FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 39, No 4 (2024), 745–759 https://doi.org/10.22190/FUMI231104049Z Original Scientific Paper

ON THE GEODESICS AND S-CURVATURE OF A HOMOGENEOUS FINSLER SPACE WITH SQUARE-ROOT (α, β) -METRIC

Milad L. Zeinali and Dariush Latifi

Department of Mathematics, Faculty of Science University of Mohaghegh Ardabili, Ardabil, Iran

ORCID IDs: Milad L. Zeinali Dariush Latifi https://orcid.org/0000-0003-2984-4605
 https://orcid.org/0000-0002-3468-5453

Abstract. In this paper, we consider the square-root (α, β) -metric F which satisfies $F(\alpha, \beta) = \sqrt{\alpha(\alpha + \beta)}$. We prove the existence of invariant vector fields on a homogeneous Finsler space with square-root metric. Then we obtain the explicit formula for the *S*-curvature and mean Berwald curvature of homogeneous Finsler space with square-root metric. We study geodesics and geodesic vectors for homogeneous square-root (α, β) -metric.

Keywords: homogeneous Finsler space, square-root metric, *S*-curvature, invariant vector field, geodesic vector, mean Berwald curvature.

1. Introduction

An important family of Finsler metrics is the family of (α, β) -metric. These metrics are introduced by Matsumoto[11]. An (α, β) -metric is a Finsler metric of the form $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ where $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ is induced by a Riemannian metric $\tilde{a} = \tilde{a}_{ij}dx^i \otimes dx^j$ on a connected smooth n-dimensional manifold M and $\beta = b_i(x)y^i$ is a 1-form on M. The class of p-power (α, β) -metrics on a manifold M is in the following form

$$F = \alpha \left(1 + \frac{\beta}{\alpha} \right)^p,$$

Received November 04, 2023, accepted: March 14, 2024

Communicated by Uday Chand De

Corresponding Author: Dariush Latifi. E-mail addresses: miladzeinali@gmail.com (M. L. Zeinali), latifi@uma.ac.ir (D. Latifi)

²⁰²⁰ Mathematics Subject Classification. Primary 22E60; Secondary 53C30, 53C60

^{© 2024} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

where $p \neq 0$ is a real constant. If p = 1, then we get the Randers metric $F = \alpha + \beta$. This metric was first recognized as kind of Finsler metric in 1957 by Ingarden, who first named them Randers metric [9]. If p = -1, then we have the Matsumoto metric $F = \frac{\alpha^2}{(\alpha + \beta)}$. Matsumoto metric is an important metric in Finsler geometry.

In the case of $p = 1 \setminus 2$, we get

$$F = \sqrt{\alpha(\alpha + \beta)},$$

which is called a square-root metric. In this paper, we study square-root metrics. We study the existence of invariant vector fields on homogeneous Finsler spaces with square-root metrics. Invariant vector fields on homogeneous Finsler spaces has been studied by some authors in recent years (see [10, 13, 15]). Further, we give an explicit formula for S-curvature of square-root (α , β)-metric.

2. Preliminaries

In this section, we recall some known facts about Finsler spaces, for details see [2]. Let M be a smooth n- dimensional C^{∞} manifold and TM be its tangent bundle. A Finsler metric on a manifold M is a non-negative function $F: TM \to R$ with the following properties [2]:

1) F is smooth on the slit tangent bundle $TM^0 := TM \setminus \{0\}$.

2) $F(x, \lambda y) = \lambda F(x, y)$ for any $x \in M, y \in T_x M$ and $\lambda > 0$.

3) The following bilinear symmetric form $g_y: T_xM \times T_xM \longrightarrow R$ is positive definite

$$g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.$$

Definition 2.1. Let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j}$ be a norm iduced by a Riemannian metric \tilde{a} and $\beta(x,y) = b_i(x)y^i$ be a 1-form on an *n*-dimensional manifold *M*. Let

$$\|\beta(x)\|_{\alpha} := \sqrt{\tilde{a}^{ij}(x)b_i(x)b_j(x)}.$$

Now, let the function F is defined as follows

(2.1)
$$F := \alpha \phi(s) \quad , \quad s = \frac{\beta}{\alpha},$$

where $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying

$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0 \quad , \quad |s| \le b < b_0.$$

Then by lemma 1.1.2 of [5], F is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (2.1) is called an (α, β) -metric [1, 5]. **Definition 2.2.** A Finsler space having the Finsler function:

(2.2)
$$F = \sqrt{\alpha(x, y)(\alpha(x, y) + \beta(x, y))}$$

is called a square-root space with $\phi(s) = \sqrt{1+s}$.

Before defining homogeneous Finsler spaces, we discuss here some basic concepts required.

Definition 2.3. Let G be a smooth manifold having the structure of an abstract group. G is called a Lie group, if the maps $i: G \to G$ and $\mu: G \times G \to G$ defined as $i(g) = g^{-1}$, and $\mu(g, h) = gh$, respectively, are smooth.

