FACTA UNIVERSITATIS (NIŠ) Ser. Math. Inform. Vol. 39, No 4 (2024), 745–759 https://doi.org/10.22190/FUMI231104049Z **Original Scientific Paper**

ON THE GEODESICS AND *S***-CURVATURE OF A HOMOGENEOUS FINSLER SPACE WITH SQUARE-ROOT** (*α, β*)**-METRIC**

Milad L. Zeinali and Dariush Latifi

Department of Mathematics, Faculty of Science University of Mohaghegh Ardabili, Ardabil, Iran

ORCID IDs: Milad L. Zeinali Dariush Latifi

https://orcid.org/0000-0003-2984-4605 **https://orcid.org/0000-0002-3468-5453**

Abstract. In this paper, we consider the square-root (α, β) -metric F which satisfies $F(\alpha, \beta) = \sqrt{\alpha(\alpha + \beta)}$. We prove the existence of invariant vector fields on a homogeneous Finsler space with square-root metric. Then we obtain the explicit formula for the *S*-curvature and mean Berwald curvature of homogeneous Finsler space with square-root metric. We study geodesics and geodesic vectors for homogeneous squareroot $(α, β)$ -metric.

Keywords: homogeneous Finsler space, square-root metric, *S*-curvature, invariant vector field, geodesic vector, mean Berwald curvature.

1. Introduction

An important family of Finsler metrics is the family of (α, β) -metric. These metrics are introduced by Matsumoto[11]. An (α, β) -metric is a Finsler metric of the form $F = \alpha \phi(s)$, $s = \frac{\beta}{\alpha}$ where $\alpha = \sqrt{\tilde{a}_{ij}(x)y^i y^j}$ is induced by a Riemannian metric $\tilde{a} = \tilde{a}_{ij} dx^{i} \otimes dx^{j}$ on a connected smooth n-dimensional manifold *M* and $\beta = b_i(x)y^i$ is a 1-form on *M*. The class of p-power (α, β) -metrics on a manifold *M* is in the following form

$$
F = \alpha \left(1 + \frac{\beta}{\alpha} \right)^p,
$$

Received November 04, 2023, accepted: March 14, 2024

Communicated by Uday Chand De

Corresponding Author: Dariush Latifi. E-mail addresses: miladzeinali@gmail.com (M. L. Zeinali), latifi@uma.ac.ir (D. Latifi)

²⁰²⁰ *Mathematics Subject Classification.* Primary 22E60; Secondary 53C30, 53C60

[⃝]^c 2024 by University of Niˇs, Serbia *[|]* Creative Commons License: CC BY-NC-ND

where $p \neq 0$ is a real constant. If $p = 1$, then we get the Randers metric $F = \alpha + \beta$. This metric was first recognized as kind of Finsler metric in 1957 by Ingarden, who first named them Randers metric [9]. If $p = -1$, then we have the Matsumoto metric $F = \frac{\alpha^2}{(\alpha +)}$ $\frac{\alpha^2}{(\alpha+\beta)}$. Matsumoto metric is an important metric in Finsler geometry.

In the case of $p = 1/2$, we get

$$
F = \sqrt{\alpha(\alpha + \beta)},
$$

which is called a square-root metric. In this paper, we study square-root metrics. We study the existence of invariant vector fields on homogeneous Finsler spaces with square-root metrics. Invariant vector fields on homogeneous Finsler spaces has been studied by some authors in recent years (see [10, 13, 15]). Further, we give an explicit formula for *S*-curvature of square-root (α, β) -metric.

2. Preliminaries

In this section, we recall some known facts about Finsler spaces, for details see [2]. Let *M* be a smooth *n*- dimensional C^{∞} manifold and *TM* be its tangent bundle. A Finsler metric on a manifold *M* is a non-negative function $F: TM \rightarrow R$ with the following properties [2]:

- 1) *F* is smooth on the slit tangent bundle $TM^0 := TM \setminus \{0\}.$
- 2) $F(x, \lambda y) = \lambda F(x, y)$ for any $x \in M$, $y \in T_xM$ and $\lambda > 0$.

3) The following bilinear symmetric form g_y : $T_xM \times T_xM \longrightarrow R$ is positive definite

$$
g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.
$$

Definition 2.1. Let $\alpha = \sqrt{\tilde{a}_{ij}(x)y^i y^j}$ be a norm iduced by a Riemannian metric \tilde{a} and $\beta(x, y) = b_i(x)y^i$ be a 1*−*form on an *n−*dimensional manifold *M*. Let

$$
\|\beta(x)\|_\alpha:=\sqrt{\tilde{a}^{ij}(x)b_i(x)b_j(x)}.
$$

Now, let the function *F* is defined as follows

(2.1)
$$
F := \alpha \phi(s) \quad , \quad s = \frac{\beta}{\alpha},
$$

where $\phi = \phi(s)$ is a positive C^{∞} function on $(-b_0, b_0)$ satisfying

$$
\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0 \quad , \quad |s| \le b < b_0.
$$

Then by lemma 1.1.2 of [5], *F* is a Finsler metric if $\|\beta(x)\|_{\alpha} < b_0$ for any $x \in M$. A Finsler metric in the form (2.1) is called an (α, β) −metric [1, 5].

