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Abstract. In this paper, we consider the square-root (α, β)-metric F which satisfies
F (α, β) =

√
α(α+ β). We prove the existence of invariant vector fields on a homo-

geneous Finsler space with square-root metric. Then we obtain the explicit formula
for the S-curvature and mean Berwald curvature of homogeneous Finsler space with
square-root metric. We study geodesics and geodesic vectors for homogeneous square-
root (α, β)-metric.
Keywords: homogeneous Finsler space, square-root metric, S-curvature, invariant
vector field, geodesic vector, mean Berwald curvature.

1. Introduction

An important family of Finsler metrics is the family of (α, β)-metric. These
metrics are introduced by Matsumoto[11]. An (α, β)-metric is a Finsler metric of
the form F = αϕ(s), s = β

α where α =
√
ãij(x)yiyj is induced by a Riemannian

metric ã = ãijdx
i ⊗ dxj on a connected smooth n-dimensional manifold M and

β = bi(x)y
i is a 1-form on M . The class of p-power (α, β)-metrics on a manifold M

is in the following form

F = α

(
1 +

β

α

)p
,
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where p ̸= 0 is a real constant. If p = 1, then we get the Randers metric F = α+β.
This metric was first recognized as kind of Finsler metric in 1957 by Ingarden, who
first named them Randers metric [9]. If p = −1, then we have the Matsumoto

metric F = α2

(α+β) . Matsumoto metric is an important metric in Finsler geometry.

In the case of p = 1\2, we get

F =
√
α(α+ β),

which is called a square-root metric. In this paper, we study square-root metrics.
We study the existence of invariant vector fields on homogeneous Finsler spaces
with square-root metrics. Invariant vector fields on homogeneous Finsler spaces
has been studied by some authors in recent years (see [10, 13, 15]). Further, we give
an explicit formula for S-curvature of square-root (α, β)-metric.

2. Preliminaries

In this section, we recall some known facts about Finsler spaces, for details see
[2]. LetM be a smooth n- dimensional C∞ manifold and TM be its tangent bundle.
A Finsler metric on a manifold M is a non-negative function F : TM → R with the
following properties [2]:

1) F is smooth on the slit tangent bundle TM0 := TM\{0}.
2) F (x, λy) = λF (x, y) for any x ∈M , y ∈ TxM and λ > 0.

3) The following bilinear symmetric form gy : TxM × TxM −→ R is positive
definite

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

Definition 2.1. Let α =
√
ãij(x)yiyj be a norm iduced by a Riemannian metric

ã and β(x, y) = bi(x)y
i be a 1−form on an n−dimensional manifold M . Let

∥β(x)∥α :=
√
ãij(x)bi(x)bj(x).

Now, let the function F is defined as follows

F := αϕ(s) , s =
β

α
,(2.1)

where ϕ = ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0 , |s| ≤ b < b0.

Then by lemma 1.1.2 of [5], F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈M .
A Finsler metric in the form (2.1) is called an (α, β)−metric [1, 5].
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Definition 2.2. A Finsler space having the Finsler function:

F =
√
α(x, y)(α(x, y) + β(x, y)),(2.2)

is called a square-root space with ϕ(s) =
√
1 + s.

Before defining homogeneous Finsler spaces, we discuss here some basic concepts
required.

Definition 2.3. Let G be a smooth manifold having the structure of an abstract
group. G is called a Lie group, if the maps i : G → G and µ : G×G → G defined
as i(g) = g−1, and µ(g, h) = gh, respectively, are smooth.
Let G be a Lie group andM , a smooth manifold. Then a smooth map f : G×M →
M satisfying

f(g2, f(g1, x)) = f(g2g1, x), ∀g1, g2 ∈ G, x ∈M,

f(e, x) = x, ∀x ∈M,

is called a smooth action of G on M .

Definition 2.4. Let M be a smooth manifold and G, a Lie group. If G acts
smoothly on M , then G is called a Lie transformation group of M .

The following Theorem gives us a differentiable structure on the coset space of
a Lie group.

Theorem 2.1. Let G be a Lie group and H, its closed subgroup. Then there
exists a unique differentiable structure on the left coset space G/H with the induced
topology that turns G/H into a smooth manifold such that G is a Lie transformation
group of G/H.

