A \text{ is nowhere dense in } X\}$ and a function $f: X \to \mathbb{R}$ defined by, for $n \in \mathbb{N}$,

$$
f(x) = \begin{cases} \frac{1}{n}, & x = \frac{1}{n} \\ 1, & x \neq \frac{1}{n}. \end{cases}
$$

Then $D_f = \{0\} \cup \{\frac{1}{n} : n \geq 2\} \in \Delta$ and $f \in C^*(X)_{\Delta}$. But $f(X) = \{\frac{1}{n} : n \in \mathbb{N}\}\$, which is not compact.

4. Ideals of $C(X)$ ^{\wedge} and Z ^{\wedge} **-filters on** *X*

Throughout our discussion, an ideal *I*, unmodified in any of the two rings $C(X)$ _△ and $C^*(X)_{\Delta}$ will always mean a proper ideal.

Definition 4.1. A nonempty subcollection $\mathcal F$ of $Z_\Delta(X)$ is called a Z_Δ -filter on X if it satisfies the following conditions:

 $(i) \varnothing \notin \mathcal{F}$. (*ii*) $Z_1, Z_2 \in \mathcal{F}$ implies that $Z_1 \cap Z_2 \in \mathcal{F}$.

(*iii*) If $Z \in \mathcal{F}, Z' \in Z_{\Delta}(X)$ with $Z \subset Z'$, then $Z' \in \mathcal{F}$.

A Z_{Δ} -filter on X which is not properly contained in any Z_{Δ} -filter on X is called a Z_{\wedge} -ultrafilter on X.

Applying Zorn's lemma one can show that a Z_{Δ} -filter on X can be extended to a Z_{\wedge} -ultrafilter on X.

There is a nice interplay between ideals (maximal ideals) in $C(X)$ _∆ and the Z _△ filters (resp., Z_{Δ} -ultrafilters) on *X*. This fact is observed in the following theorem.

Theorem 4.1. *For the ring* $C(X)_{\Delta}$ *, the following hold.*

i) *If I is an ideal in* $C(X)_{\Delta}$ *, then* $Z_{\Delta}(I) = \{Z_{\Delta}(f) : f \in I\}$ *is a* Z_{Δ} -filter on *X.* Dually, if \mathcal{F} is a Z_{Δ} -filter on X , then $Z_{\Delta}^{-1}(\mathcal{F})$ is an ideal in $C(X)_{\Delta}$.

 \overrightarrow{ii}) *If M* is a maximal ideal in $C(X)_{\Delta}$, then $Z_{\Delta}(M)$ is a Z_{Δ} -ultrafilter on *X. If U is a* Z_{Δ} -ultrafilter on *X*, then $Z_{\Delta}^{-1}(\mathcal{U})$ *is a maximal ideal in* $C(X)_{\Delta}$.

iii) The assignment : $M \to Z_{\Delta}(M)$ is a bijection from the set of all maximal ideals *of* $C(X)$ ^{*∧*} *to the set of all* Z ^{*∧*}*-ultrafilters on X.*

Proof. Can be done in same way as in Theorems 2.3 and 2.5 of [7]. \Box

Remark 4.1. The assignment : $I \to Z_{\Delta}(I)$ from the set of all ideals on $C(X)_{\Delta}$ to the set of all Z_{Δ} -filters on X is a surjection but not an injection. In fact, for any ideal *I* in $C(X)_{\Delta}$, $Z_{\Delta}^{-1}Z_{\Delta}(I) \supseteq I$.

We therefore concentrate on those ideals of $C(X)$ _∧ for which the above inclusion becomes an equality.

Definition 4.2. An ideal *I* of $C(X)_{\Delta}$ is called a Z_{Δ} -ideal if $Z_{\Delta}^{-1}Z_{\Delta}(I) = I$. Equivalently, $Z_{\Delta}(f) = Z_{\Delta}(g)$, for $f \in I$ and $g \in C(X)_{\Delta}$ implies that $g \in I$.

Remark 4.2. It thus follows that

i) Every maximal ideal in $C(X)$ _△ is a Z _△-ideal but not the converse (as shown below in Example 4.1).

ii) The mapping : $I \to Z_0(I)$ is a bijection from the set of Z_0 -ideals onto the set of all *Z*[∆] -filters.

Example 4.1. Consider $I = \{f \in C(X)_{\Delta} : f(p) = f(q) = 0\}$, for $p, q \in \mathbb{R}$ with $p \neq q$. Then *I* is a Z_{Δ} -ideal in $C(X)_{\Delta}$. But *I* is not maximal, as $I \subset \{f \in C(X)_{\Delta} : f(p) = 0\}$. The ideal *I* is not a prime ideal also, as the function $(x-p)(x-q)$ belongs to *I* but neither the function $x - p$ nor the function $x - q$ belongs to *I*.

Remark 4.3. Clearly every Z_{Δ} -ideal in $C(X)_{\Delta}$ is an intersection of prime ideals in $C(X)_{\Delta}$.

The next result establishes the relation between prime ideals and Z_{Δ} -ideals to some extent.