Let G be a Lie group and M, a smooth manifold. Then a smooth map $f:G\times M\to M$ satisfying

$$f(g_2, f(g_1, x)) = f(g_2g_1, x), \quad \forall g_1, g_2 \in G, \quad x \in M,$$

$$f(e, x) = x, \quad \forall x \in M,$$

is called a smooth action of G on M.

Definition 2.4. Let M be a smooth manifold and G, a Lie group. If G acts smoothly on M, then G is called a Lie transformation group of M.

The following Theorem gives us a differentiable structure on the coset space of a Lie group.

Theorem 2.1. Let G be a Lie group and H, its closed subgroup. Then there exists a unique differentiable structure on the left coset space G/H with the induced topology that turns G/H into a smooth manifold such that G is a Lie transformation group of G/H.

Definition 2.5. Let (M, F) be a connected Finsler space and I(M, F) the group of isometries of (M, F). If the action of I(M, F) is transitive on M, then (M, F) is said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M. Then for $a \in M$, the isotropy subgroup G_a of G is a closed subgroup and by Theorem 2.1, G is a Lie transformation group of G/G_a . Further, G/G_a is diffeomorphic to M.

BochnerMontgomery in [3] proved that a locally compact group of differentiable transformations of a manifold is a Lie transformation group. Therefore we have the following Theorem.

Theorem 2.2. [6] Let (M, F) be a Finsler space. Then G = I(M, F), the group of isometries of M is a Lie transformation group of M. Let $a \in M$ and $I_a(M, F)$ be the isotropy subgroup of I(M, F) at a. Then $I_a(M, F)$ is compact.

Let (M, F) be a homogeneous Finsler space, i.e. G = I(M, F) acts transitively on M. For $a \in M$, let $H = I_a(M, F)$ be a closed isotropy subgroup of G which is compact. Then H is a Lie group itself being a closed subgroup of G. Write M as the quotient space G/H.

Definition 2.6. [12] Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of the Lie groups G and H respectively. Then the direct sum decomposition of \mathfrak{g} as $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, where \mathfrak{n} is a subspace of \mathfrak{g} such that $Ad(h)(\mathfrak{n}) \subset \mathfrak{n}, \forall h \in H$, is called a reductive decomposition of \mathfrak{g} , and if such decomposition exists, then (G/H, F) is called reductive homogeneous space.

Therefore, we can write any homogeneous Finsler space as a coset space of a connected Lie group with an invariant Finsler metric. Here, the Finsler metric F is viewed as G invariant Finsler metric on M.

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomorphism $\xi : R \to G$, such that $\xi(0) = e$, where e is the identity of G.

Recall [6] the following result which gives us the existence of one-parameter subgroup of a Lie group.

Theorem 2.3. Let G be a Lie group having Lie algebra \mathfrak{g} . Then for any $Y \in \mathfrak{g}$, there exists a unique locally one-parameter subgroup ξ such that $\dot{\xi}(0) = Y_e$, where e is the identity element of G.

Definition 2.8. Let G be a Lie group with identity element e and \mathfrak{g} its Lie algebra. The exponential map $exp : \mathfrak{g} \to G$ is defined by

$$exp(tY) = \xi(t), \quad \forall t \in R,$$

where $\xi: R \to G$ is unique one-parameter subgroup of G with $\dot{\xi}(0) = Y_e$.

In the case of reductive homogeneous manifold, we can identify the tangent space $T_H(G/H)$ of G/H at the origin eH = H with \mathfrak{n} through the map

$$Y \to \frac{d}{dt} exp(tX)H|_{t=0}, \quad Y \in \mathfrak{n},$$

since M is identified with G/H and Lie algebra of any Lie group G is viewed as T_eG .

3. Invariant Vector Field

The Riemannian metric \tilde{a} induces an inner product on any cotangent space T_x^*M such that $\langle dx^i(x), dx^j(x) \rangle = \tilde{a}^{ij}(x)$. The induced inner product on T_x^*M induces a

linear isomorphism between T_x^*M and T_xM . Then the 1-form β corresponds to a vector field \tilde{X} on M such that

$$\tilde{a}(y, \tilde{X}(x)) = \beta(x, y).$$

Also we have $\|\beta(x)\|_{\alpha} = \|\tilde{X}(x)\|_{\alpha}$. Therefore we can write (α, β) -metrics as follows:

$$F(x,y) = \alpha(x,y)\phi\Big(\frac{\tilde{a}(\tilde{X}(x),y)}{\alpha(x,y)}\Big),$$

where for any $x \in M$, $\sqrt{\tilde{a}(\tilde{X}(x), \tilde{X}(x))} = \|\tilde{X}(x)\|_{\alpha} < b_0.$

So for square-root metric, we can write

(3.1)
$$F(x,y) = \sqrt{\tilde{a}(y_x,y_x)} + \sqrt{\tilde{a}(y_x,y_x)} \tilde{a}(X_x,y_x).$$

Lemma 3.1. Let (M, F) be a Finsler space with square-root metric $F = \sqrt{\alpha(\alpha + \beta)}$. Let I(M, F) be the group of isometries of (M, F) and $I(M, \tilde{a})$ be that of Riemannian space (M, \tilde{a}) . Then I(M, F) is a closed subgroup of $I(M, \tilde{a})$.