Definition 2.5. Let (M,F ) be a connected Finsler space and I(M,F the group
of isometries of (M,F ). If the action of I(M,F ) is transitive on M , then (M,F ) is
said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M . Then for
a ∈ M , the isotropy subgroup Ga of G is a closed subgroup and by Theorem 2.1,
G is a Lie transformation group of G/Ga. Further, G/Ga is diffeomorphic to M .

BochnerMontgomery in [3] proved that a locally compact group of differentiable
transformations of a manifold is a Lie transformation group. Therefore we have the
following Theorem.

Theorem 2.2. [6] Let (M,F ) be a Finsler space. Then G = I(M,F ), the group
of isometries of M is a Lie transformation group of M . Let a ∈ M and Ia(M,F )
be the isotropy subgroup of I(M,F ) at a. Then Ia(M,F ) is compact.
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Let (M,F ) be a homogeneous Finsler space, i.e. G = I(M,F ) acts transitively
on M . For a ∈ M , let H = Ia(M,F ) be a closed isotropy subgroup of G which is
compact. Then H is a Lie group itself being a closed subgroup of G. Write M as
the quotient space G/H.

Definition 2.6. [12] Let g and h be the Lie algebras of the Lie groups G and H
respectively. Then the direct sum decomposition of g as g = h + n, where n is a
subspace of g such that Ad(h)(n) ⊂ n, ∀h ∈ H, is called a reductive decomposition of
g, and if such decomposition exists, then (G/H,F ) is called reductive homogeneous
space.

Therefore, we can write any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric F is
viewed as G invariant Finsler metric on M .

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomorphism
ξ : R→ G, such that ξ(0) = e, where e is the identity of G.

Recall [6] the following result which gives us the existence of one-parameter
subgroup of a Lie group.

Theorem 2.3. Let G be a Lie group having Lie algebra g. Then for any Y ∈ g,
there exists a unique locally one-parameter subgroup ξ such that ξ̇(0) = Ye, where e
is the identity element of G.

Definition 2.8. Let G be a Lie group with identity element e and g its Lie algebra.
The exponential map exp : g → G is defined by

exp(tY ) = ξ(t), ∀t ∈ R,

where ξ : R→ G is unique one-parameter subgroup of G with ξ̇(0) = Ye.

In the case of reductive homogeneous manifold, we can identify the tangent
space TH(G/H) of G/H at the origin eH = H with n through the map

Y → d

dt
exp(tX)H|t=0, Y ∈ n,

since M is identified with G/H and Lie algebra of any Lie group G is viewed as
TeG.

3. Invariant Vector Field

The Riemannian metric ã induces an inner product on any cotangent space T ∗
xM

such that ⟨dxi(x), dxj(x)⟩ = ãij(x). The induced inner product on T ∗
xM induces a
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linear isomorphism between T ∗
xM and TxM . Then the 1-form β corresponds to a

vector field X̃ on M such that

ã(y, X̃(x)) = β(x, y).

Also we have ∥β(x)∥α = ∥X̃(x)∥α . Therefore we can write (α, β)−metrics as
follows:

F (x, y) = α(x, y)ϕ
( ã(X̃(x), y)

α(x, y)

)
,

where for any x ∈M ,
√
ã(X̃(x), X̃(x)) = ∥X̃(x)∥α < b0.

So for square-root metric, we can write

F (x, y) =

√
ã(yx, yx) +

√
ã(yx, yx)ã(Xx, yx).(3.1)

Lemma 3.1. Let (M,F ) be a Finsler space with square-root metric F =
√
α(α+ β).

Let I(M,F ) be the group of isometries of (M,F ) and I(M, ã) be that of Riemannian
space (M, ã). Then I(M,F ) is a closed subgroup of I(M, ã).

Proof. Let x ∈M and ξ : (M,F ) → (M,F ) be an isometry. Therefore, we have

F (x, Y ) = F (ξ(x), dξx(Y )), ∀Y ∈ TxM.

So we have √
ã(Y, Y ) +

√
ã(Y, Y )ã(Xx, Y )

=

√
ã(dξx(Y ), dξx(Y )) +

√
ã(dξx(Y ), dξx(Y ))ã(Xξ(x), dξx(Y )).