Theorem 4.2. *Let I be a* Z_{\wedge} *-ideal in* $C(X)_{\wedge}$ *. Then the following statements are equivalent:*

i) *I is prime. ii*) *I contains a prime ideal. iii*) *For all* $f, g \in C(X)_{\Delta}$ *, if* $fg = 0$ *, then either* $f \in I$ *or* $g \in I$ *. iv*) For each $f \text{ } \in C(X)_{\Delta}$, there exists a zero set in $Z_{\Delta}(I)$ on which f does not *change its sign.*

Proof. Similar to the counterpart of Theorem 2.9 in [7]. \Box

Corollary 4.1. *Every prime ideal in* $C(X)_{\Delta}$ *is contained in a unique maximal ideal in* $C(X)_{\Delta}$ *, i.e.* $C(X)_{\Delta}$ *is a Gelfand ring.*

Definition 4.3. A Z_Δ -filter $\mathcal F$ on X is called a prime Z_Δ -filter if whenever $A \cup B$ ∈ *F*, for some $A, B \in Z_\Delta(C(X)_\Delta)$, then either $A \in \mathcal{F}$ or $B \in \mathcal{F}$.

The next theorem is analogous to Theorem 2.12 of [7] and we therefore omit the proof.

Theorem 4.3. *For a space X, the following hold.*

i) *If P is a prime ideal in* $C(X)_{\Delta}$ *, then* $Z_{\Delta}(P)$ *is a prime* Z_{Δ} -filter. *ii*) *If* \mathcal{F} *is a prime* Z_{Δ} -*filter on* X *, then* $Z_{\Delta}^{-1}(\mathcal{F})$ *is a prime* Z_{Δ} -*ideal.*

Corollary 4.2. *For a space X, the following hold.*

i) *Every prime* Z_{Δ} -filter *is contained in a unique* Z_{Δ} -*ultrafilter. ii*) *Every* Z_{Δ} -ultrafilter *is a prime* Z_{Δ} -filter.

It is known that in a commutative ring *R* with unity, the intersection of all prime It is known that in a commutative ring *R* with unity, the intersection of an prime ideals of *R* containing an ideal *I* is said to be the radical of *I* to be denoted by \sqrt{I} . For any ideal $I, \sqrt{I} = \{a \in R : a^n \in I, \text{ for some } n \in \mathbb{N}\}\$ (see [7]) and also $I \subseteq \sqrt{I}$. Also *I* is called radical if $I = \sqrt{I}$.

Theorem 4.4. *Every* Z_{\wedge} -ideal *I* in $C(X)_{\wedge}$ *is a radical ideal.*

Proof. Only to use the definition of a Z_{Δ} -ideal. \square

It is well known that the sum of two *z*-ideals in $C(X)$ is a *z*-ideal, (see [7], Lemma 14.8 and [12]). This result can be modified in $C(X)_{\Delta}$ as follows.

Theorem 4.5. *The sum of two* Z_{Δ} -ideals in $C(X)_{\Delta}$ is a Z_{Δ} -ideal.

Proof. Let *I*, *J* be two Z_{Δ} -ideals in $C(X)_{\Delta}$, $f \in I$, $g \in J$, $h \in C(X)_{\Delta}$ and $Z_{\Delta}(f +$ *g*) \subseteq *Z*_△(*h*). First note that, *Z*_△(*f*) \cap *Z*_△(*g*) \subseteq *Z*_△(*h*) and there exists a subset $P \in \Delta$ such that $f, g, h \in C(X \setminus P)$. Define

$$
k(x)=\left\{\begin{array}{cl} 0, & x\in \left(Z_{\scriptscriptstyle \Delta}(f)\cap Z_{\scriptscriptstyle \Delta}(g)\right)\backslash \, P \\ \\ \frac{hf^2}{f^2+g^2}, & x\in \left(X\setminus P\right)\backslash \left(Z_{\scriptscriptstyle \Delta}(f)\cap Z_{\scriptscriptstyle \Delta}(g)\right) \\ \\ h(x), & x\in P \end{array}\right.
$$

$$
l(x) = \begin{cases} 0, & x \in (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \setminus P \\ \frac{hg^2}{f^2 + g^2}, & x \in (X \setminus P) \setminus (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \\ 0, & x \in P. \end{cases}
$$

We first prove that *k* is continuous on $X \setminus P$. So it requires only to prove that *k* is continuous at any point $x \in (Z_{\Delta}(f) \cap Z_{\Delta}(g)) \setminus P$. As $h(x) = 0$, for any given ϵ > 0, there exists a neighbourhood *U* of *x* such that $h(U) \subseteq (-\epsilon, \epsilon)$. Also for any $x \in U$, $|k(x)| \leq |h(x)|$, which means that *k* is continuous on $X \setminus P$. Similarly *l* is continuous on *X* \setminus *P*. Then we have $l, k \in C(X)_{\Delta}, Z_{\Delta}(f) \subseteq Z_{\Delta}(k), Z_{\Delta}(g) \subseteq Z_{\Delta}(l)$ and $h = l + k$. Since I, J are Z_{Λ} -ideals, $k \in I$ and $l \in J$, hence $h \in I + J$. \Box

Corollary 4.3. ∑ *Let* $\{I_{\alpha}\}_{{\alpha \in {\Lambda}}}$ *be a collection of* $Z_{{\Delta}}$ -*ideals in* $C(X)_{{\Delta}}$ *. Then either α∈*Λ $I_{\alpha} = C(X)_{\alpha}$ *or* \sum *α∈*Λ I_{α} *is a* Z_{Δ} -*ideal.*

Lemma 4.1. *[10] If P is minimal in the class of prime ideals containing a z-ideal I, then P is a z-ideal.*

In view of the above result, we can have,

Corollary 4.4. *Let* ${P_{\alpha}}_{\alpha \in \Lambda}$ *be a collection of minimal prime ideals in* $C(X)_{\Delta}$ *. Then either* ∑ *α∈*Λ $P_{\alpha} = C(X)_{\alpha}$ *or* \sum *α∈*Λ P_{α} *is a prime ideal in* $C(X)_{\Delta}$.