Definition 2.2. A Finsler space having the Finsler function:

(2.2)
$$
F = \sqrt{\alpha(x, y)(\alpha(x, y) + \beta(x, y))},
$$

is called a square-root space with $\phi(s) = \sqrt{1+s}$.

Before defining homogeneous Finsler spaces, we discuss here some basic concepts required.

Definition 2.3. Let *G* be a smooth manifold having the structure of an abstract group. *G* is called a Lie group, if the maps $i: G \to G$ and $\mu: G \times G \to G$ defined as $i(g) = g^{-1}$, and $\mu(g, h) = gh$, respectively, are smooth.

Let *G* be a Lie group and *M*, a smooth manifold. Then a smooth map $f: G \times M \rightarrow$ *M* satisfying

$$
f(g_2, f(g_1, x)) = f(g_2g_1, x), \quad \forall g_1, g_2 \in G, \quad x \in M,
$$

$$
f(e, x) = x, \quad \forall x \in M,
$$

is called a smooth action of *G* on *M*.

Definition 2.4. Let *M* be a smooth manifold and *G*, a Lie group. If *G* acts smoothly on *M*, then *G* is called a Lie transformation group of *M*.

The following Theorem gives us a differentiable structure on the coset space of a Lie group.

Theorem 2.1. *Let G be a Lie group and H, its closed subgroup. Then there exists a unique differentiable structure on the left coset space G/H with the induced topology that turns G/H into a smooth manifold such that G is a Lie transformation group of G/H.*

Definition 2.5. Let (M, F) be a connected Finsler space and $I(M, F)$ the group of isometries of (M, F) . If the action of $I(M, F)$ is transitive on M, then (M, F) is said to be a homogeneous Finsler space.

Let *G* be a Lie group acting transitively on a smooth manifold *M*. Then for $a \in M$, the isotropy subgroup G_a of *G* is a closed subgroup and by Theorem 2.1, *G* is a Lie transformation group of G/G_a . Further, G/G_a is diffeomorphic to M.

BochnerMontgomery in [3] proved that a locally compact group of differentiable transformations of a manifold is a Lie transformation group. Therefore we have the following Theorem.

Theorem 2.2. *[6]* Let (M, F) be a Finsler space. Then $G = I(M, F)$, the group *of isometries of M is a Lie transformation group of M. Let* $a \in M$ *and* $I_a(M, F)$ *be the isotropy subgroup of* $I(M, F)$ *at a. Then* $I_a(M, F)$ *is compact.*

Let (M, F) be a homogeneous Finsler space, i.e. $G = I(M, F)$ acts transitively on *M*. For $a \in M$, let $H = I_a(M, F)$ be a closed isotropy subgroup of *G* which is compact. Then *H* is a Lie group itself being a closed subgroup of *G*. Write *M* as the quotient space *G/H*.

Definition 2.6. [12] Let g and h be the Lie algebras of the Lie groups G and H respectively. Then the direct sum decomposition of \mathfrak{g} as $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, where \mathfrak{n} is a subspace of g such that $Ad(h)(n) \subset n, \forall h \in H$, is called a reductive decomposition of $\mathfrak g$, and if such decomposition exists, then $(G/H, F)$ is called reductive homogeneous space.

Therefore, we can write any homogeneous Finsler space as a coset space of a connected Lie group with an invariant Finsler metric. Here, the Finsler metric *F* is viewed as *G* invariant Finsler metric on *M*.

Definition 2.7. A one-parameter subgroup of a Lie group *G* is a homomorphism $\mathcal{E}: R \to G$, such that $\mathcal{E}(0) = e$, where *e* is the identity of *G*.

Recall [6] the following result which gives us the existence of one-parameter subgroup of a Lie group.

Theorem 2.3. Let G be a Lie group having Lie algebra g. Then for any $Y \in \mathfrak{g}$, *there exists a unique locally one-parameter subgroup* ξ *such that* $\dot{\xi}(0) = Y_e$ *, where e is the identity element of G.*

Definition 2.8. Let *G* be a Lie group with identity element *e* and g its Lie algebra. The exponential map $exp: \mathfrak{g} \to G$ is defined by

$$
exp(tY) = \xi(t), \quad \forall t \in R,
$$

where $\xi : R \to G$ is unique one-parameter subgroup of *G* with $\dot{\xi}(0) = Y_e$.

In the case of reductive homogeneous manifold, we can identify the tangent space $T_H(G/H)$ of G/H at the origin $eH = H$ with n through the map

$$
Y \to \frac{d}{dt} \exp(tX) H|_{t=0}, \quad Y \in \mathfrak{n},
$$

since M is identified with G/H and Lie algebra of any Lie group G is viewed as *TeG*.

3. Invariant Vector Field

The Riemannian metric \tilde{a} induces an inner product on any cotangent space T_x^*M such that $\langle dx^i(x), dx^j(x) \rangle = \tilde{a}^{ij}(x)$. The induced inner product on T_x^*M induces a

linear isomorphism between T_x^*M and T_xM . Then the 1-form β corresponds to a vector field \tilde{X} on M such that

$$
\tilde{a}(y, \tilde{X}(x)) = \beta(x, y).
$$

Also we have $||\beta(x)||_{\alpha} = ||\tilde{X}(x)||_{\alpha}$. Therefore we can write (α, β) *-metrics* as follows:

$$
F(x,y)=\alpha(x,y)\phi\Big(\frac{\tilde a\big(\tilde X(x),y\big)}{\alpha(x,y)}\Big),
$$

where for any $x \in M$, $\sqrt{\tilde{a}(\tilde{X}(x), \tilde{X}(x))} = ||\tilde{X}(x)||_{\alpha} < b_0$.