After simplification, we get

ã(Y, Y ) +
√
ã(Y, Y )ã(Xx, Y )

= ã(dξx(Y ), dξx(Y )) +
√
ã(dξx(Y ), dξx(Y ))ã(Xξ(x), dξx(Y )).(3.2)

Replacing Y by −Y in 3.2 implies that

ã(Y, Y )−
√
ã(Y, Y )ã(Xx, Y )

= ã(dξx(Y ), dξx(Y ))−
√
ã(dξx(Y ), dξx(Y ))ã(Xξ(x), dξx(Y )).(3.3)

Adding equations 3.2 and 3.3, we get

ã(Y, Y ) = ã(dξx(Y ), dξx(Y )).(3.4)

Subtracting equation 3.3 from equation 3.2 and use equation 3.4, we get

ã(Xx, Y ) = ã(Xξ(x), dξx(Y )).

Therefore, ξ is an isometry with respect to the Riemannian metric ã and dξx(Xx) =
Xξ(x). Thus, I(M,F ) is a closed subgroup of I(M, ã).
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From Lemma 3.1, we conclude that if (M,F ) is a homogeneous Finsler space
with square-root metric F =

√
α(α+ β), then the Riemannian space (M,α) is

homogeneous. Further,M can be written as a coset space G/H, where G = I(M,F )
is a Lie transformation group ofM and H, the compact isotropy subgroup Ia(M,F )
of I(M,F ) at some point a ∈ M [8]. Let g and h be the Lie algebras of the Lie
groups G and H, respectively. If g can be written as a direct sum of subspaces h
and n of g such that Ad(h)n ⊂ n, ∀h ∈ H, then from Definition 2.6, (G/H,F ) is a
reductive homogeneous space.

Therefore, homogeneous Finsler space with square-root metric can be written
as a coset space of a connected Lie group with square metric. Here, the square-root
metric F =

√
α(α+ β) is viewed as G invariant Finsler metric on M .

Theorem 3.1. Let F =
√
α(α+ β) be a G-invariant square-root metric on G/H,

X the vector field corresponding to 1-form β. Then α is a G-invariant Riemannian
metric and the vector field X is also G-invariant.

Proof. Let F be G-invariant metric on G/H, we have

F (y) = F (Ad(h)y), ∀h ∈ H, Y ∈ n.

By 3.1, we get√
ã(Y, Y ) +

√
ã(Y, Y )ã(X,Y )

=

√
ã(Ad(h)Y,Ad(h)Y ) +

√
ã(Ad(h)Y,Ad(h)Y )ã(X,Ad(h)Y ).

After simplification, we get

ã(Y, Y ) +
√
ã(Y, Y )ã(X,Y )

= ã(Ad(h)Y,Ad(h)Y ) +
√
ã(Ad(h)Y,Ad(h)Y )ã(X,Ad(h)Y ).(3.5)

Replacing Y by −Y in 3.5 implies that

ã(Y, Y )−
√
ã(Y, Y )ã(X,Y )

= ã(Ad(h)Y,Ad(h)Y )−
√
ã(Ad(h)Y,Ad(h)Y )ã(X,Ad(h)Y ).(3.6)

Adding equations 3.5 and 3.6, we get

ã(Y, Y ) = ã(Ad(h)Y,Ad(h)Y ).(3.7)

Subtracting equation 3.6 from equation 3.5 and use equation 3.7, we get

ã(X,Y ) = ã(X,Ad(h)Y ).

Therefore, α is a G-invariant Riemannian metric and

Ad(h)X = X,

which proves that X is also G-invariant.
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The following Theorem gives us a complete description of invariant vector fields.

Theorem 3.2. [7] There exists a bijection between the set of invariant vector fields
on G/H and the subspace

V = {Y ∈ n : Ad(h)Y = Y, ∀h ∈ H}.

4. S-Curvature of Homogeneous Finsler Space with Square-root
Metric

S-curvature was introduced by Shen in [16]. It is a quantity to measure the
rate of change of the volume form of a Finsler space along geodesics. Let V be an
n-dimensional real vector space and F a Minkowski norm on V . For a basis {bi} of
V , let

σF =
V ol(Bn)

V ol{(yi) ∈ Rn| F (yibi) < 1}
,

where V ol means the volume of a subset in the standard Euclidean space Rn and
Bn is the open ball of radius 1. This quantity is generally dependent on the choice
of the basis {bi}. But it is easily seen that

τ(y) = ln

√
det(gij(y))

σF
, y ∈ V − {0},

is independent of the choice of basis. We call τ = τ(y) the distortion of (V, F ).