The following result can be obtained in the same way as is done in ([12], Lemma 5.1).

Corollary 4.5. *The sum of a collection of semi prime ideals in* $C(X)$ _△ *is either a semiprime ideal or the entire ring* $C(X)_{\Delta}$.

5. Fixed and Free ideals in $C(X)$ _△

In this section, we introduce fixed and free ideals of $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ and completely characterize the fixed maximal ideals of $C(X)_{\Delta}$ and that of $C^*(X)_{\Delta}$.

Definition 5.1. A proper ideal *I* of $C(X)_{\Delta}$ (resp., $C^*(X)_{\Delta}$) is called fixed if $∩Z_{\Delta}(I) \neq \emptyset$, where $∩Z_{\Delta}(I) = \bigcap$ *f∈I* $Z_{\Delta}(f)$. If *I* is not fixed, then it is called free.

Let us now characterize the fixed maximal ideals of $C(X)_{\Delta}$ and those of $C^*(X)_{\Delta}$.

736 R. Sen and R. P. Saha

Theorem 5.1. $\{M_n^{\Delta}\}$ \overline{p} : $p \in X$ } *is a complete list of fixed maximal ideals of* $C(X)_{\Delta}$ *,* $where M_p^{\Delta} = \{f \in C(X)_{\Delta} : f(p) = 0\}.$ Moreover, the ideals M_p^{Δ} *p are distinct for distinct p.*

Proof. First choose $p \in X$. The map $\psi : C(X)_{\Delta} \to \mathbb{R}$ defined by $\psi_p(f) = f(p)$ is a ring homomorphism. Also ψ_p is surjective and *ker* $\psi_p = \{f \in C(X)_{\Delta} :$ $\psi_p(f) = 0$ } = M_p^{Δ} \int_{p} (say). Hence by the First Isomorphism theorem of rings, we have $C(X)_{\Delta}/M_{p}^{\Delta}$ is isomorphic to the field R, so that M_{p}^{Δ} \int_{p}^{∞} is a maximal ideal in *C*(*X*)_∆. Also, as $p \in \bigcap Z_{\Delta}[M]_{p}^{\Delta}$ $\binom{p}{p}$, M_p^{Δ} \int_{p}^{∞} is a fixed ideal.

Now, $p \neq q$ implies that $\chi_{\{p\}} \neq \chi_{\{q\}}$, where $\chi_{\{p\}}$, $\chi_{\{q\}} \in C(X)_{\Delta}$ (since X is T_1). As $\chi_{\{p\}} \in M_a^{\Delta}$ $\chi_{\{p\}} \notin M_p^{\Delta}$ \int_{p}^{Δ} , it thus follows that for $p \neq q$, M_p^{Δ} $\int_{p}^{\Delta} \neq M_q^{\Delta}$.

Similarly we have,

Theorem 5.2. $\{M_n^{\Delta^*}: p \in X\}$ *is a complete list of fixed maximal ideals of p* $C^{*}(X)_{\Delta}$, where $M_{p}^{\Delta^{*}} = \{f \in C^{*}(X)_{\Delta} : f(p) = 0\}.$ Moreover, $p \neq q$ implies *that* $M_{\sim}^{\Delta^*}$ $\frac{a^{A^*}}{p} \neq M_q^{\Delta^*}$ *q .*

From above it follows that the Jacobson radical of the ring $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$ is zero. Also the interrelation between fixed ideals of $C(X)_{\Delta}$ and $\overrightarrow{C}^*(X)_{\Delta}$ are as follows.

Corollary 5.1. *If I is a fixed maximal ideal of* $C(X)_{\Delta}$ *, then* $I \cap C^*(X)_{\Delta}$ *is so* \int *in* $C^*(X)_{\Delta}$. Also, if $I \cap C^*(X)_{\Delta}$ is a fixed ideal of $C^*(X)_{\Delta}$, for some ideal *I* of $C(X)_{\Delta}$ *, then I is a fixed ideal of* $C(X)_{\Delta}$ *.*

We now give a result with the help of which we get another description of Z_{Λ} ideals.

Lemma 5.1. For any $f \text{ } \in C(X)_{\Delta}$, we have $M_f^{\Delta} = \{g \in C(X)_{\Delta} : Z_{\Delta}(f) \subseteq$ $Z_{\Delta}(g)$ }*, where* M_f^{Δ} \int_{f} is the intersection of all maximal ideasl of $C(X)_{\Delta}$ containing f *.*

Proof. The proof is same as that of Lemma 4.1 of [6]. \Box

The following is the counterpart of $([7], 4A)$.

Theorem 5.3. *A necessary and sufficient condition that an ideal I in* $C(X)_{\alpha}$ *be a* Z_{Δ} -ideal is that, for a given g, if there exists $f \in I$ such that $g \in M_f^{\Delta}$ \int_{f}^{∞} , then $g \in I$.

