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Abstract. In this paper, we consider the square-root («, )-metric F which satisfies
F(a,B) = \/ala+ (). We prove the existence of invariant vector fields on a homo-
geneous Finsler space with square-root metric. Then we obtain the explicit formula
for the S-curvature and mean Berwald curvature of homogeneous Finsler space with
square-root metric. We study geodesics and geodesic vectors for homogeneous square-
root («, B)-metric.
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1. Introduction

An important family of Finsler metrics is the family of (a, 8)-metric. These
metrics are introduced by Matsumoto[11]. An (a, 8)-metric is a Finsler metric of
the form F' = ag¢(s), s = g where o = /a;;(z)y'y’ is induced by a Riemannian
metric @ = a;;dx’ ® dr’ on a connected smooth n-dimensional manifold M and
B = b;(x)y’ is a 1-form on M. The class of p-power (a, 3)-metrics on a manifold M

is in the following form
P
F=«a <1 + 5) ,
o
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where p # 0 is a real constant. If p = 1, then we get the Randers metric F' = a+ f.
This metric was first recognized as kind of Finsler metric in 1957 by Ingarden, who
first named them Randers metric [9]. If p = —1, then we have the Matsumoto

metric F' = (aaTQ,B) Matsumoto metric is an important metric in Finsler geometry.

In the case of p = 1\2, we get

F=\/ala+B),

which is called a square-root metric. In this paper, we study square-root metrics.
We study the existence of invariant vector fields on homogeneous Finsler spaces
with square-root metrics. Invariant vector fields on homogeneous Finsler spaces
has been studied by some authors in recent years (see [10, 13, 15]). Further, we give
an explicit formula for S-curvature of square-root (o, §)-metric.

2. Preliminaries

In this section, we recall some known facts about Finsler spaces, for details see
[2]. Let M be a smooth n- dimensional C° manifold and T'M be its tangent bundle.
A Finsler metric on a manifold M is a non-negative function F' : TM — R with the
following properties [2]:

1) F is smooth on the slit tangent bundle TM° := TM\{0}.

2) F(z, \y) = AF(z,y) forany x € M,y € T, M and A > 0.

3) The following bilinear symmetric form g, : T,M x T, M — R is positive

definite
2

10
gy(uvv) = §asatF2(xay + Su+tv)|5:t:0'

Definition 2.1. Let a = /a;;(x)y’y? be a norm iduced by a Riemannian metric
a and B(z,y) = b;i(x)y’ be a 1—form on an n—dimensional manifold M. Let

[1B(x)la = /@ (2)bi(2)b; ().

Now, let the function F is defined as follows

(2.1) F:=a¢(s) , s=-—,

where ¢ = ¢(s) is a positive C>° function on (—bg, by) satisfying
$(s) — s¢'(s) + (0° = s*)¢"(s) >0, |s| <b<bo.

Then by lemma 1.1.2 of [5], F is a Finsler metric if ||5(z)||o. < bo for any z € M.
A Finsler metric in the form (2.1) is called an (o, 8)—metric [1, 5].
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Definition 2.2. A Finsler space having the Finsler function:

(2:2) F =\/a(z,y)(alz,y) + B(z,y)),
is called a square-root space with ¢(s) =+/1+ s.

Before defining homogeneous Finsler spaces, we discuss here some basic concepts
required.

Definition 2.3. Let G be a smooth manifold having the structure of an abstract
group. G is called a Lie group, if the maps i : G — G and p: G X G — G defined
as i(g) = g1, and u(g, h) = gh, respectively, are smooth.

Let G be a Lie group and M, a smooth manifold. Then a smooth map f: Gx M —
M satisfying

f(g27f(gl7x)):f(g2glﬂx)’ v917g2€G, J)EM,

fle,x) =z, Ve M,
is called a smooth action of G on M.

Definition 2.4. Let M be a smooth manifold and G, a Lie group. If G acts
smoothly on M, then G is called a Lie transformation group of M.

The following Theorem gives us a differentiable structure on the coset space of
a Lie group.