Now let (M,F ) be a Finsler space. Let τ(x, y) be the distortion of the Minkowski
norm Fx on Tx(M) and σ the geodesic with σ(0) = x and σ̇(0) = y. Then the
quantity

S(x, y) =
d

dt
[τ(σ(t), σ̇(t))]|t=0,

is called the S-curvature of the Finsler space (M,F ).

The formula for S-curvature of an (α, β)-metric, in local coordinate system,
introduced by Cheng and Shen [4], is as follows:

S =
(
2ψ − f

′
(b)

bf(b)

)
(r0 + s0)−

Φ

2α∆2
(r00 − 2αQs0),(4.1)

where

Q =
ϕ

′

ϕ− sϕ′ ,

∆ = 1 + sQ+ (b2 − s2)Q
′
,
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ψ =
Q

′

2∆
,

Φ = (sQ
′
−Q)(n∆+ 1 + sQ)− (b2 − s2)(1 + sQ)Q

′′
,

rij =
1

2
(bi|j + bj|i), rj = birij , r0 = riy

i, r00 = rijy
iyj ,

sij =
1

2
(bi|j − bj|i), sj = bisij , s0 = siy

i.

Definition 4.1. Let (M,F ) be an n-dimensional Finsler space. If there exists a
smooth function c(x) on M and a closed 1-form ω such that

S(x, y) = (n+ 1)(c(x)F (y) + ω(y)), x ∈M, y ∈ Tx(M),

then (M,F ) is said to have almost isotropic S-curvature. In addition, if ω is zero,
then (M,F ) is said to have isotropic S-curvature. Also, if ω is zero and c(x) is
constant, then we say, (M,F ) has constant S-curvature.

With above notations, let us recall from [14] the following Theorem.

Theorem 4.1. Let F = αφ(s) be a G-invariant (α, β)-metric on the reductive
homogeneous Finsler space G/H with a decomposition of the Lie algebra g = h+ n.
Then the S-curvature is given by

S(H, y) =
Φ

2α∆2

(
⟨[v, y]n, y⟩+ αQ⟨[v, y]n, v⟩

)
,(4.2)

where v ∈ n corresponds to the 1-form β and n is identified with the tangent space
TH(G/H) of G/H at the origin H.

Now, we establish a formula for S-curvature of homogeneous Finsler spaces with
square-root metric.

Theorem 4.2. Let G/H be reductive homogeneous Finsler space with a decompo-
sition of the Lie algebra g = h+n, and F =

√
α(α+ β) be a G-invariant square-root

metric on G/H. Then the S-curvature is given by

S(H, y) =

[
6ns3 + 6(3n+ 2)s2 + 4(3n+ b2 + 5)s+ 2(4(n+ 1)− b2(n− 2))

−2(3s2 + 6s− (b+ 2)(b− 2))2

]
×
(
1

α
⟨[v, y]n, y⟩+

1

s+ 2
⟨[v, y]n, v⟩

)
,(4.3)

where v ∈ n corresponds to the 1-form β and n is identified with the tangent space
TH(G/H) of G/H at the origin H.

Proof. For square-root metric F = αφ(s), where φ(s) =
√
1 + s, the entities written

in 4.1 take the values as follows:

Q =
ϕ

′

ϕ− sϕ′ =
1

s+ 2
, Q

′
=

−1

(s+ 2)2
, Q

′′
=

2

(s+ 2)3
,
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∆ = 1 + sQ+ (b2 − s2)Q
′

= 1 +
s

s+ 2
+ (b2 − s2)

( −1

(s+ 2)2

)
=

3s2 + 6s− (b+ 2)(b− 2)

(s+ 2)2
,

Φ = (sQ
′
−Q)(n∆+ 1 + sQ) + (s2 − b2)(1 + sQ)Q

′′

=
( −s
(s+ 2)2

− 1

s+ 2

)(
1 +

3ns2 + 6ns− n(b− 2)(b+ 2)

(s+ 2)2

)
+(s2 − b2)(1 +

s

s+ 2
)(

2

(s+ 2)3
)

=
6ns3 + 6(3n+ 2)s2 + 4(3n+ b2 + 5)s+ 2

(
4(n+ 1)− b2(n− 2)

)
−(s+ 2)4

.