Proof. Let $x \in M$ and $\xi: (M, F) \to (M, F)$ be an isometry. Therefore, we have

$$F(x,Y) = F(\xi(x), d\xi_x(Y)), \quad \forall Y \in T_x M.$$

So we have

$$\sqrt{\tilde{a}(Y,Y)} + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y)$$

= $\sqrt{\tilde{a}(d\xi_x(Y),d\xi_x(Y))} + \sqrt{\tilde{a}(d\xi_x(Y),d\xi_x(Y))}\tilde{a}(X_{\xi(x)},d\xi_x(Y)).$

After simplification, we get

$$(3.2) \qquad \tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y) \\ = \tilde{a}(d\xi_x(Y), d\xi_x(Y)) + \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y))}\tilde{a}(X_{\xi(x)}, d\xi_x(Y))$$

Replacing Y by -Y in 3.2 implies that

(3.3)
$$\tilde{a}(Y,Y) - \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y) = \tilde{a}(d\xi_x(Y), d\xi_x(Y)) - \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y))}\tilde{a}(X_{\xi(x)}, d\xi_x(Y)).$$

Adding equations 3.2 and 3.3, we get

(3.4)
$$\tilde{a}(Y,Y) = \tilde{a}(d\xi_x(Y), d\xi_x(Y)).$$

Subtracting equation 3.3 from equation 3.2 and use equation 3.4, we get

$$\tilde{a}(X_x, Y) = \tilde{a}(X_{\xi(x)}, d\xi_x(Y)).$$

Therefore, ξ is an isometry with respect to the Riemannian metric \tilde{a} and $d\xi_x(X_x) = X_{\xi(x)}$. Thus, I(M, F) is a closed subgroup of $I(M, \tilde{a})$. \Box

From Lemma 3.1, we conclude that if (M, F) is a homogeneous Finsler space with square-root metric $F = \sqrt{\alpha(\alpha + \beta)}$, then the Riemannian space (M, α) is homogeneous. Further, M can be written as a coset space G/H, where G = I(M, F)is a Lie transformation group of M and H, the compact isotropy subgroup $I_a(M, F)$ of I(M, F) at some point $a \in M$ [8]. Let \mathfrak{g} and \mathfrak{h} be the Lie algebras of the Lie groups G and H, respectively. If \mathfrak{g} can be written as a direct sum of subspaces \mathfrak{h} and \mathfrak{n} of \mathfrak{g} such that $Ad(h)\mathfrak{n} \subset \mathfrak{n}, \forall h \in H$, then from Definition 2.6, (G/H, F) is a reductive homogeneous space.

Therefore, homogeneous Finsler space with square-root metric can be written as a coset space of a connected Lie group with square metric. Here, the square-root metric $F = \sqrt{\alpha(\alpha + \beta)}$ is viewed as G invariant Finsler metric on M.

Theorem 3.1. Let $F = \sqrt{\alpha(\alpha + \beta)}$ be a *G*-invariant square-root metric on *G*/*H*, *X* the vector field corresponding to 1-form β . Then α is a *G*-invariant Riemannian metric and the vector field *X* is also *G*-invariant.

Proof. Let F be G-invariant metric on G/H, we have

$$F(y) = F(Ad(h)y), \quad \forall h \in H, \quad Y \in \mathfrak{n}.$$

By 3.1, we get

$$\sqrt{\tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X,Y)}$$

= $\sqrt{\tilde{a}(Ad(h)Y,Ad(h)Y) + \sqrt{\tilde{a}(Ad(h)Y,Ad(h)Y)}\tilde{a}(X,Ad(h)Y)}$

After simplification, we get

$$(3.5) \qquad \tilde{a}(Y,Y) + \sqrt{\tilde{a}}(Y,Y)\tilde{a}(X,Y) \\ = \tilde{a}(Ad(h)Y,Ad(h)Y) + \sqrt{\tilde{a}(Ad(h)Y,Ad(h)Y)}\tilde{a}(X,Ad(h)Y).$$

Replacing Y by -Y in 3.5 implies that

(3.6)
$$\tilde{a}(Y,Y) - \sqrt{\tilde{a}}(Y,Y)\tilde{a}(X,Y) \\ = \tilde{a}(Ad(h)Y,Ad(h)Y) - \sqrt{\tilde{a}(Ad(h)Y,Ad(h)Y)}\tilde{a}(X,Ad(h)Y).$$

Adding equations 3.5 and 3.6, we get

(3.7)
$$\tilde{a}(Y,Y) = \tilde{a}(Ad(h)Y, Ad(h)Y).$$

Subtracting equation 3.6 from equation 3.5 and use equation 3.7, we get

$$\tilde{a}(X,Y) = \tilde{a}(X,Ad(h)Y).$$

Therefore, α is a *G*-invariant Riemannian metric and

$$Ad(h)X = X,$$

which proves that X is also G-invariant. \Box

The following Theorem gives us a complete description of invariant vector fields.