Theorem 2.1. Let G be a Lie group and H, its closed subgroup. Then there
exists a unique differentiable structure on the left coset space G/H with the induced
topology that turns G/H into a smooth manifold such that G is a Lie transformation
group of G/H.

Definition 2.5. Let (M, F) be a connected Finsler space and I(M, F' the group
of isometries of (M, F). If the action of I(M, F') is transitive on M, then (M, F) is
said to be a homogeneous Finsler space.

Let G be a Lie group acting transitively on a smooth manifold M. Then for
a € M, the isotropy subgroup G, of G is a closed subgroup and by Theorem 2.1,
G is a Lie transformation group of G/G,. Further, G/G, is diffeomorphic to M.

BochnerMontgomery in [3] proved that a locally compact group of differentiable
transformations of a manifold is a Lie transformation group. Therefore we have the
following Theorem.

Theorem 2.2. [6] Let (M, F) be a Finsler space. Then G = I(M,F), the group
of isometries of M is a Lie transformation group of M. Let a € M and I,(M,F)
be the isotropy subgroup of I(M,F) at a. Then I,(M,F) is compact.
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Let (M, F) be a homogeneous Finsler space, i.e. G = I(M, F) acts transitively
on M. Fora € M, let H = 1,(M,F) be a closed isotropy subgroup of G which is
compact. Then H is a Lie group itself being a closed subgroup of G. Write M as
the quotient space G/H.

Definition 2.6. [12] Let g and § be the Lie algebras of the Lie groups G and H
respectively. Then the direct sum decomposition of g as g = h + n, where n is a
subspace of g such that Ad(h)(n) C n, Vh € H, is called a reductive decomposition of
g, and if such decomposition exists, then (G/H, F') is called reductive homogeneous
space.

Therefore, we can write any homogeneous Finsler space as a coset space of a
connected Lie group with an invariant Finsler metric. Here, the Finsler metric F' is
viewed as GG invariant Finsler metric on M.

Definition 2.7. A one-parameter subgroup of a Lie group G is a homomorphism
¢ : R — @, such that £(0) = e, where e is the identity of G.

Recall [6] the following result which gives us the existence of one-parameter
subgroup of a Lie group.

Theorem 2.3. Let G be a Lie group having Lie algebra g. Then for any Y € g,
there exists a unique locally one-parameter subgroup & such that £(0) =Y., where e
is the identity element of G.

Definition 2.8. Let G be a Lie group with identity element e and g its Lie algebra.
The exponential map exp : g — G is defined by

exp(tY) =£(t), Vt€ER,

where & : R — G is unique one-parameter subgroup of G with & (0) =Y.

In the case of reductive homogeneous manifold, we can identify the tangent
space Ty (G/H) of G/H at the origin eH = H with n through the map

d
Y — £exp(tX)H|t:0, Y en,

since M is identified with G/H and Lie algebra of any Lie group G is viewed as
T.G.

3. Invariant Vector Field

The Riemannian metric a induces an inner product on any cotangent space 1. M
such that (dz*(x),dz? (x)) = @*(x). The induced inner product on T* M induces a
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linear isomorphism between T; M and T, M. Then the 1-form 8 corresponds to a
vector field X on M such that

Also we have ||B(z)]|la = ||IX(@)|la . Therefore we can write (a, 3)—metrics as
follows:

Flo.) = ate, o "),

where for any = € M, \/a(X (), X (z)) = [| X (2)]|a < bo.

So for square-root metric, we can write

(3'1) F(J:’ y) = \/&(ywvya:) + d(yza yw)d(mez)

Lemma 3.1. Let (M, F) be a Finsler space with square-root metric F = \/a(a + B).
Let I(M, F) be the group of isometries of (M, F) and I(M,a) be that of Riemannian
space (M,a). Then I(M,F) is a closed subgroup of I(M,a).

Proof. Let x € M and & : (M, F) — (M, F) be an isometry. Therefore, we have
F(z,Y) = F(&(x),déo(Y)), VY € T, M.