After substituting these values in 4.2, we get formula 4.3 for S-curvature of homo-
geneous Finsler space with square-root metric.

Theorem 4.3. Let G/H be reductive homogeneous Finsler space with a decom-
position of the Lie algebra g = h + n, and F =

√
(α(α+ β) be a G-invariant

square-root metric on G/H. Then (G/H,F ) has isotropic S-curvature if and only
if it has vanishing S-curvature.

Proof. For necessary part, suppose G/H has isotropic S-curvature, then

S(x, y) = (n+ 1)c(x)F (y), x ∈ G/H, y ∈ Tx(G/H).

Taking x = H and y = v in 4.3, we get c(H) = 0. Consequently S(H, y) = 0,
∀y ∈ TH(G/H). Since F is a homogeneous metric, we have S = 0 everywhere.

For the converse part, let G/H has vanishing S-curvature.then

0 = (n+ 1)(c(x)F (y) + ω(y)), x ∈M, y ∈ Tx(M).

Then we have, c(x)F (y) + ω(y) = 0 and ω(y) = 0. This proof the Theorem.

5. Homogeneous Geodesics

Definition 5.1. A Finsler space (M,F ) is called a homogeneous Finsler space if
the group of isometries of (M,F ), I(M,L) acts transitively on M .

We recall that, Any homogeneous Finsler manifold M = G/H is a reductive
homogeneous space.

Definition 5.2. Let (G/H,F ) be a homogeneous Finsler space and e be the
identity of G. A non-zero vector X ∈ g is called a geodesic vector if the curve
exp(tX).eH is a geodesic of (G/H,F ).
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In [10], the author proved the following result that gives a criterion for a non-zero
vector to be a geodesic vector in a homogeneous Finsler space.

Lemma 5.1. A non-zero vector Y ∈ g is a geodesic vector if and only if

gYn
= (Yn, [Y,Z]n) = 0, ∀Z ∈ g.

Next, we deduce necessary and sufficient condition for a nonzero vector in a
homogeneous Finsler space with square-root (α, β)-metric to be a geodesic vector.

Theorem 5.1. Let (G/H,F ) be a homogeneous Finsler space with

F (x, y) =

√
ã(yx, yx) +

√
ã(yx, yx)ã(Xx, yx).

defined by the Riemannian metric ã and the vector field X. Then, X is a geodesic
vector of (G/H, ã) if and only if X is a geodesic vector of (G/H,F ).

Proof. We know that

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0.

After some calculations, we get

gy(u, v) = ã(u, v)− 1

2

ã(y, v)ã(u, y)ã(X, y)

ã(y, y)
3
2

+
1

2

ã(u, v)ã(X, y) + ã(X, v)ã(u, y) + ã(y, v)ã(y, u)

ã(y, y)
1
2

.(5.1)

So for all Z ∈ n, we have

gXn
(Xn, [X,Z]n) = ã(Xn, [X,Z]n)

[
1 +

√
ã(X,X)

]
.

Thus, gXn
(Xn, [X,Z]n) = 0 if and only if

ã(Xn, [X,Z]n) = 0.

This completes the proof.

Theorem 5.2. Let (G/H,F ) be a homogeneous Finsler space with

F (x, y) =

√
ã(yx, yx) +

√
ã(yx, yx)ã(Xx, yx).

defined by the Riemannian metric ã and the vector field X. Let y ∈ g − {0} be
a vector which ã(X, [y, z]n) = 0, for all z ∈ n. Then, y is a geodesic vector of
(G/H,F ) if and only if y is a geodesic vector of (G/H, ã).
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Proof. By using the relation 5.1 and some computations, we have

gyn(yn, [y, z]n) = ã(yn, [y, z]n)

[
1 +

1

2

ã(X, y)√
ã(y, y)

]

+
1

2
ã(X, [y, z]n)

√
ã(y, y).