Theorem 3.2. [7] There exists a bijection between the set of invariant vector fields on G/H and the subspace

$$V = \{ Y \in \mathfrak{n} : Ad(h)Y = Y, \forall h \in H \}.$$

4. S-Curvature of Homogeneous Finsler Space with Square-root Metric

S-curvature was introduced by Shen in [16]. It is a quantity to measure the rate of change of the volume form of a Finsler space along geodesics. Let V be an n-dimensional real vector space and F a Minkowski norm on V. For a basis $\{b_i\}$ of V, let

$$\sigma_F = \frac{Vol(B^n)}{Vol\{(y^i) \in R^n | F(y^i b_i) < 1\}}$$

where Vol means the volume of a subset in the standard Euclidean space \mathbb{R}^n and \mathbb{B}^n is the open ball of radius 1. This quantity is generally dependent on the choice of the basis $\{b_i\}$. But it is easily seen that

$$\tau(y) = \ln \frac{\sqrt{det(g_{ij}(y))}}{\sigma_F}, \quad y \in V - \{0\},$$

is independent of the choice of basis. We call $\tau = \tau(y)$ the distortion of (V, F).

Now let (M, F) be a Finsler space. Let $\tau(x, y)$ be the distortion of the Minkowski norm F_x on $T_x(M)$ and σ the geodesic with $\sigma(0) = x$ and $\dot{\sigma}(0) = y$. Then the quantity

$$S(x,y) = \frac{d}{dt} [\tau(\sigma(t), \dot{\sigma}(t))]|_{t=0},$$

is called the S-curvature of the Finsler space (M, F).

The formula for S-curvature of an (α, β) -metric, in local coordinate system, introduced by Cheng and Shen [4], is as follows:

(4.1)
$$S = \left(2\psi - \frac{f'(b)}{bf(b)}\right)(r_0 + s_0) - \frac{\Phi}{2\alpha\Delta^2}(r_{00} - 2\alpha Q s_0),$$

where

$$egin{array}{rcl} Q &=& rac{\phi^{'}}{\phi-s\phi^{'}}, \ \Delta &=& 1+sQ+(b^{2}-s^{2})Q^{'}, \end{array}$$

M. L. Zeinali and D. Latifi

$$\begin{split} \psi &= \frac{Q'}{2\Delta}, \\ \Phi &= (sQ'-Q)(n\Delta+1+sQ) - (b^2-s^2)(1+sQ)Q'', \\ r_{ij} &= \frac{1}{2}(b_{i|j}+b_{j|i}), \quad r_j = b^i r_{ij}, \quad r_0 = r_{ij}y^i, \quad r_{00} = r_{ij}y^iy^j, \\ s_{ij} &= \frac{1}{2}(b_{i|j}-b_{j|i}), \quad s_j = b^i s_{ij}, \quad s_0 = s_iy^i. \end{split}$$

Definition 4.1. Let (M, F) be an *n*-dimensional Finsler space. If there exists a smooth function c(x) on M and a closed 1-form ω such that

$$S(x,y) = (n+1)(c(x)F(y) + \omega(y)), \quad x \in M, \quad y \in T_x(M),$$

then (M, F) is said to have almost isotropic S-curvature. In addition, if ω is zero, then (M, F) is said to have isotropic S-curvature. Also, if ω is zero and c(x) is constant, then we say, (M, F) has constant S-curvature.

With above notations, let us recall from [14] the following Theorem.

Theorem 4.1. Let $F = \alpha \varphi(s)$ be a *G*-invariant (α, β) -metric on the reductive homogeneous Finsler space G/H with a decomposition of the Lie algebra $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$. Then the *S*-curvature is given by

(4.2)
$$S(H,y) = \frac{\Phi}{2\alpha\Delta^2} \big(\langle [v,y]_{\mathfrak{n}}, y \rangle + \alpha Q \langle [v,y]_{\mathfrak{n}}, v \rangle \big),$$

where $v \in \mathfrak{n}$ corresponds to the 1-form β and \mathfrak{n} is identified with the tangent space $T_H(G/H)$ of G/H at the origin H.

Now, we establish a formula for S-curvature of homogeneous Finsler spaces with square-root metric.

Theorem 4.2. Let G/H be reductive homogeneous Finsler space with a decomposition of the Lie algebra $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{\alpha(\alpha + \beta)}$ be a G-invariant square-root metric on G/H. Then the S-curvature is given by

$$S(H,y) = \left[\frac{6ns^3 + 6(3n+2)s^2 + 4(3n+b^2+5)s + 2(4(n+1)-b^2(n-2))}{-2(3s^2+6s-(b+2)(b-2))^2}\right]$$

$$(4.3) \times \left(\frac{1}{\alpha}\langle [v,y]_{\mathfrak{n}},y\rangle + \frac{1}{s+2}\langle [v,y]_{\mathfrak{n}},v\rangle\right),$$

where $v \in \mathfrak{n}$ corresponds to the 1-form β and \mathfrak{n} is identified with the tangent space $T_H(G/H)$ of G/H at the origin H.