So we have

Vay,y) + Valy, V)a(X,., Y)

= alde, (V), e (V) + v/a(dg (V) dea (V)i Xe(a) dE, (Y):

After simplification, we get

a(Y,Y) + ~<Y Y>~<X¢,Y>
(32) = a(d&(Y),déa(Y)) + Va(dea(V), d&x(Y)a(Xe(a), déx(Y))-
Replacing Y by —Y in 3.2 implies that

a(v,Y) - ~<Y Y>~<Xw,Y>
(3.3) = (& (Y), déa(Y)) = Va(des (V). do (V) a( Xe(a), déa(Y)).
Adding equations 3.2 and 3.3, we get
(3.4) a(Y,Y) = a(dé:(Y), d&: (Y)).

Subtracting equation 3.3 from equation 3.2 and use equation 3.4, we get

Therefore, £ is an isometry with respect to the Riemannian metric a and dé,(X,) =
Xe()- Thus, I(M, F) is a closed subgroup of I(M,a). O
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From Lemma 3.1, we conclude that if (M, F') is a homogeneous Finsler space
with square-root metric F' = \/a(a + (), then the Riemannian space (M, «) is
homogeneous. Further, M can be written as a coset space G/H, where G = I(M, F)
is a Lie transformation group of M and H, the compact isotropy subgroup I, (M, F)
of I(M, F) at some point a € M [8]. Let g and h be the Lie algebras of the Lie
groups G and H, respectively. If g can be written as a direct sum of subspaces h
and n of g such that Ad(h)n C n, Vh € H, then from Definition 2.6, (G/H, F) is a
reductive homogeneous space.

Therefore, homogeneous Finsler space with square-root metric can be written
as a coset space of a connected Lie group with square metric. Here, the square-root
metric F' = \/a(a + B) is viewed as G invariant Finsler metric on M.

Theorem 3.1. Let F' = \/a(a+ B) be a G-invariant square-root metric on G/H,
X the vector field corresponding to 1-form 5. Then « is a G-invariant Riemannian
metric and the vector field X is also G-invariant.

Proof. Let F be G-invariant metric on G/H, we have
F(y) = F(Ad(h)y), VYhe H, Y en.

By 3.1, we get

Vay,v) + Vay, vja(x, v)

= \/(E(Ad(h)Y7 Ad(h)Y) + a(Ad(h)Y, Ad(h)Y)a(X, Ad(h)Y).
After simplification, we get

a(y,Y) +a(y,Y)a(X,Y)
(3.5) = a(Ad(h)Y, Ad(h)Y) + /a(Ad(h)Y, Ad(h)Y)a(X, Ad(h)Y).

Replacing Y by —Y in 3.5 implies that

a(Y,Y) —va(Y,Y)a(X,Y)
(3.6) = a(Ad(h)Y, Ad(h)Y) — Ja(Ad(h)Y, Ad(h)Y)a(X, Ad(h)Y).

Adding equations 3.5 and 3.6, we get
(3.7 a(Y,Y)=a(Ad(h)Y, Ad(h)Y).
Subtracting equation 3.6 from equation 3.5 and use equation 3.7, we get
a(X,Y) =a(X, Ad(h)Y).
Therefore, « is a G-invariant Riemannian metric and
Ad(h)X = X,

which proves that X is also G-invariant. []
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The following Theorem gives us a complete description of invariant vector fields.

Theorem 3.2. [7] There exists a bijection between the set of invariant vector fields
on G/H and the subspace

V={Yen: AdR)Y =Y, VYhe H}

4. S-Curvature of Homogeneous Finsler Space with Square-root
Metric

S-curvature was introduced by Shen in [16]. It is a quantity to measure the
rate of change of the volume form of a Finsler space along geodesics. Let V' be an
n-dimensional real vector space and F' a Minkowski norm on V. For a basis {b;} of
V, let

_ Vol(B™)
- Vol{(y") € R*| F(yib;) < 1}’

or

where Vol means the volume of a subset in the standard Euclidean space R™ and
B™ is the open ball of radius 1. This quantity is generally dependent on the choice
of the basis {b;}. But it is easily seen that

rly) = LBy ey o),

is independent of the choice of basis. We call 7 = 7(y) the distortion of (V, F').