So for square-root metric, we can write

(3.1)
$$
F(x,y) = \sqrt{\tilde{a}(y_x, y_x) + \sqrt{\tilde{a}(y_x, y_x)}\tilde{a}(X_x, y_x)}.
$$

Lemma 3.1. *Let* (M, F) *be a Finsler space with square-root metric* $F = \sqrt{\alpha(\alpha + \beta)}$ *.* Let $I(M, F)$ be the group of isometries of (M, F) and $I(M, \tilde{a})$ be that of Riemannian space (M, \tilde{a}) *. Then* $I(M, F)$ *is a closed subgroup of* $I(M, \tilde{a})$ *.*

Proof. Let $x \in M$ and $\xi : (M, F) \to (M, F)$ be an isometry. Therefore, we have

$$
F(x,Y) = F(\xi(x), d\xi_x(Y)), \quad \forall Y \in T_xM.
$$

So we have

$$
\sqrt{\tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y)}
$$
\n
$$
= \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y)) + \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y))}\tilde{a}(X_{\xi(x)}, d\xi_x(Y))}.
$$

After simplification, we get

(3.2)
$$
\tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y)
$$

$$
= \tilde{a}(d\xi_x(Y), d\xi_x(Y)) + \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y)})\tilde{a}(X_{\xi(x)}, d\xi_x(Y)).
$$

Replacing *Y* by *−Y* in 3.2 implies that

(3.3)
$$
\tilde{a}(Y,Y) - \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X_x,Y) = \tilde{a}(d\xi_x(Y), d\xi_x(Y)) - \sqrt{\tilde{a}(d\xi_x(Y), d\xi_x(Y))}\tilde{a}(X_{\xi(x)}, d\xi_x(Y)).
$$

Adding equations 3.2 and 3.3, we get

(3.4)
$$
\tilde{a}(Y,Y) = \tilde{a}(d\xi_x(Y), d\xi_x(Y)).
$$

Subtracting equation 3.3 from equation 3.2 and use equation 3.4, we get

$$
\tilde{a}(X_x, Y) = \tilde{a}(X_{\xi(x)}, d\xi_x(Y)).
$$

Therefore, ξ is an isometry with respect to the Riemannian metric \tilde{a} and $d\xi_x(X_x) =$ $X_{\xi(x)}$. Thus, $I(M, F)$ is a closed subgroup of $I(M, \tilde{a})$.

From Lemma 3.1, we conclude that if (M, F) is a homogeneous Finsler space with square-root metric $F = \sqrt{\alpha(\alpha + \beta)}$, then the Riemannian space (M, α) is homogeneous. Further, *M* can be written as a coset space G/H , where $G = I(M, F)$ is a Lie transformation group of *M* and *H*, the compact isotropy subgroup $I_a(M, F)$ of $I(M, F)$ at some point $a \in M$ [8]. Let g and h be the Lie algebras of the Lie groups G and H , respectively. If $\mathfrak g$ can be written as a direct sum of subspaces $\mathfrak h$ and **n** of **g** such that $Ad(h)$ **n** \subset **n**, $\forall h \in H$, then from Definition 2.6, $(G/H, F)$ is a reductive homogeneous space.

Therefore, homogeneous Finsler space with square-root metric can be written as a coset space of a connected Lie group with square metric. Here, the square-root metric $F = \sqrt{\alpha(\alpha + \beta)}$ is viewed as *G* invariant Finsler metric on *M*.

Theorem 3.1. Let $F = \sqrt{\alpha(\alpha + \beta)}$ be a *G*-invariant square-root metric on G/H , *X the vector field corresponding to 1-form β. Then α is a G-invariant Riemannian metric and the vector field X is also G-invariant.*

Proof. Let *F* be *G*-invariant metric on *G/H*, we have

$$
F(y) = F(Ad(h)y), \quad \forall h \in H, \quad Y \in \mathfrak{n}.
$$

By 3.1, we get

$$
\sqrt{\tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X,Y)}
$$
\n
$$
= \sqrt{\tilde{a}(Ad(h)Y, Ad(h)Y) + \sqrt{\tilde{a}(Ad(h)Y, Ad(h)Y)}\tilde{a}(X, Ad(h)Y)}.
$$

After simplification, we get

(3.5)
$$
\tilde{a}(Y,Y) + \sqrt{\tilde{a}(Y,Y)}\tilde{a}(X,Y)
$$

$$
= \tilde{a}(Ad(h)Y, Ad(h)Y) + \sqrt{\tilde{a}(Ad(h)Y, Ad(h)Y)}\tilde{a}(X, Ad(h)Y).
$$

Replacing *Y* by *−Y* in 3.5 implies that

(3.6)
$$
\tilde{a}(Y, Y) - \sqrt{\tilde{a}(Y, Y)} \tilde{a}(X, Y) = \tilde{a}(Ad(h)Y, Ad(h)Y) - \sqrt{\tilde{a}(Ad(h)Y, Ad(h)Y)} \tilde{a}(X, Ad(h)Y).
$$

Adding equations 3.5 and 3.6, we get

(3.7)
$$
\tilde{a}(Y,Y) = \tilde{a}(Ad(h)Y, Ad(h)Y).
$$

Subtracting equation 3.6 from equation 3.5 and use equation 3.7, we get

$$
\tilde{a}(X, Y) = \tilde{a}(X, Ad(h)Y).
$$

Therefore, α is a *G*-invariant Riemannian metric and

$$
Ad(h)X = X,
$$

which proves that *X* is also *G*-invariant. \square

The following Theorem gives us a complete description of invariant vector fields.