Proof. For square-root metric $F = \alpha \varphi(s)$, where $\varphi(s) = \sqrt{1+s}$, the entities written in 4.1 take the values as follows:

$$Q = \frac{\phi^{'}}{\phi - s\phi^{'}} = \frac{1}{s+2}, \quad Q^{'} = \frac{-1}{(s+2)^2}, \quad Q^{''} = \frac{2}{(s+2)^3},$$

On the Geodesics and S-curvature of a Homogeneous Finsler Space

$$\begin{split} \Delta &= 1 + sQ + (b^2 - s^2)Q' \\ &= 1 + \frac{s}{s+2} + (b^2 - s^2) \Big(\frac{-1}{(s+2)^2} \Big) \\ &= \frac{3s^2 + 6s - (b+2)(b-2)}{(s+2)^2}, \\ \Phi &= (sQ' - Q)(n\Delta + 1 + sQ) + (s^2 - b^2)(1 + sQ)Q'' \\ &= \Big(\frac{-s}{(s+2)^2} - \frac{1}{s+2} \Big) \Big(1 + \frac{3ns^2 + 6ns - n(b-2)(b+2)}{(s+2)^2} \Big) \\ &\quad + (s^2 - b^2)(1 + \frac{s}{s+2})(\frac{2}{(s+2)^3}) \\ &= \frac{6ns^3 + 6(3n+2)s^2 + 4(3n+b^2+5)s + 2\big(4(n+1) - b^2(n-2)\big)}{-(s+2)^4}. \end{split}$$

After substituting these values in 4.2, we get formula 4.3 for S-curvature of homogeneous Finsler space with square-root metric. \Box

Theorem 4.3. Let G/H be reductive homogeneous Finsler space with a decomposition of the Lie algebra $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{(\alpha(\alpha + \beta))}$ be a G-invariant square-root metric on G/H. Then (G/H, F) has isotropic S-curvature if and only if it has vanishing S-curvature.

Proof. For necessary part, suppose G/H has isotropic S-curvature, then

$$S(x,y) = (n+1)c(x)F(y), \quad x \in G/H, \quad y \in T_x(G/H)$$

Taking x = H and y = v in 4.3, we get c(H) = 0. Consequently S(H, y) = 0, $\forall y \in TH(G/H)$. Since F is a homogeneous metric, we have S = 0 everywhere.

For the converse part, let G/H has vanishing S-curvature.then

$$0 = (n+1)(c(x)F(y) + \omega(y)), \quad x \in M, \quad y \in T_x(M).$$

Then we have, $c(x)F(y) + \omega(y) = 0$ and $\omega(y) = 0$. This proof the Theorem. \Box

5. Homogeneous Geodesics

Definition 5.1. A Finsler space (M, F) is called a homogeneous Finsler space if the group of isometries of (M, F), I(M, L) acts transitively on M.

We recall that, Any homogeneous Finsler manifold M = G/H is a reductive homogeneous space.

Definition 5.2. Let (G/H, F) be a homogeneous Finsler space and e be the identity of G. A non-zero vector $X \in \mathfrak{g}$ is called a geodesic vector if the curve exp(tX).eH is a geodesic of (G/H, F).

In [10], the author proved the following result that gives a criterion for a non-zero vector to be a geodesic vector in a homogeneous Finsler space.

Lemma 5.1. A non-zero vector $Y \in \mathfrak{g}$ is a geodesic vector if and only if

 $g_{Y_{\mathfrak{n}}} = (Y_{\mathfrak{n}}, [Y, Z]_{\mathfrak{n}}) = 0, \quad \forall Z \in \mathfrak{g}.$

Next, we deduce necessary and sufficient condition for a nonzero vector in a homogeneous Finsler space with square-root (α, β) -metric to be a geodesic vector.

Theorem 5.1. Let (G/H, F) be a homogeneous Finsler space with

$$F(x,y) = \sqrt{\tilde{a}(y_x, y_x)} + \sqrt{\tilde{a}(y_x, y_x)}\tilde{a}(X_x, y_x).$$

defined by the Riemannian metric \tilde{a} and the vector field X. Then, X is a geodesic vector of $(G/H, \tilde{a})$ if and only if X is a geodesic vector of (G/H, F).

Proof. We know that

$$g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.$$

After some calculations, we get

(5.1)
$$g_{y}(u,v) = \tilde{a}(u,v) - \frac{1}{2} \frac{\tilde{a}(y,v)\tilde{a}(u,y)\tilde{a}(X,y)}{\tilde{a}(y,y)^{\frac{3}{2}}} + \frac{1}{2} \frac{\tilde{a}(u,v)\tilde{a}(X,y) + \tilde{a}(X,v)\tilde{a}(u,y) + \tilde{a}(y,v)\tilde{a}(y,u)}{\tilde{a}(y,y)^{\frac{1}{2}}}.$$

So for all $Z \in \mathfrak{n}$, we have

$$g_{X_{\mathfrak{n}}}(X_{\mathfrak{n}}, [X, Z]_{\mathfrak{n}}) = \tilde{a}(X_{\mathfrak{n}}, [X, Z]_{\mathfrak{n}}) \left[1 + \sqrt{\tilde{a}(X, X)}\right].$$