Now let (M, F') be a Finsler space. Let 7(z,y) be the distortion of the Minkowski
norm F, on T,(M) and o the geodesic with ¢(0) = = and 6(0) = y. Then the
quantity

S(y) = 1o (0, 60,

is called the S-curvature of the Finsler space (M, F).

The formula for S-curvature of an (a,)-metric, in local coordinate system,
introduced by Cheng and Shen [4], is as follows:

(4.1) S = (2’(/) — Zf((z)))(’fo + 80) — %(Too — 20[@80),

where

Q = ma

A = 14+sQ+ 1 —s2)Q,
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’

_ @
2A’
= (5Q —Q)(nA+1+3sQ) - (¥* - )1 +5Q)Q",
1 ) ) o
rij = i(bllj + bj\i)a ’f‘j = bz’l"ij7 ro = ’I"iyl, oo = ’I’ijylyj7
1 , ,
sij = Gbigj = bjja), s =iy, s0= sy

Definition 4.1. Let (M, F) be an n-dimensional Finsler space. If there exists a
smooth function ¢(z) on M and a closed 1-form w such that

S(z,y) = (n+ D(c(@)F(y) +w(y), zeM, yeT (M),

then (M, F) is said to have almost isotropic S-curvature. In addition, if w is zero,
then (M, F) is said to have isotropic S-curvature. Also, if w is zero and c¢(z) is
constant, then we say, (M, F') has constant S-curvature.

With above notations, let us recall from [14] the following Theorem.

Theorem 4.1. Let F = ap(s) be a G-invariant («, B)-metric on the reductive
homogeneous Finsler space G/H with a decomposition of the Lie algebra g = b+ n.
Then the S-curvature is given by

(4.2) S(H,y)

where v € n corresponds to the 1-form [ and n is identified with the tangent space
Ty(G/H) of G/H at the origin H.

- %(([v,y]mw +aQ([v, yln, v)),

Now, we establish a formula for S-curvature of homogeneous Finsler spaces with
square-root metric.

Theorem 4.2. Let G/H be reductive homogeneous Finsler space with a decompo-
sition of the Lie algebra g = h+4n, and F = \/a(a + B) be a G-invariant square-root
metric on G/H. Then the S-curvature is given by

~ [6ns® +6(3n+2)s* +4(3n + b* +5)s + 2(4(n + 1) — b*(n — 2))
SUHy) = [ —2(352 4 65 — (b +2)(b— 2))2
1
(43) < (200 + 5 0al)).

where v € n corresponds to the 1-form B and n is identified with the tangent space
Ty(G/H) of G/H at the origin H.

Proof. For square-root metric F' = ap(s), where p(s) = v/1 + s, the entities written
in 4.1 take the values as follows:

’

g 1 . ) 2
b—sp  s+2 N N

Q
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A = 1+4sQ+ 1 —s)Q
s -1
= s ()
382 +65s— (b+2)(b—2)
a (s +2)? ’
® = (sQ —Q)(nA+1+5Q)+ (s> —b)(1+5Q)Q"
B —s 1 1 3ns? + 6ns —n(b — 2)(b+2)
- ((s+2)2_5+2)( (s +2)2 )
s 2
+(52—b2)(1+m)(m)
_ 6ns® +6(3n+2)s> +4(3n+ b7+ 5)s + 2(4(n + 1) — b*(n — 2))
B —(s+2)4 ’

After substituting these values in 4.2, we get formula 4.3 for S-curvature of homo-
geneous Finsler space with square-root metric. []

Theorem 4.3. Let G/H be reductive homogeneous Finsler space with a decom-
position of the Lie algebra g = b +n, and F = /(a(a+ B) be a G-invariant
square-root metric on G/H. Then (G/H,F) has isotropic S-curvature if and only
if it has vanishing S-curvature.

Proof. For necessary part, suppose G/H has isotropic S-curvature, then
S(z,y) = (n+1)c(x)F(y), ze€G/H, yeT(G/H).

Taking = H and y = v in 4.3, we get ¢(H) = 0. Consequently S(H,y) = 0,
Yy € TH(G/H). Since F is a homogeneous metric, we have S = 0 everywhere.