Proof. Let *I* be a Z_{Δ} -ideal and for a given *g*, there exists $f \in I$ such that $g \in M_f^{\Delta}$. f Then $Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$. Also $f \in I$ implies that $Z_{\Delta}(f) \in Z_{\Delta}(I)$, so that $Z_{\Delta}(g) \in$ $Z_{\Delta}(I)$ (as $Z_{\Delta}(I)$ is a Z_{Δ} -filter) which further implies that $g \in I$.

Conversely, let $Z_{\Delta}(g) \in Z_{\Delta}(I)$ imply that $Z_{\Delta}(g) = Z_{\Delta}(f)$, for some $f \in I$. So $g \in M$ ^{\triangle} *f* . Thus by the given condition $g \in I$. Hence *I* is a Z_{Δ} -ideal.

Regarding the existence of free maximal ideals in $C(X)$ _△ and in $C(X)$ _△, we now establish the following.

Theorem 5.4. *For a space X, the following are equivalent:*

i) *X is finite.*

ii) *Every proper ideal of* $C(X)$ ^{*N*} *is fixed.*

iii) *Every maximal ideal of* $C(X)$ ^{*N*} *is fixed.*

 $iv)$ *Every proper ideal of* $C^*(X)$ ^{*∆*} *is fixed.*

v) *Every maximal ideal of* $C^*(X)_{\Delta}$ *is fixed.*

Proof. i) \Rightarrow *ii*): Let *I* be a proper ideal of $C(X)_{\Delta}$. Now $Z[I](\equiv \{Z(f) : f \in I\})$ is finite and also a Z_{Λ} -filter. Hence *I* is fixed. $ii) \Rightarrow iii$: Obvious.

iii) \Rightarrow *i*): If possible, let *X* be infinite. Let *S* = { χ _{*x*} : *x* ∈ *X*} and consider the ideal *I* generated by *S* in $C(X)_{\Delta}$. We claim that *I* is proper. If not, then there exists $x_1, x_2, ..., x_n$ and $f_1, f_2, ..., f_n \in C(X)_{\Delta}$ such that $\bar{\mathbf{1}} = f_1 \chi_{\{x_1\}} + f_2 \chi_{\{x_2\}} +$ $...+f_n\chi_{\{x_n\}}$. Then \bigcap^n *i*=1 $Z_{\Delta}[\chi_{\{x_i\}}] = \emptyset$. Hence \bigcap^{n} *i*=1 $(X \setminus \{x_i\}) = \emptyset$ which implies that *X* is finite, a contradiction. Let *M* be any maximal ideal of $C(X)$ _△ containing *I*. Then $\bigcap Z[M] \subseteq \bigcap Z[I] \subseteq \bigcap (X \setminus \{x\}) = \emptyset$ which implies that M is a free ideal, a contradiction. Hence *X* is finite. $i) \Rightarrow iv$: Can be done as in $i) \Rightarrow ii$. $ii) \Rightarrow v$: Obvious.

v) \Rightarrow *i*): Obvious. □

In view of Example 4.7 of [7], since $C(X) = C(X)_{\Delta}$, for any discrete space X, we can conclude that

i) For any maximal ideal *M* of $C(X)_{\Delta}$, $M \cap C^*(X)_{\Delta}$ need not be a maximal ideal \int **in** $C^*(X)_\Delta$.

ii) All free maximal ideals in $C^*(X)_{\Delta}$ need not be of the form $M \cap C^*(X)_{\Delta}$, where *M* is a maximal ideal in $C(X)_{\Delta}$.

6. Residue class rings of $C(X)$ _△ modulo ideals

Let us recall that an ideal *I* in a partially ordered ring *A* is called convex if whenever $0 \leq x \leq y$ and $y \in I$, then $x \in I$. Equivalently, for all $a, b, c \in A$ with $a \leq b \leq c$ and $a, c \in I$ implies that $b \in I$.

If *A* is a lattice-ordered ring, then an ideal *I* of *A* is said to be absolutely convex if whenever $|x| \le |y|$ and $y \in I$, then $x \in I$.

For an ideal *I* of $C(X)_{\Delta}$, we shall denote any member of the quotient ring *C*(*X*)∆ */I* by *I*(*f*), for *f* ∈ *C*(*X*)_△, i.e. *I*(*f*) = *f* + *I*.

Let us now recall the following.

Theorem 6.1. *[7]. Let I be an ideal in a partially ordered ring A. In order that A/I be a partially ordered ring, according to the definition:*

 $I(a) \geq 0$ *if there exists* $x \in A$ *such that* $x \geq 0$ *and* $a \equiv x \pmod{I}$,

it is necessary and sufficient that I is convex.

Theorem 6.2. *[7]. The following conditions on a convex ideal I in a lattice ordered ring A are equivalent:*

i) I is absolutely convex. i *i}* $x \in I$ *implies* $|x| \in I$ *.* $iii)$ $x, y \in I$ *implies* $x \vee y \in I$ *.* $I(a \vee b) = I(a) \vee I(b)$ *<i>, whence* A/I *is a lattice. v*) $I(a) ≥ 0$ *if and only if* $a ≡ |a|$ *(mod I).*

Remark 6.1. $I(|a|) = |I(a)|$, $\forall a \in A$, when *I* is an absolutely convex ideal of *A*.

Theorem 6.3. *Every* Z_{Λ} -ideal in $C(X)_{\Lambda}$ is absolutely convex.