Thus, $g_{X_{\mathfrak{n}}}(X_{\mathfrak{n}}, [X, Z]_{\mathfrak{n}}) = 0$ if and only if

$$\tilde{a}(X_{\mathfrak{n}}, [X, Z]_{\mathfrak{n}}) = 0.$$

This completes the proof. \Box

Theorem 5.2. Let (G/H, F) be a homogeneous Finsler space with

$$F(x,y) = \sqrt{\tilde{a}(y_x, y_x)} + \sqrt{\tilde{a}(y_x, y_x)}\tilde{a}(X_x, y_x).$$

defined by the Riemannian metric \tilde{a} and the vector field X. Let $y \in \mathfrak{g} - \{0\}$ be a vector which $\tilde{a}(X, [y, z]_{\mathfrak{n}}) = 0$, for all $z \in \mathfrak{n}$. Then, y is a geodesic vector of (G/H, F) if and only if y is a geodesic vector of $(G/H, \tilde{a})$.

Proof. By using the relation 5.1 and some computations, we have

$$g_{y_{\mathfrak{n}}}(y_{\mathfrak{n}}, [y, z]_{\mathfrak{n}}) = \tilde{a}(y_{\mathfrak{n}}, [y, z]_{\mathfrak{n}}) \left[1 + \frac{1}{2} \frac{\tilde{a}(X, y)}{\sqrt{\tilde{a}(y, y)}} \right] \\ + \frac{1}{2} \tilde{a}(X, [y, z]_{\mathfrak{n}}) \sqrt{\tilde{a}(y, y)}.$$

This completes the proof. \Box

Mean Berwald Curvature 6.

Let $E_{ij} = \frac{1}{2} \frac{\partial^2}{\partial y^i \partial y^j} (\frac{\partial G^m}{\partial y^m})(x, y)$, where G^m are spray coefficients. Then $\Xi := E_{ij} dx^i \otimes dx^j$ is a tensor on $TM \setminus \{0\}$, which called E tensor. E tensor can also be viewed as a family of symmetric forms defined as

$$E_y: T_x M \times T_x M \to \mathbb{R},$$

$$E_y(u, v) = E_{ij}(x, y)u^i v^j,$$

where $u = u^i \frac{\partial}{\partial x^i}|_x, v = v^i \frac{\partial}{\partial x^i}|_x \in T_x M$. Then the collection $\{E_y : y \in TM \setminus \{0\}\}$ is called *E*-curvature or Mean Berwald curvature.

In this section, we calculate the mean Berwald curvature of a homogeneous Finsler space with square-root metric. We need the following:

At the origin, we have $a_{ij} = \delta^i_j$, therefore,

$$y_{i} = a_{ij}y^{j} = \delta_{j}^{i}y^{j} = y^{i},$$
$$\alpha_{y^{i}} = \frac{y_{i}}{\alpha}, \quad \beta_{y^{i}} = b_{i},$$
$$s_{y^{i}} = \frac{\partial}{\partial y^{i}}(\frac{\beta}{\alpha}) = \frac{b_{i}\alpha - sy_{i}}{\alpha^{2}},$$

$$s_{y^i y^j} = \frac{\partial}{\partial y^j} \left(\frac{b_i \alpha - sy_i}{\alpha^2} \right) = \frac{-(b_i y_j + b_j y_i)\alpha + 3sy_i y_j - \alpha^2 s \delta_j^i}{\alpha^4}.$$

Now let in 4.3 we set:

$$\left[\frac{6ns^3 + 6(3n+2)s^2 + 4(3n+b^2+5)s + 2(4(n+1)-b^2(n-2))}{-2(3s^2+6s-(b+2)(b-2))^2}\right] = A.$$

Then we have

M. L. Zeinali and D. Latifi

$$\frac{\partial A}{\partial y^{j}} = \left[\frac{8 + 2b^{4} + 60s + 90s^{2} + 36s^{3} + 3n(8 + 4s + 6s^{2} + 12s^{3} + 3s^{4})}{(4 - b^{2} + 6s + 3s^{2})^{3}} + \frac{b^{2}(26 + 48s + 18s^{2} + n(-6 + 6s + 9s^{2}))}{(4 - b^{2} + 6s + 3s^{2})^{3}} \right] s_{y^{j}},$$

and

$$\begin{split} \frac{\partial^2 A}{\partial y^i \partial y^j} &= \frac{\partial}{\partial y^i} \Biggl[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} \Biggr] s_{y^j} \\ &+ \frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s + 3s^2)^3} \Biggr] s_{y^j y^j} \\ &+ \Biggl[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} \Biggr] s_{y^i y^j} \\ &= \Biggl[\frac{6(-9ns^5 - 45ns^4 - 54s^4 - 36b^2s^3 - 24b^2ns^3 - 12ns^3 - 180s^3 + 24ns^2}{(4 - b^2 + 6s + 3s^2)^4} \Biggr] \\ &+ \frac{-156b^2s^2 - 42b^2ns^2 - 168s^2 + 12b^2ns - 12b^4s - 180b^2s - 3b^4ns - 72ns}{(4 - b^2 + 6s + 3s^2)^4} \\ &+ \frac{-24s + 20b^2n + 16 - 14b^2 - b^4n - 56b^2 - 64n}{(4 - b^2 + 6s + 3s^2)^4} \Biggr] s_{y^i}s_{y^j} \\ &+ \Biggl[\Biggl[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^4} \Biggr] \\ &+ \Biggl[\Biggl[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^4} \Biggr] \Biggr] \\ &+ \Biggl[\frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s + 3s^2)^3} \Biggr] \Biggr]$$