Theorem 3.2. *[7] There exists a bijection between the set of invariant vector fields on G/H and the subspace*

$$
V = \{ Y \in \mathfrak{n} : Ad(h)Y = Y, \forall h \in H \}.
$$

4. *S***-Curvature of Homogeneous Finsler Space with Square-root Metric**

S-curvature was introduced by Shen in [16]. It is a quantity to measure the rate of change of the volume form of a Finsler space along geodesics. Let *V* be an *n*-dimensional real vector space and *F* a Minkowski norm on *V*. For a basis ${b_i}$ of *V* , let

$$
\sigma_F = \frac{Vol(B^n)}{Vol\{(y^i) \in R^n | \ F(y^i b_i) < 1\}},
$$

where *V ol* means the volume of a subset in the standard Euclidean space *Rⁿ* and $Bⁿ$ is the open ball of radius 1. This quantity is generally dependent on the choice of the basis ${b_i}$. But it is easily seen that

$$
\tau(y) = \ln \frac{\sqrt{det(g_{ij}(y))}}{\sigma_F}, \quad y \in V - \{0\},\
$$

is independent of the choice of basis. We call $\tau = \tau(y)$ the distortion of (V, F) .

Now let (M, F) be a Finsler space. Let $\tau(x, y)$ be the distortion of the Minkowski norm F_x on $T_x(M)$ and σ the geodesic with $\sigma(0) = x$ and $\dot{\sigma}(0) = y$. Then the quantity

$$
S(x,y) = \frac{d}{dt} [\tau(\sigma(t), \dot{\sigma}(t))]|_{t=0},
$$

is called the *S*-curvature of the Finsler space (*M, F*).

The formula for *S*-curvature of an (α, β) -metric, in local coordinate system, introduced by Cheng and Shen [4], is as follows:

(4.1)
$$
S = \left(2\psi - \frac{f'(b)}{bf(b)}\right)(r_0 + s_0) - \frac{\Phi}{2\alpha\Delta^2}(r_{00} - 2\alpha Qs_0),
$$

where

$$
Q = \frac{\phi'}{\phi - s\phi'},
$$

\n
$$
\Delta = 1 + sQ + (b^2 - s^2)Q',
$$

752 M. L. Zeinali and D. Latifi

$$
\psi = \frac{Q'}{2\Delta},
$$
\n
$$
\Phi = (sQ' - Q)(n\Delta + 1 + sQ) - (b^2 - s^2)(1 + sQ)Q'',
$$
\n
$$
r_{ij} = \frac{1}{2}(b_{i|j} + b_{j|i}), \quad r_j = b^i r_{ij}, \quad r_0 = r_i y^i, \quad r_{00} = r_{ij} y^i y^j,
$$
\n
$$
s_{ij} = \frac{1}{2}(b_{i|j} - b_{j|i}), \quad s_j = b^i s_{ij}, \quad s_0 = s_i y^i.
$$

Definition 4.1. Let (M, F) be an *n*-dimensional Finsler space. If there exists a smooth function $c(x)$ on *M* and a closed 1-form ω such that

$$
S(x,y) = (n+1)(c(x)F(y) + \omega(y)), \quad x \in M, \quad y \in T_x(M),
$$

then (M, F) is said to have almost isotropic *S*-curvature. In addition, if ω is zero, then (M, F) is said to have isotropic *S*-curvature. Also, if ω is zero and $c(x)$ is constant, then we say, (*M, F*) has constant *S*-curvature.

With above notations, let us recall from [14] the following Theorem.

Theorem 4.1. Let $F = \alpha \varphi(s)$ be a *G*-invariant (α, β) -metric on the reductive *homogeneous Finsler space* G/H *with a decomposition of the Lie algebra* $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$ *. Then the S-curvature is given by*

(4.2)
$$
S(H, y) = \frac{\Phi}{2\alpha\Delta^2} (\langle [v, y]_{\mathfrak{n}}, y \rangle + \alpha Q \langle [v, y]_{\mathfrak{n}}, v \rangle),
$$

where $v \in \mathfrak{n}$ *corresponds to the 1-form* β *and* \mathfrak{n} *is identified with the tangent space* $T_H(G/H)$ *of* G/H *at the origin* H *.*

Now, we establish a formula for *S*-curvature of homogeneous Finsler spaces with square-root metric.