Proof. Let *I* be any Z_{Δ} -ideal in $C(X)_{\Delta}$ and $|f| \leq |g|$, where $f \in C(X)_{\Delta}$ and $g \in I$. Then $Z_{\Delta}(f) \subseteq Z_{\Delta}(g)$. As $g \in I$, $Z_{\Delta}(g) \in Z_{\Delta}(I)$ which implies that $Z_{\Delta}(f) \in Z_{\Delta}(I)$. Now *I* being a Z_{Δ} -ideal, it follows that $f \in I$. \square

Corollary 6.1. *Every maximal ideal in* $C(X)_{\Delta}$ *is absolutely convex.*

Theorem 6.4. *For every maximal ideal M in* $C(X)_{\Delta}$ *, the quotient ring* $C(X)_{\Delta}/M$ *is a lattice ordered ring.*

Proof. Obvious. □

Next we characterize the non-negative elements in the lattice-ordered ring $C(X)_{\alpha}/I$, for a Z_{Δ} -ideal *I*.

Theorem 6.5. *For a* Z_{Δ} -ideal *I* and $f \in C(X)_{\Delta}$, $I(f) \geq 0$ if and only if there *exists* $Z \in Z_{\Lambda}(I)$ *, such that* $f \geq 0$ *on* Z *.*

Proof. First let, $I(f) \geq 0$. By Theorem 6.2, $f \equiv |f| \pmod{I}$, i.e. $f - |f| \in I$. So, $Z_{\Delta}(f - |f|) \in Z_{\Delta}(I)$ and hence $f \geq 0$ on $Z_{\Delta}(f - |f|)$.

Conversely, let $f \geq 0$ on some $Z \in Z_{\Delta}(I)$. Then $f = |f|$ on Z , i.e. $Z \subseteq$ $Z_{\Delta}(f-|f|)$ which implies that $Z_{\Delta}(f-|f|) \in \overline{Z}_{\Delta}(I)$. Since I is a Z_{Δ} -ideal, $f-|f| \in I$, i.e. *I*(*f*) = *I*(|*f*|). As *I*(|*f*|) ≥ 0, hence *I*(*f*) ≥ 0. □

Theorem 6.6. *Let I be a* Z_{Δ} -ideal and $f \in C(X)_{\Delta}$. If there exists $Z \in Z_{\Delta}(I)$ *such that* $f(x) > 0$, for all $x \in \mathbb{Z}$, then $I(f) > 0$. Converse is true if I is maximal.

Proof. If *f* is positive on $Z \in Z_{\Delta}(I)$, then $Z_{\Delta}(f) \cap Z = \emptyset$, so that $Z_{\Delta}(f) \notin Z_{\Delta}(I)$. Hence $f \notin I$. So by the previous theorem $I(f) > 0$.

For the converse, if *I* is maximal, then there exists some zero set *Z ′* of *I* such that $Z' \cap Z(f) = \emptyset$. Now $Z \cap Z' \in Z_{\Delta}(I)$, thus $f > 0$ on the zero set $Z \cap Z'$ of $I. \square$

Remark 6.2. The converse part of the above theorem fails if *I* is not maximal: for let *I* be non-maximal. Then there exists a proper ideal *J* of $C(X)$ _△ such that $I \subset J$. Choose $f \in J \setminus I$. Then $I(f^2) > 0$. Now choose any $Z \in Z_{\Delta}(I)$. Then $Z \in Z_{\Delta}(J)$ also, so that $Z \cap Z(f^2) \neq \emptyset$. Now *f* is not strictly positive on the whole of *Z*.

We now characterize those ideals *I* in $C(X)$ ^{*n*} for which $C(X)$ ^{*n*}/*I* is a totally ordered ring.

Theorem 6.7. *For a* Z_{Δ} -ideal *I* in $C(X)_{\Delta}$, the lattice ordered ring $C(X)_{\Delta}/I$ is *a totally ordered if I is prime.*

Proof. $C(X)_{\Delta}/I$ is totally ordered if and only if for any $f \in C(X)_{\Delta}$, $I(f) \geq 0$ or *I*(*−f*) ≥ 0 if and only if for all $f \in C(X)_{\Delta}$, there exists $Z \in Z_{\Delta}(I)$ such that *f* does not change its sign of *Z* if and only if *I* is a prime ideal in view of Theorem 4.2. \Box

Corollary 6.2. *For every maximal ideal M in* $C(X)_{\alpha}$, $C(X)_{\alpha}/M$ *is a totally ordered ring.*

Theorem 6.8. *For a prime ideal* P *in* $C(X)_{\Delta}$ *, the following are true.*

i) *P is absolutely convex.*

ii) *The residue class ring* $C(X)_{\Delta}/P$ *is totally ordered.*

iii) The mapping : $r \rightarrow P(\bar{r})$ *is an order-preserving monomorphism of the real field* R *into the residue class rings.*

Proof. i) Let $0 \leq |f| \leq |g|$, for some $f \in C(X)_{\Delta}$ and $g \in P$. Then $f^2 = |f|^2 \leq |g|^2$. By Theorem 2.4, $f^2 = h \cdot g$, for some $h \in C(X)_{\Delta}$. Thus $f^2 \in P$ implies that $f \in P$ (as *P* is prime). Hence *P* is absolutely convex.

ii) Since *P* is prime, $C(X)_{\Delta}/P$ is a partially ordered ring. Now $(f - |f|)(f + |f|) = \overline{0}$ which implies that either $f \equiv |f| \pmod{P}$, i.e. either $P(f) \geq 0$ or $P(-f) \geq 0$. Hence $C(X)_{\Delta}/P$ is totally ordered.

iii) Clearly the mapping: $r \to P(\bar{r})$ is a monomorphism. We only need to show the order preserving property of the mapping. Choose $r, s \in \mathbb{R}$ with $r > s$. Then *r* − *s* > 0, so that $P(\bar{r} - \bar{s}) > 0$, i.e. $P(\bar{r}) > P(\bar{s})$. □

For a maximal ideal *M* in $C(X)_{\Delta}$, $C(X)_{\Delta}/M$ can be considered as an extension of the real field R, or in otherwords, $C(X)_{\alpha}/M$ contains a cannonical copy of R.