Theorem 6.1. Let G/H be a reductive homogeneous Finsler space with a decomposition of the Lie algebra $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{\alpha(\alpha + \beta)}$ be a G-invariant square-root metric on G/H. Then the mean Berwald curvature of the homogeneous Finsler space with suare-root metric is given by

$$\begin{split} E_{ij}(H,y) &= \frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{y_i}{\alpha^3} \frac{\partial A}{\partial y^j} - \frac{y_j}{\alpha^3} \frac{\partial A}{\partial y^i} - \frac{A}{\alpha^3} \delta_i^j + \frac{3A}{\alpha^5} y_i y_j \right) \langle [v,y\rangle_{\mathfrak{n}}, y\rangle \\ &+ \frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{Ay_j}{\alpha^3} \right) \left(\langle [v,v_i]_{\mathfrak{n}}, y\rangle + \langle [v,y]_{\mathfrak{n}}, v_i \rangle \right) \end{split}$$

On the Geodesics and S-curvature of a Homogeneous Finsler Space

$$(6.1) + \frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^{i}} - \frac{Ay_{i}}{\alpha^{3}} \right) \left(\langle [v, v_{j}]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_{j} \rangle \right) \\ + \frac{A}{2\alpha} \left(\langle [v, v_{j}]_{\mathfrak{n}}, v_{i} \rangle + \langle [v, v_{i}]_{\mathfrak{n}}, v_{j} \rangle \right) \\ + \frac{1}{2} \left(\frac{1}{s+2} \frac{\partial^{2}A}{\partial y^{i} \partial y^{j}} - \frac{1}{(s+2)^{2}} s_{y^{i}} \frac{\partial A}{\partial y^{j}} - \frac{1}{(s+2)^{2}} s_{y^{j}} \frac{\partial A}{\partial y^{i}} \right) \\ + \frac{1}{2} \left(\frac{2A}{(s+2)^{3}} s_{y^{i}} s_{y^{j}} - \frac{A}{(s+2)^{2}} s_{y^{i}} y^{j} \right) \left\langle [v, y]_{\mathfrak{n}}, v \right\rangle \\ + \frac{1}{2} \left(\frac{1}{s+2} \frac{\partial A}{\partial y^{j}} - \frac{A}{(s+2)^{2}} s_{y^{j}} \right) \left\langle [v, v_{i}]_{\mathfrak{n}}, v \right\rangle \\ + \frac{1}{2} \left(\frac{1}{s+2} \frac{\partial A}{\partial y^{i}} - \frac{A}{(s+2)^{2}} s_{y^{i}} \right) \left\langle [v, v_{j}]_{\mathfrak{n}}, v \right\rangle.$$

where $v \in \mathfrak{n}$ corresponds to the 1-form β and \mathfrak{n} is identified with the tangent space $T_H(G/H)$ of G/H at the origin H.

Proof. From 4.3, we can write S-curvature at the origin as follows:

$$S(H, y) = \phi + \psi,$$

where

$$\phi = \frac{A}{\alpha} \langle [v, y]_{\mathfrak{n}}, y \rangle \quad and \quad \psi = \frac{A}{s+2} \langle [v, y]_{\mathfrak{n}}, v \rangle.$$

Therefore, mean Berwald curvature is

(6.2)
$$E_{ij} = \frac{1}{2} \frac{\partial^2 S}{\partial y^i \partial y^j} = \frac{1}{2} \left(\frac{\partial^2 \phi}{\partial y^i \partial y^j} + \frac{\partial^2 \psi}{\partial y^i \partial y^j} \right),$$

where $\frac{\partial^2 \phi}{\partial y^i \partial y^j}$ and $\frac{\partial^2 \psi}{\partial y^i \partial y^j}$ are calculated as follows:

$$\begin{split} \frac{\partial \phi}{\partial y^j} &= \frac{\partial}{\partial y^j} \left(\frac{A}{\alpha} \langle [v, y]_{\mathfrak{n}}, y \rangle \right) \\ &= \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A}{\alpha^2} \frac{y_j}{\alpha} \right) \langle [v, y]_{\mathfrak{n}}, y] \rangle + \frac{A}{\alpha} (\langle [v, v_j]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle), \end{split}$$

$$\begin{split} \frac{\partial^2 \phi}{\partial y^i \partial y^j} &= \frac{\partial}{\partial y^i} \left[\left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A y_j}{\alpha^3} \right) \langle [v, y]_{\mathfrak{n}}, y \rangle + \frac{A}{\alpha} (\langle [v, v_j]_{\mathfrak{n}}, y] \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle) \right] \\ &= \left(\frac{1}{\alpha} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{y_i}{\alpha^3} \frac{\partial A}{\partial y^j} - \frac{y_j}{\alpha^3} \frac{\partial A}{\partial y^i} - \frac{A}{\alpha^3} \delta_i^j + \frac{3A}{\alpha^5} y_i y_j \right) \langle [v, y \rangle_{\mathfrak{n}}, y \rangle \\ &+ \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A y_j}{\alpha^3} \right) (\langle [v, v_i]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_i \rangle) \end{split}$$