Theorem 4.2. *Let G/H be reductive homogeneous Finsler space with a decomposition of the Lie algebra* $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{\alpha(\alpha + \beta)}$ be a *G*-invariant square-root *metric on G/H. Then the S-curvature is given by*

$$
S(H, y) = \left[\frac{6ns^3 + 6(3n+2)s^2 + 4(3n+b^2+5)s + 2(4(n+1)-b^2(n-2))}{-2(3s^2+6s - (b+2)(b-2))^2} \right]
$$

(4.3)
$$
\times \left(\frac{1}{\alpha} \langle [v, y]_{\mathfrak{n}}, y \rangle + \frac{1}{s+2} \langle [v, y]_{\mathfrak{n}}, v \rangle \right),
$$

where $v \in \mathfrak{n}$ *corresponds to the 1-form* β *and* \mathfrak{n} *is identified with the tangent space* $T_H(G/H)$ *of* G/H *at the origin* H *.*

Proof. For square-root metric $F = \alpha \varphi(s)$, where $\varphi(s) = \sqrt{1+s}$, the entities written in 4.1 take the values as follows:

$$
Q = \frac{\phi'}{\phi - s\phi'} = \frac{1}{s+2}, \quad Q' = \frac{-1}{(s+2)^2}, \quad Q'' = \frac{2}{(s+2)^3},
$$

On the Geodesics and *S*-curvature of a Homogeneous Finsler Space 753

$$
\Delta = 1 + sQ + (b^2 - s^2)Q'
$$

= $1 + \frac{s}{s+2} + (b^2 - s^2) \left(\frac{-1}{(s+2)^2}\right)$
= $\frac{3s^2 + 6s - (b+2)(b-2)}{(s+2)^2}$,

$$
\Phi = (sQ' - Q)(n\Delta + 1 + sQ) + (s^2 - b^2)(1 + sQ)Q''
$$

= $\left(\frac{-s}{(s+2)^2} - \frac{1}{s+2}\right)\left(1 + \frac{3ns^2 + 6ns - n(b-2)(b+2)}{(s+2)^2}\right)$

$$
+ (s^2 - b^2)(1 + \frac{s}{s+2})(\frac{2}{(s+2)^3})
$$

= $\frac{6ns^3 + 6(3n+2)s^2 + 4(3n + b^2 + 5)s + 2(4(n + 1) - b^2(n-2))}{-(s+2)^4}.$

After substituting these values in 4.2, we get formula 4.3 for S-curvature of homogeneous Finsler space with square-root metric. \square

Theorem 4.3. *Let G/H be reductive homogeneous Finsler space with a decomposition of the Lie algebra* $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{(\alpha(\alpha + \beta))}$ be a *G*-invariant *square-root metric on G/H. Then* (*G/H, F*) *has isotropic S-curvature if and only if it has vanishing S-curvature.*

Proof. For necessary part, suppose G/H has isotropic S-curvature, then

$$
S(x, y) = (n+1)c(x)F(y), \quad x \in G/H, \quad y \in T_x(G/H).
$$

Taking $x = H$ and $y = v$ in 4.3, we get $c(H) = 0$. Consequently $S(H, y) = 0$, *∀y* \in *TH*(*G*/*H*). Since *F* is a homogeneous metric, we have *S* = 0 everywhere.

For the converse part, let G/H has vanishing *S*-curvature.then

$$
0 = (n+1)(c(x)F(y) + \omega(y)), \quad x \in M, \quad y \in T_x(M).
$$

Then we have, $c(x)F(y) + \omega(y) = 0$ and $\omega(y) = 0$. This proof the Theorem. \square

5. Homogeneous Geodesics

Definition 5.1. A Finsler space (M, F) is called a homogeneous Finsler space if the group of isometries of (M, F) , $I(M, L)$ acts transitively on M.

We recall that, Any homogeneous Finsler manifold $M = G/H$ is a reductive homogeneous space.

Definition 5.2. Let (*G/H, F*) be a homogeneous Finsler space and *e* be the identity of *G*. A non-zero vector $X \in \mathfrak{g}$ is called a geodesic vector if the curve $exp(tX)$ *.eH* is a geodesic of $(G/H, F)$ *.*

In [10], the author proved the following result that gives a criterion for a non-zero vector to be a geodesic vector in a homogeneous Finsler space.

Lemma 5.1. *A non-zero vector* $Y \in \mathfrak{g}$ *is a geodesic vector if and only if*

 $g_{Y_n} = (Y_n, [Y, Z]_n) = 0, \quad \forall Z \in \mathfrak{g}.$

Next, we deduce necessary and sufficient condition for a nonzero vector in a homogeneous Finsler space with square-root (α, β) -metric to be a geodesic vector.

Theorem 5.1. *Let* (*G/H, F*) *be a homogeneous Finsler space with*

$$
F(x,y) = \sqrt{\tilde{a}(y_x, y_x) + \sqrt{\tilde{a}(y_x, y_x)}\tilde{a}(X_x, y_x)}.
$$

defined by the Riemannian metric a˜ *and the vector field X. Then, X is a geodesic vector of* $(G/H, \tilde{a})$ *if and only if X is a geodesic vector of* $(G/H, F)$ *.*

Proof. We know that

$$
g_y(u,v) = \frac{1}{2} \frac{\partial^2}{\partial s \partial t} F^2(x, y + su + tv)|_{s=t=0}.
$$

After some calculations, we get

(5.1)
$$
g_y(u,v) = \tilde{a}(u,v) - \frac{1}{2} \frac{\tilde{a}(y,v)\tilde{a}(u,y)\tilde{a}(X,y)}{\tilde{a}(y,y)^{\frac{3}{2}}} + \frac{1}{2} \frac{\tilde{a}(u,v)\tilde{a}(X,y) + \tilde{a}(X,v)\tilde{a}(u,y) + \tilde{a}(y,v)\tilde{a}(y,u)}{\tilde{a}(y,y)^{\frac{1}{2}}}.
$$