Definition 6.1. If for a maximal ideal M , the canonical copy of \mathbb{R} is the entire field $C(X)_{\Delta}/M$, (resp. $C^*(X)_{\Delta}/M$), then *M* is called a real ideal and $C(X)_{\Delta}/M$ is called real residue class field. If *M* is not real, then it is called hyper-real and $C(X)_{\alpha}/M$ is called a hyper-real residue class field

Definition 6.2. [7] A totally ordered field F is said to be archimedean if for every element *a*, there exists $n \in \mathbb{N}$ such that $n \ge a$. If *F* is not archimedean, then it is called non-archimedean. Thus, a non-archimedean field is characterized by the presence of infinitely large elements, i.e. there exists $a \in F$ such that $a > n$, $n \in \mathbb{N}$. Such elements are called infinitely large elements. The following is an important theorem in the context of archimedean field.

Theorem 6.9. *[7] A totally ordered field is archimedean if and only if it is isomorphic to a subfield of the ordered field of* R*.*

Thus we get that the real residue class field $C(X)$ _△ /*M* is archimedean if *M* is a real maximal ideal of $C(X)$.

Theorem 6.10. *Every hyper-real residue class field* $C(X)$ _△ /*M is non-archimedean.*

Proof. Since the identity is the only non-zero homomorphism on the ring $\mathbb R$ into itself, the proof follows. \square

Corollary 6.3. *A maximal ideal in* $C(X)_{\Delta}$ *is hyper-real if and only if there exists* $f \in C(X)$, such that $M(f)$ is an infinitely large member of $C(X)$, /M.

Theorem 6.11. *Each maximal ideal M in* $C^*(X)_{\Delta}$ *is real.*

Proof. In view of the above discussions, it sufficies to show that $C^*(X)_{\Delta}/M$ is archimedean. Choose $f \in C^*(X)_{\Delta}$. Then $|f(x)| \leq n$, for all $x \in X$ and for some $n \in \mathbb{N}$, i.e. $|M(f)| \leq M(\bar{n})$. \Box

The following theorem relates to unbounded functions on *X* with infinitely large elements modulo maximal ideals.

Theorem 6.12. *For a given maximal ideal M in* $C(X)_{\alpha}$ *and* $f \in C(X)_{\alpha}$ *, the following are equivalent:*

 $i)$ $|M(f)|$ *is infinitely large. ii*) *f is unbounded on every zero set of M.*

iii) *For each* $n \in \mathbb{N}$ *, the zero set* $Z_n = \{x \in X : |f(x)| \geq n\} \in Z_{\lambda}(M)$ *.*

Proof. i) \iff *ii*): $|M(f)|$ is not infinitely large in $C(X)_{\text{A}}/M$ if and only if there exists $n \in \mathbb{N}$ such that $|M(f)| = M(|f|) \leq M(\bar{\mathbf{n}})$ if and only if $|f| \leq \bar{\mathbf{n}}$ on some $Z \in Z_{\Delta}(M)$ if and only if *f* is bounded on some $Z \in Z_{\Delta}(M)$.

ii) \iff *iii*): Choose *n* ∈ N. Since Z_n intersects each member in $Z_\Delta(M)$, Z_n ∈ $Z_{\Delta}(M)$, as because $Z_{\Delta}(M)$ is Z_{Δ} -ultrafilter.

iii) \iff *ii*): Since for each $n \in \mathbb{N}$, $|f| \geq n$ on some zero set in $Z_{\wedge}(M)$, $|M(f)| \geq$ $M(\bar{\mathbf{n}})$, for all $n \in \mathbb{N}$. This implies that $|M(f)|$ is an infinitely large element of $C(X)_{\Delta}/M$. □

Theorem 6.13. $f \in C(X)$ *is unbounded on X if and only if there exists a maximal ideal M* in $C(X)$ _{\circ} *such that* $|M(f)|$ *is infinitely large in* $C(X)$, $/M$.

Proof. One part follows from Theorem 6.12.

For the other part, let f be unbounded on X. Then each $Z_n = \{x \in X : |f| \geq 1\}$ n *}* $\neq \emptyset$, for $n \in \mathbb{N}$ and $\{Z_n : n \in \mathbb{N}\}$ has the finite intersection property. So there exists a Z_{Δ} -ultrafilter *U* on *X* containing $\{Z_n : n \in \mathbb{N}\}\$. Hence there exists a maximal ideal *M* in $C(X)$ _△ such that $\mathcal{U} = Z_{{\scriptscriptstyle{\triangle}}} (M)$ and so $Z_n \in Z_{{\scriptscriptstyle{\triangle}}} (M)$, for all *n* ∈ N. Now by Theorem 6.12, it follows that $|M(f)|$ is infinitely large. $□$

Remark 6.3. In the case of $C(X)$, the pseudocompactness of X ensures that every maximal ideal of $C(X)$ is real. But in $C(X)$, this may not hold. Consider $X = [0,1]$ with the subspace topology of the usual topology of reals, $\Delta = \{A \subseteq X : A \text{ is nowhere}\}$ dense in X *}* and $f: X \to \mathbb{R}$ defined by,

$$
f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}
$$

As *f* is unbounded on *X*, by Theorem 6.12, there exists a maximal ideal *M* (say) such that $|M(f)|$ is infinitely large, so that *M* is not real.