This completes the proof.

6. Mean Berwald Curvature

Let Eij = 1
2

∂2

∂yi∂yj (
∂Gm

∂ym )(x, y), where Gm are spray coefficients. Then Ξ :=

Eijdx
i ⊗ dxj is a tensor on TM\{0}, which called E tensor. E tensor can also be

viewed as a family of symmetric forms defined as

Ey : TxM × TxM → R,
Ey(u, v) = Eij(x, y)u

ivj ,

where u = ui ∂
∂xi |x, v = vi ∂

∂xi |x ∈ TxM .Then the collection {Ey : y ∈ TM\{0}} is
called E-curvature or Mean Berwald curvature.
In this section, we calculate the mean Berwald curvature of a homogeneous Finsler
space with square-root metric. We need the following:
At the origin, we have aij = δij , therefore,

yi = aijy
j = δijy

j = yi,

αyi =
yi
α
, βyi = bi,

syi =
∂

∂yi
(
β

α
) =

biα− syi
α2

,

syiyj =
∂

∂yj

(
biα− syi

α2

)
=

−(biyj + bjyi)α+ 3syiyj − α2sδij
α4

.

Now let in 4.3 we set:

[
6ns3 + 6(3n+ 2)s2 + 4(3n+ b2 + 5)s+ 2(4(n+ 1)− b2(n− 2))

−2(3s2 + 6s− (b+ 2)(b− 2))2

]
= A.

Then we have
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∂A

∂yj
=

[
8 + 2b4 + 60s+ 90s2 + 36s3 + 3n(8 + 4s+ 6s2 + 12s3 + 3s4)

(4− b2 + 6s+ 3s2)
3

+
b2(26 + 48s+ 18s2 + n(−6 + 6s+ 9s2))

(4− b2 + 6s+ 3s2)
3

]
syj ,

and

∂2A

∂yi∂yj
=

∂

∂yi

[
8 + 2b4 + 60s+ 90s2 + 36s3 + 3n(8 + 4s+ 6s2 + 12s3 + 3s4)

(4− b2 + 6s+ 3s2)
3

+
b2(26 + 48s+ 18s2 + n(−6 + 6s+ 9s2))

(4− b2 + 6s+ 3s2)
3

]
syj

+

[
8 + 2b4 + 60s+ 90s2 + 36s3 + 3n(8 + 4s+ 6s2 + 12s3 + 3s4)

(4− b2 + 6s+ 3s2)
3

+
b2(26 + 48s+ 18s2 + n(−6 + 6s+ 9s2))

(4− b2 + 6s+ 3s2)
3

]
syiyj

=

[
6(−9ns5−45ns4−54s4−36b2s3−24b2ns3−12ns3−180s3 + 24ns2

(4− b2 + 6s+ 3s2)
4

+
−156b2s2−42b2ns2−168s2+12b2ns−12b4s−180b2s−3b4ns−72ns

(4− b2 + 6s+ 3s2)
4

+
−24s+ 20b2n+ 16− 14b2 − b4n− 56b2 − 64n

(4− b2 + 6s+ 3s2)
4

]
syisyj

+

[
8 + 2b4 + 60s+ 90s2 + 36s3 + 3n(8 + 4s+ 6s2 + 12s3 + 3s4)

(4− b2 + 6s+ 3s2)
3

+
b2(26 + 48s+ 18s2 + n(−6 + 6s+ 9s2))

(4− b2 + 6s+ 3s2)
3

]
syjyj .

Theorem 6.1. Let G/H be a reductive homogeneous Finsler space with a decom-
position of the Lie algebra g = h+ n, and F =

√
α(α+ β) be a G-invariant square-

root metric on G/H. Then the mean Berwald curvature of the homogeneous Finsler
space with suare-root metric is given by

Eij(H, y) =
1

2

(
1

α

∂2A

∂yi∂yj
− yi
α3

∂A

∂yj
− yj
α3

∂A

∂yi
− A

α3
δji +

3A

α5
yiyj

)
⟨[v, y⟩n, y⟩

+
1

2

(
1

α

∂A

∂yj
− Ayj

α3

)
(⟨[v, vi]n, y⟩+ ⟨[v, y]n, vi⟩)
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+
1