So for all $Z \in \mathfrak{n}$, we have

$$
g_{X_{\mathfrak{n}}}(X_{\mathfrak{n}},[X,Z]_{\mathfrak{n}})=\tilde{a}(X_{\mathfrak{n}},[X,Z]_{\mathfrak{n}})\left[1+\sqrt{\tilde{a}(X,X)}\right].
$$

Thus, $g_{X_n}(X_n, [X, Z]_n) = 0$ if and only if

$$
\tilde{a}(X_{\mathfrak{n}},[X,Z]_{\mathfrak{n}})=0.
$$

This completes the proof. $\quad \Box$

Theorem 5.2. *Let* (*G/H, F*) *be a homogeneous Finsler space with*

$$
F(x,y) = \sqrt{\tilde{a}(y_x, y_x) + \sqrt{\tilde{a}(y_x, y_x)}\tilde{a}(X_x, y_x)}.
$$

defined by the Riemannian metric \tilde{a} *and the vector field* X *. Let* $y \in \mathfrak{g} - \{0\}$ *be a vector which* $\tilde{a}(X, [y, z]_n) = 0$, for all $z \in \mathfrak{n}$. Then, y is a geodesic vector of $(G/H, F)$ *if and only if y is a geodesic vector of* $(G/H, \tilde{a})$ *.*

Proof. By using the relation 5.1 and some computations, we have

$$
g_{y_n}(y_n, [y, z]_n) = \tilde{a}(y_n, [y, z]_n) \left[1 + \frac{1}{2} \frac{\tilde{a}(X, y)}{\sqrt{\tilde{a}(y, y)}} \right] + \frac{1}{2} \tilde{a}(X, [y, z]_n) \sqrt{\tilde{a}(y, y)}.
$$

This completes the proof. \square

6. Mean Berwald Curvature

Let $E_{ij} = \frac{1}{2} \frac{\partial^2}{\partial y^i \partial y^j} (\frac{\partial G^m}{\partial y^m})(x, y)$, where G^m are spray coefficients. Then $\Xi :=$ $E_{ij}dx^{i} \otimes dx^{j}$ is a tensor on $TM\setminus\{0\}$, which called *E* tensor. *E* tensor can also be viewed as a family of symmetric forms defined as

$$
E_y: T_xM \times T_xM \to \mathbb{R},
$$

\n
$$
E_y(u, v) = E_{ij}(x, y)u^iv^j,
$$

where $u = u^i \frac{\partial}{\partial x^i} |_{x}$, $v = v^i \frac{\partial}{\partial x^i} |_{x} \in T_xM$. Then the collection $\{E_y : y \in TM \setminus \{0\}\}\$ is called *E*-curvature or Mean Berwald curvature.

In this section, we calculate the mean Berwald curvature of a homogeneous Finsler space with square-root metric. We need the following:

At the origin, we have $a_{ij} = \delta^i_j$, therefore,

$$
y_i = a_{ij}y^j = \delta_j^i y^j = y^i,
$$

$$
\alpha_{y^i} = \frac{y_i}{\alpha}, \quad \beta_{y^i} = b_i,
$$

$$
s_{y^i} = \frac{\partial}{\partial y^i}(\frac{\beta}{\alpha}) = \frac{b_i \alpha - s y_i}{\alpha^2},
$$

$$
\partial \left(b_i \alpha - s y_i \right) = -(b_i y_j + b_j y_i) \alpha + 3s y_i y_j - \alpha
$$

$$
s_{y^i y^j} = \frac{\partial}{\partial y^j} \left(\frac{b_i \alpha - s y_i}{\alpha^2} \right) = \frac{-(b_i y_j + b_j y_i) \alpha + 3 s y_i y_j - \alpha^2 s \delta_j^i}{\alpha^4}
$$

.

Now let in 4.3 we set:

$$
\left[\frac{6ns^3 + 6(3n+2)s^2 + 4(3n+b^2+5)s + 2(4(n+1)-b^2(n-2))}{-2(3s^2+6s - (b+2)(b-2))^2}\right] = A.
$$

Then we have

756 M. L. Zeinali and D. Latifi

$$
\frac{\partial A}{\partial y^j} = \left[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} + \frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s + 3s^2)^3} \right] s_{y^j},
$$

and

$$
\frac{\partial^2 A}{\partial y^i \partial y^j} = \frac{\partial}{\partial y^i} \left[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} \right. \\
\left. + \frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s + 3s^2)^3} \right] s_{y^j} \\
+ \left[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} \right. \\
\left. + \frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s + 3s^2)^3} \right] s_{y^i y^j} \\
= \left[\frac{6(-9ns^5 - 45ns^4 - 54s^4 - 36b^2s^3 - 24b^2ns^3 - 12ns^3 - 180s^3 + 24ns^2}{(4 - b^2 + 6s + 3s^2)^4} \right. \\
\left. + \frac{-156b^2s^2 - 42b^2ns^2 - 168s^2 + 12b^2ns - 12b^4s - 180b^2s - 3b^4ns - 72ns}{(4 - b^2 + 6s + 3s^2)^4} \right. \\
\left. + \frac{-24s + 20b^2n + 16 - 14b^2 - b^4n - 56b^2 - 64n}{(4 - b^2 + 6s + 3s^2)^4} \right] s_{y^i} s_{y^j} \\
+ \left[\frac{8 + 2b^4 + 60s + 90s^2 + 36s^3 + 3n(8 + 4s + 6s^2 + 12s^3 + 3s^4)}{(4 - b^2 + 6s + 3s^2)^3} \right] s_{y^i y^j} \\
+ \frac{b^2(26 + 48s + 18s^2 + n(-6 + 6s + 9s^2))}{(4 - b^2 + 6s +
$$