7. Some algebraric aspects of $C(X)$ _△

Let us first recall that a ring *S* containing a reduced ring *R* is called a ring of quotients of *R* if and only if for each $0 \neq s \in S$, there exists $r \in R$ such that $0 \neq sr \in R$ (see [8]). Regarding rings of quotients of rings of functions one can go through [9, 5].

Theorem 7.1. *For a space X and a subcollection* $\Delta \subseteq \mathcal{P}(X)$ *, the following are equivalent:*

i) $C(X) = C(X)_{\Delta}$. *ii*) *X is a discrete space. iii*) $C(X)$ ^{\wedge} *is a ring of quotients of* $C(X)$ *. iv*) $C(X) = T'(X)$.

Proof. i) \iff *ii*): If *X* is discrete, then obviously $C(X) = C(X)_{\Delta}$. Next suppose that $C(X) = C(X)_{\Delta}$ and $x \in X$. As $\chi_{\{x\}} \in C(X)_{\Delta}, \chi_{\{x\}} \in C(X)$, so that X becomes discrete.

 $ii) \Rightarrow iii$: Obvious.

 $iii) \Rightarrow iv$: Choose $x_0 \in X$. Then $\chi_{x_0} \in C(X)$ _{Δ}. Hence there exists $f \in C(X)$ such that $0 \neq f(x)\chi_{\{x_0\}} \in C(X)$. Hence $f(x_0)\chi_{\{x_0\}} = f(x)\chi_{\{x_0\}} \in C(X)$, which implies that $\{x_0\}$ is an isolated point, so that X is discrete.

iv) \Rightarrow *ii*): If *X* is not discrete, then there exists a non-isolated point *x*⁰ \in *X*. Now $\chi_{\{x_0\}} \in T'(X)$, but $\chi_{\{x_0\}} \notin C(X)$. Hence $T'(X) \neq C(X)$.

Theorem 7.2. *For a space X and a subcollection* $\Delta \subseteq \mathcal{P}(X)$ *,* $T'(X) \subseteq C(X)_{\Delta}$ *if and only if every open dense subset D of X is of the form* $X \setminus G$ *, for some* $G \in \Delta$ *.*

Proof. First let $T'(X) \subseteq C(X)_{\Delta}$ and *D* be an open dense subset of *X*. Then $\chi_D \in T'(X)$ implies that $\chi_D \in C(X)_{\Delta}$. Hence the set of points of discontinuities of $\chi_D(\equiv G(\text{say})) = X \setminus D \in \Delta$, so that $D = X \setminus G$, where $G \in \Delta$.

Conversely, choose $f \in T'(X)$. Then there exists an open dense subset *D* of *X* such that *f* is continuous on *D* and by the given condition $D = X \setminus G$, for $G \in \Delta$. Hence the set D_f of points of discontinuities of *f* is a subset of $X \setminus D = G \in \Delta$, so that $D_f \in \Delta$. Thus $f \in C(X)_{\Delta}$, and hence $T'(X) \subseteq C(X)_{\Delta}$.

Remark 7.1. If *X* is T_1 , we always have $C(X)_F \subseteq T'(X)$, but this inclusion is not true in case of *C*(*X*)[∆] . Consider *X* = R with the usual topology of reals and ∆ = *{A ⊆ X* : *A* is countable}. Define $f: X \to \mathbb{R}$ by,

$$
f(x) = \begin{cases} \frac{1}{q}, & x = \frac{p}{q}, \text{ with g.c.d } (p, q) = 1 \\ 0, & x = 0 \text{ or } x \text{ is an irrational.} \end{cases}
$$

Then $f \in C(X)_{\Delta}$, but $f \notin T'(X)$. Hence $C(X)_{\Delta} \nsubseteq T'(X)$.

8. ∆*P***-space**

Recall that a space X is called a *P*-space (resp., $\mathcal{F}P$ space) if $C(X)$ (resp. $C(X)$ _F) is a regular ring, (see [7], 4*J* and [6]). We next introduce ΔP - spaces which is a generalization of the above types of spaces.

Definition 8.1. A space *X* is called a ΔP -space if $C(X)_{\Delta}$ is a regular ring.

Observe that any *FP* space is one kind of a ΔP -space if we consider $\Delta =$ the set of all finite subsets of *X*. Now we give an example of a ΔP -space which is not a *FP* space.