2

(
1

α

∂A

∂yi
− Ayi

α3

)
(⟨[v, vj ]n, y⟩+ ⟨[v, y]n, vj⟩)

+
A

2α
(⟨[v, vj ]n, vi⟩+ ⟨[v, vi]n, vj⟩)

+
1

2

(
1

s+ 2

∂2A

∂yi∂yj
− 1

(s+ 2)2
syi

∂A

∂yj
− 1

(s+ 2)2
syj

∂A

∂yi

)
+

1

2

(
2A

(s+ 2)3
syisyj −

A

(s+ 2)2
syiyj

)
⟨[v, y]n, v⟩

+
1

2

(
1

s+ 2

∂A

∂yj
− A

(s+ 2)2
syj

)
⟨[v, vi]n, v⟩

+
1

2

(
1

s+ 2

∂A

∂yi
− A

(s+ 2)2
syi

)
⟨[v, vj ]n, v⟩.(6.1)

where v ∈ n corresponds to the 1-form β and n is identified with the tangent space
TH(G/H) of G/H at the origin H.

Proof. From 4.3, we can write S-curvature at the origin as follows:

S(H, y) = ϕ+ ψ,

where

ϕ =
A

α
⟨[v, y]n, y⟩ and ψ =

A

s+ 2
⟨[v, y]n, v⟩.

Therefore, mean Berwald curvature is

Eij =
1

2

∂2S

∂yi∂yj
=

1

2

(
∂2ϕ

∂yi∂yj
+

∂2ψ

∂yi∂yj

)
,(6.2)

where ∂2ϕ
∂yi∂yj and ∂2ψ

∂yi∂yj are calculated as follows:

∂ϕ

∂yj
=

∂

∂yj

(
A

α
⟨[v, y]n, y⟩

)
=

(
1

α

∂A

∂yj
− A

α2

yj
α

)
⟨[v, y]n, y]⟩+

A

α
(⟨[v, vj ]n, y⟩+ ⟨[v, y]n, vj⟩),

∂2ϕ

∂yi∂yj
=

∂

∂yi

[(
1

α

∂A

∂yj
− Ayj

α3

)
⟨[v, y]n, y⟩+

A

α
(⟨[v, vj ]n, y]⟩+ ⟨[v, y]n, vj⟩)

]
=

(
1

α

∂2A

∂yi∂yj
− yi
α3

∂A

∂yj
− yj
α3

∂A

∂yi
− A

α3
δji +

3A

α5
yiyj

)
⟨[v, y⟩n, y⟩

+

(
1

α

∂A

∂yj
− Ayj

α3

)
(⟨[v, vi]n, y⟩+ ⟨[v, y]n, vi⟩)
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+

(
1

α

∂A

∂yi
− Ayi

α3

)
(⟨[v, vj ]n, y⟩+ ⟨[v, y]n, vj⟩)

+
A

α
(⟨[v, vj ]n, vi⟩+ ⟨[v, vi]n, vj⟩),

and

∂ψ

∂yj
=

∂

∂yj

(
A

s+ 2
⟨[v, y]n, v⟩

)
=

[
1

s+ 2

∂A

∂yj
− A

(s+ 2)2
syj

]
⟨[v, y]n, v⟩+

A

s+ 2
⟨[v, vj ]n, v⟩,

∂2ψ

∂yi∂yj
=

∂

∂yi

[(
1

s+ 2

∂A

∂yj
− A

(s+ 2)2
syj

)
⟨[v, y]n, v⟩+

A

s+ 2
⟨[v, vj ]n, v⟩

]
=

(
1

s+ 2

∂2A

∂yi∂yj
− 1

(s+ 2)2
syi

∂A

∂yj
− 1

(s+ 2)2
syj

∂A

∂yi

)
+

(
2A

(s+ 2)3
syisyj −

A

(s+ 2)2
syiyj

)
⟨[v, y]n, v⟩

+

(
1

s+ 2

∂A

∂yj
− A

(s+ 2)2
syj

)
⟨[v, vi]n, v⟩

+

(
1

s+ 2

∂A

∂yi
− A

(s+ 2)2
syi

)
⟨[v, vj ]n, v⟩.

Substituting all above values in 6.2, we get formula 6.1.
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