Theorem 6.1. *Let G/H be a reductive homogeneous Finsler space with a decomposition of the Lie algebra* $\mathfrak{g} = \mathfrak{h} + \mathfrak{n}$, and $F = \sqrt{\alpha(\alpha + \beta)}$ be a *G*-invariant square*root metric on G/H. Then the mean Berwald curvature of the homogeneous Finsler space with suare-root metric is given by*

$$
E_{ij}(H, y) = \frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{y_i}{\alpha^3} \frac{\partial A}{\partial y^j} - \frac{y_j}{\alpha^3} \frac{\partial A}{\partial y^i} - \frac{A}{\alpha^3} \delta_i^j + \frac{3A}{\alpha^5} y_i y_j \right) \langle [v, y)_\mathfrak{n}, y \rangle
$$

+
$$
\frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A y_j}{\alpha^3} \right) \left(\langle [v, v_i]_\mathfrak{n}, y \rangle + \langle [v, y]_\mathfrak{n}, v_i \rangle \right)
$$

On the Geodesics and *S*-curvature of a Homogeneous Finsler Space 757

+
$$
\frac{1}{2} \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^i} - \frac{A y_i}{\alpha^3} \right) (\langle [v, v_j]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle)
$$

+ $\frac{A}{2\alpha} (\langle [v, v_j]_{\mathfrak{n}}, v_i \rangle + \langle [v, v_i]_{\mathfrak{n}}, v_j \rangle)$
+ $\frac{1}{2} \left(\frac{1}{s+2} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{1}{(s+2)^2} s_{y^i} \frac{\partial A}{\partial y^j} - \frac{1}{(s+2)^2} s_{y^j} \frac{\partial A}{\partial y^i} \right)$
+ $\frac{1}{2} \left(\frac{2A}{(s+2)^3} s_{y^i} s_{y^j} - \frac{A}{(s+2)^2} s_{y^i y^j} \right) \langle [v, y]_{\mathfrak{n}}, v \rangle$
+ $\frac{1}{2} \left(\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right) \langle [v, v_i]_{\mathfrak{n}}, v \rangle$
(6.1) + $\frac{1}{2} \left(\frac{1}{s+2} \frac{\partial A}{\partial y^i} - \frac{A}{(s+2)^2} s_{y^i} \right) \langle [v, v_j]_{\mathfrak{n}}, v \rangle$.

where $v \in \mathfrak{n}$ *corresponds to the 1-form* β *and* \mathfrak{n} *is identified with the tangent space* $T_H(G/H)$ *of* G/H *at the origin* H *.*

Proof. From 4.3, we can write *S*-curvature at the origin as follows:

$$
S(H, y) = \phi + \psi,
$$

where

$$
\phi = \frac{A}{\alpha} \langle [v, y]_{\mathfrak{n}}, y \rangle \quad and \quad \psi = \frac{A}{s+2} \langle [v, y]_{\mathfrak{n}}, v \rangle.
$$

Therefore, mean Berwald curvature is

(6.2)
$$
E_{ij} = \frac{1}{2} \frac{\partial^2 S}{\partial y^i \partial y^j} = \frac{1}{2} \left(\frac{\partial^2 \phi}{\partial y^i \partial y^j} + \frac{\partial^2 \psi}{\partial y^i \partial y^j} \right),
$$

where $\frac{\partial^2 \phi}{\partial y^i \partial y^j}$ and $\frac{\partial^2 \psi}{\partial y^i \partial y^j}$ are calculated as follows:

$$
\frac{\partial \phi}{\partial y^j} = \frac{\partial}{\partial y^j} \left(\frac{A}{\alpha} \langle [v, y]_{\mathfrak{n}}, y \rangle \right)
$$

= $\left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A}{\alpha^2} \frac{y_j}{\alpha} \right) \langle [v, y]_{\mathfrak{n}}, y] \rangle + \frac{A}{\alpha} (\langle [v, v_j]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle),$

$$
\frac{\partial^2 \phi}{\partial y^i \partial y^j} = \frac{\partial}{\partial y^i} \left[\left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A y_j}{\alpha^3} \right) \langle [v, y]_{\mathfrak{n}}, y \rangle + \frac{A}{\alpha} (\langle [v, v_j]_{\mathfrak{n}}, y] \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle) \right]
$$

\n
$$
= \left(\frac{1}{\alpha} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{y_i}{\alpha^3} \frac{\partial A}{\partial y^j} - \frac{y_j}{\alpha^3} \frac{\partial A}{\partial y^i} - \frac{A}{\alpha^3} \delta_i^j + \frac{3A}{\alpha^5} y_i y_j \right) \langle [v, y]_{\mathfrak{n}}, y \rangle
$$