Example 8.1. Let $X = \mathbb{Q}$ and $\Delta =$ the set of all countable subsets of \mathbb{Q} . Then $C(X)_{\Delta} =$ R Q . So Q is a ∆*P*-space. But Q is not an *FP*-space. To establish this, consider *f* : Q *→* R defined by,

$$
f(x) = \begin{cases} 2(x - \overline{n-1}), & n-1 \leq x \leq \frac{2n-1}{2}, \\ -2(x-n), & \frac{2n-1}{2} \leq x \leq n \\ 1 & otherwise. \end{cases}
$$

Here the only point of discontinuity of *f* is $x = 0$. So $f \in C(\mathbb{Q})_F$ also. If $C(\mathbb{Q})_F$ be regular, then there exists $g \in C(\mathbb{Q})_F$ such that $f^2g = f$ which implies that $g = \frac{1}{f}$, when $f(x) \neq 0, x \in \mathbb{Q}$. So we get,

$$
g(x) = \begin{cases} & \frac{1}{2(x - \overline{n-1})}, & n - 1 < x < \frac{2n - 1}{2}, \\ & -\frac{1}{2(x - n)}, & \frac{2n - 1}{2} < x < n \\ & 1 & otherwise. \end{cases}
$$

So whatever value we choose for $g(x)$, when $f(x) = 0$, g will be discontinuous at those points. Hence $g \notin C(\mathbb{Q})_F$. So $\mathbb Q$ is not an *FP* space, and hence not a *P*-space also.

Proposition 8.1. *Every P-space is a* ∆*P-space.*

Proof. Let *X* be a *P*-space and $f \in C(X)$. Then $D_f \in \Delta$ and $X \setminus D_f$ is a G_δ -set in *X*. Also $X \setminus D_f$ is a *P*-space (as any subspace of a *P*-space is also a *P*-space), so that $X \setminus D_f$ is an open set in *X*. Now for $f \in C(X \setminus D_f)$, there exists $g \in C(X \setminus D_f)$ such that $f = f^2 g$. Now we define $g^* : X \to \mathbb{R}$ by,

$$
g^*(x) = \begin{cases} & g(x), & x \in X \setminus D_f \\ & \\ & 0, & x \in D_f \cap Z_{\Delta}(f) \\ & \\ & \frac{1}{f(x)}, & x = \in D_f \setminus Z_{\Delta}(f). \end{cases}
$$

Then clearly $g^* \in C(X)_{\Delta}$. So $f = f^2 g^*$ and hence *X* is a ΔP -space.

It is known from literature that every zero set in $C(X)$ is clopen. The modification of this result in the setting of $C(X)$ _∆ is furnished below.

Theorem 8.1. *If X is a* ΔP *-space, then for any* $Z \in Z_{\Delta}(X)$ *, there exists* $H \in \Delta$ such that $Z \setminus H$ is a clopen set in $X \setminus H$.

Proof. Let $Z_{\Delta}(f) \in Z_{\Delta}(X)$, for $f \in C(X)_{\Delta}$. As X is a ΔP -space, there exists *g* ∈ $C(X)$ _△ such that $f^2g = f$. Since $f, g \in C(X)$ _△, there exists $H \in C(X)$ _△ such that $f, g \in C(X \setminus H)$. So $f^2(x)g(x) = f(x)$, for all $x \in X \setminus H$ which implies that $Z_{\Delta}(f|_{X\backslash H})\cup Z_{\Delta}((1-fg)|_{X\backslash H})=X\backslash H \text{ and also } Z_{\Delta}(f|_{X\backslash H})\cap Z_{\Delta}((1-fg)|_{X\backslash H})=\varnothing.$ So $Z_{\Delta}(f) \setminus H$ is clopen in $X \setminus H$. \square

Acknowledgement

The authors are thankful to the learned referee for his/her valuable comments which improved the paper. The second author is supported by CSIR, New Delhi, INDIA. File No. - 08/155(0089)/2020-EMR-I.

744 R. Sen and R. P. Saha

R E F E R E N C E S

- 1. M. R. Ahmadi Zand: *An algebraic characterization of Blumberg spaces*. Quaest. Math. **33** (2010), 1–8.
- 2. M. R. Ahmadi Zand and Z. Khosravi: *Remarks on the rings of functions which have a finite number of discontinuities*. Appl. Gen. Topol. **22**(1) (2021), 139–147.
- 3. S. Bag, S. K. Acharyya and D. Mandal: *Rings of functions which are discontinuous on a set of measure zero*. Positivity **26**(12) (2022).
- 4. M. Elyasi, A. A. Estaji and M. R. Sarpoushi: *On functions which are discontinuous on a countable set*. The 50*th* Annual Iranian Mathematics Conference Shiraz University, 26–29 August (2019).
- 5. N. J. Fine, L. Gillman and J. Lambek: *Rings of quotients of rings of functions*. McGill University Press, (1965).
- 6. Z. Gharebaghi, M. Ghirati and A. Taherifar: *On the rings of functions which are discontinuous on a finite set*. Houston J. Math. **44**(2) (2018), 721–739.
- 7. L. Gillman and M. Jerison. *Rings of Continuous Functions*, Springer, London (1976).
- 8. J. Lambek: *Lectures on rings and modules*. Blaisdell Publishing Company, (1966).
- 9. R. Levy and J. Shapiro: *Rings of quotients of rings of functions*. Topol. Appl. **146- 147** (2005), 253–265.
- 10. G. Mason: *Prime z-ideals of C(X) and related rings*. Canad. Math. Bull. **23**(4) (1980), 437–443.
- 11. J. C. Oxtoby: *Measure and Category*. Springer, New York (1980).
- 12. D. Rudd: *On two sum theorems for ideals of* $C(X)$. Michigan Math. J. 17 (1970), 139–141.