M. L. Zeinali and D. Latifi

$$+ \left(\frac{1}{\alpha}\frac{\partial A}{\partial y^{i}} - \frac{Ay_{i}}{\alpha^{3}}\right)(\langle [v, v_{j}]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_{j} \rangle)$$

+
$$\frac{A}{\alpha}(\langle [v, v_{j}]_{\mathfrak{n}}, v_{i} \rangle + \langle [v, v_{i}]_{\mathfrak{n}}, v_{j} \rangle),$$

 $\quad \text{and} \quad$

$$\begin{split} \frac{\partial \psi}{\partial y^j} &= \quad \frac{\partial}{\partial y^j} \left(\frac{A}{s+2} \langle [v,y]_{\mathfrak{n}},v \rangle \right) \\ &= \quad \left[\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right] \langle [v,y]_{\mathfrak{n}},v \rangle + \frac{A}{s+2} \langle [v,v_j]_{\mathfrak{n}},v \rangle, \end{split}$$

$$\begin{split} \frac{\partial^2 \psi}{\partial y^i \partial y^j} &= \frac{\partial}{\partial y^i} \left[\left(\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right) \langle [v,y]_{\mathfrak{n}}, v \rangle + \frac{A}{s+2} \langle [v,v_j]_{\mathfrak{n}}, v \rangle \right] \\ &= \left(\frac{1}{s+2} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{1}{(s+2)^2} s_{y^i} \frac{\partial A}{\partial y^j} - \frac{1}{(s+2)^2} s_{y^j} \frac{\partial A}{\partial y^i} \right) \\ &+ \left(\frac{2A}{(s+2)^3} s_{y^i} s_{y^j} - \frac{A}{(s+2)^2} s_{y^i y^j} \right) \langle [v,y]_{\mathfrak{n}}, v \rangle \\ &+ \left(\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right) \langle [v,v_i]_{\mathfrak{n}}, v \rangle \\ &+ \left(\frac{1}{s+2} \frac{\partial A}{\partial y^i} - \frac{A}{(s+2)^2} s_{y^i} \right) \langle [v,v_j]_{\mathfrak{n}}, v \rangle. \end{split}$$

Substituting all above values in 6.2, we get formula 6.1. \Box

REFERENCES

- H. AN and S. DENG: Invariant (α,β)-metric on homogeneous manifolds. Monatsh. Math. 154 (2008), 89–102.
- 2. D. BAO, S.S. CHERN and Z. SHEN: An Introduction to Riemann-Finsler Geometry. Springer, New York (2000).
- S. BOCHNER and D. MONTGOMERY: Locally compact groups of differentiable transformations. Ann. Math. 47 (1946), 639–653.
- X. CHENG and Z. SHEN: A class of Finsler metrics with isotropic S-curvature. Israel J. Math. 169 (2009), 317–340.
- 5. S. S. CHERN and Z. SHEN: *Riemann-Finsler geometry*. World Scientific, Nankai Tracts in Mathematics, **6** (2005).
- 6. S. DENG: *Homogeneous Finsler Spaces*. Springer Monographs in Mathematics, NewYork, (2012).

On the Geodesics and S-curvature of a Homogeneous Finsler Space

- S. DENG and Z. HOU: Invariant Randers metrics on Homogeneous Riemannian manifolds J. Phys. A: Math. General. 37 (2004), 4353–4360; Corrigendum, Ibid, 39 (2006), 5249–5250.
- S. DENG and Z. HOU: The group of isometries of a Finsler space. Pacific J. Math. 207 (2002) 149–155.
- R.S. INGARDEN: On the geometrically absolute optical representation in the electron microscope. Trav. Soc. Sci. Lett. Wrochlaw. Ser. B. 3 (1957), 60.
- D. LATIFI: Homogeneous geodesics in homogeneous Finsler spaces. J. Geom. Phys. 57 (2007), 1421–1433.
- 11. M. MATSUMOTO: Theory of Finsler spaces with (α, β) -metric. Rep. Math. Phys. **31** (1992), 43–83.
- K. NOMIZU: Invariant affine connections on homogeneous spaces. Amer. J. Math. 76 (1954), 33–65.
- 13. M. PARHIZKAR, D.LATIFI: On the flog curvature of invariant (α, β) -metrics. Int. J. Geom. Methods Mod. Phys. **13** (2016), 1650039, 1–11.
- 14. G. SHANKER and K. KAUR: Homogeneous Finsler space with infinite series (α, β) -metric. Appl. Sci. **21** (2019), 220–236.
- G. SHANKER and S. RANI: On S-curvature of a homogeneous Finsler space with square metric. Int. J. Geom. Meth. Mod. Physics. 17(2) (2020), 2050019.
- Z. SHEN: Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math. 128 (1997), 306–328.