\n
$$
+ \left(\frac{1}{\alpha} \frac{\partial A}{\partial y^j} - \frac{A y_j}{\alpha^3} \right) (\langle [v, v_i]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_i \rangle)
$$

758 M. L. Zeinali and D. Latifi

+
$$
\left(\frac{1}{\alpha} \frac{\partial A}{\partial y^i} - \frac{A y_i}{\alpha^3}\right) (\langle [v, v_j]_{\mathfrak{n}}, y \rangle + \langle [v, y]_{\mathfrak{n}}, v_j \rangle)
$$

+ $\frac{A}{\alpha} (\langle [v, v_j]_{\mathfrak{n}}, v_i \rangle + \langle [v, v_i]_{\mathfrak{n}}, v_j \rangle),$

and

$$
\frac{\partial \psi}{\partial y^j} = \frac{\partial}{\partial y^j} \left(\frac{A}{s+2} \langle [v, y]_{\mathfrak{n}}, v \rangle \right)
$$

= $\left[\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right] \langle [v, y]_{\mathfrak{n}}, v \rangle + \frac{A}{s+2} \langle [v, v_j]_{\mathfrak{n}}, v \rangle,$

$$
\frac{\partial^2 \psi}{\partial y^i \partial y^j} = \frac{\partial}{\partial y^i} \left[\left(\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right) \langle [v, y]_{\mathfrak{n}}, v \rangle + \frac{A}{s+2} \langle [v, v_j]_{\mathfrak{n}}, v \rangle \right]
$$

\n
$$
= \left(\frac{1}{s+2} \frac{\partial^2 A}{\partial y^i \partial y^j} - \frac{1}{(s+2)^2} s_{y^i} \frac{\partial A}{\partial y^j} - \frac{1}{(s+2)^2} s_{y^j} \frac{\partial A}{\partial y^i} \right)
$$

\n
$$
+ \left(\frac{2A}{(s+2)^3} s_{y^i} s_{y^j} - \frac{A}{(s+2)^2} s_{y^i y^j} \right) \langle [v, y]_{\mathfrak{n}}, v \rangle
$$

\n
$$
+ \left(\frac{1}{s+2} \frac{\partial A}{\partial y^j} - \frac{A}{(s+2)^2} s_{y^j} \right) \langle [v, v_i]_{\mathfrak{n}}, v \rangle
$$

\n
$$
+ \left(\frac{1}{s+2} \frac{\partial A}{\partial y^i} - \frac{A}{(s+2)^2} s_{y^i} \right) \langle [v, v_j]_{\mathfrak{n}}, v \rangle.
$$

Substituting all above values in 6.2, we get formula 6.1. \Box

R E F E R E N C E S

- 1. H. An and S. Deng: *Invariant (α,β)-metric on homogeneous manifolds*. Monatsh. Math. **154** (2008), 89–102.
- 2. D. Bao, S.S. Chern and Z. Shen: *An Introduction to Riemann-Finsler Geometry*. Springer, New York (2000).
- 3. S. Bochner and D. Montgomery: *Locally compact groups of differentiable transformations*. Ann. Math. **47** (1946), 639–653.
- 4. X. Cheng and Z. Shen: *A class of Finsler metrics with isotropic S-curvature*. Israel J. Math. **169** (2009), 317–340.
- 5. S. S. Chern and Z. Shen: *Riemann-Finsler geometry*. World Scientific, Nankai Tracts in Mathematics, **6** (2005).
- 6. S. Deng: *Homogeneous Finsler Spaces*. Springer Monographs in Mathematics, NewYork, (2012).

On the Geodesics and *S*-curvature of a Homogeneous Finsler Space 759

- 7. S. Deng and Z. Hou: *Invariant Randers metrics on Homogeneous Riemannian manifolds* J. Phys. A: Math. General. **37** (2004), 4353–4360; Corrigendum, Ibid, **39** (2006), 5249–5250.
- 8. S. Deng and Z. Hou: *The group of isometries of a Finsler space*. Pacific J. Math. **207** (2002) 149–155.
- 9. R.S. INGARDEN: On the geometrically absolute optical representation in the electron *microscope*. Trav. Soc. Sci. Lett. Wrochlaw. Ser. B. **3** (1957), 60.
- 10. D. Latifi: *Homogeneous geodesics in homogeneous Finsler spaces*. J. Geom. Phys. **57** (2007), 1421–1433.
- 11. M. Matsumoto: *Theory of Finsler spaces with* (*α, β*)*-metric*. Rep. Math. Phys. **31** (1992), 43–83.
- 12. K. Nomizu: *Invariant affine connections on homogeneous spaces*. Amer. J. Math. **76** (1954), 33–65.
- 13. M. Parhizkar, D.Latifi: *On the flog curvature of invariant* (*α, β*)*-metrics*. Int. J. Geom. Methods Mod. Phys. **13** (2016), 1650039, 1–11.
- 14. G. Shanker and K. Kaur: *Homogeneous Finsler space with infinite series* (*α, β*) *metric*. Appl. Sci. **21** (2019), 220–236.
- 15. G. Shanker and S. Rani: *On S-curvature of a homogeneous Finsler space with square metric*. Int. J. Geom. Meth. Mod. Physics. **17**(2) (2020), 2050019.
- 16. Z. Shen: *Volume comparison and its applications in Riemann-Finsler geometry*. Adv. Math. **128** (1997), 306–328.