For the converse part, let G/H has vanishing S-curvature.then
0=(n+1)(c(x)F(y) +w(y), z€M, yeT,(M).

Then we have, ¢(z)F(y) + w(y) = 0 and w(y) = 0. This proof the Theorem. O

5. Homogeneous Geodesics

Definition 5.1. A Finsler space (M, F)) is called a homogeneous Finsler space if
the group of isometries of (M, F), I(M, L) acts transitively on M.

We recall that, Any homogeneous Finsler manifold M = G/H is a reductive
homogeneous space.

Definition 5.2. Let (G/H,F) be a homogeneous Finsler space and e be the
identity of G. A non-zero vector X € g is called a geodesic vector if the curve
exp(tX).eH is a geodesic of (G/H, F).
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In [10], the author proved the following result that gives a criterion for a non-zero
vector to be a geodesic vector in a homogeneous Finsler space.

Lemma 5.1. A non-zero vector Y € g is a geodesic vector if and only if
gy, = (Ym D/a Z]n) = 0, VZ € g.

Next, we deduce necessary and sufficient condition for a nonzero vector in a
homogeneous Finsler space with square-root («, 5)-metric to be a geodesic vector.

Theorem 5.1. Let (G/H,F) be a homogeneous Finsler space with

F(a:,y) = \/a(yrayz) + &(yzyyr)&(mer)

defined by the Riemannian metric a and the vector field X. Then, X is a geodesic
vector of (G/H,a) if and only if X is a geodesic vector of (G/H, F).

Proof. We know that

1 02
gy, v) = 2 858tF2(x’ Y+ su+ 1) |s=t=0.

After some calculations, we get

gy(u,0) = alu,v) - %&@, v>a(<: yy))?(X’ y)
ol * %d(u,v)d(X’ v+ ~(§£;)5)(gvy) + a(y, v)a(y, u)

So for all Z € n, we have

9x, (Xa [X, Z]a) = (X, [X, Z10) [1 + Va(X, X))
Thus, gx, (Xn, [X, Z]s) = 0 if and only if
a(Xm [Xa Z]n) =0.

This completes the proof. [

Theorem 5.2. Let (G/H,F) be a homogeneous Finsler space with

F(2,y) = \a(te, 92) + V/a(e 52)a(Xar va)-

defined by the Riemannian metric a and the vector field X. Let y € g — {0} be
a vector which a(X, [y, z]n) = 0, for all z € n. Then, y is a geodesic vector of
(G/H,F) if and only if y is a geodesic vector of (G/H,a).
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Proof. By using the relation 5.1 and some computations, we have

Iy Un, [Y,2]0) = alyn, [y, 2]n)

+ (X, [y, zln)va(y,y).

DN | =

This completes the proof. [
6. Mean Berwald Curvature

Let E;; = %ay‘?gyj (%)(m,y), where G™ are spray coeflicients. Then Z :=
E;;dz’ @ da? is a tensor on TM\{0}, which called F tensor. E tensor can also be

viewed as a family of symmetric forms defined as

E, : T.M x T,M — R,
Ey(u,v) = Egj(z,y)u'v?,

where u = u' 22|, v = vi 52|, € T,M.Then the collection {E, : y € TM\{0}} is
called E-curvature or Mean Berwald curvature.

In this section, we calculate the mean Berwald curvature of a homogeneous Finsler
space with square-root metric. We need the following:

At the origin, we have a;; = 5;, therefore,

yi = aiy’ =0y =y,

n
Qyi = Elv ﬂyi = bi7
0 .8 by — sy;

Sy‘ - 1(7) - 2 ’

oy« o

Syiyi — =
yryd dyd

0 (b= ) L~ o =

2 4

« (67

Now let in 4.3 we set:

I
>

[67133 +6(3n +2)s2+4(3n+ b2 +5)s+2(4(n+ 1) — b*(n — 2))
—2(3s2 4+ 65— (b+2)(b—2))?

Then we have
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o4
oy’

8 + 2b* + 60s + 90s% + 365> + 3n(8 + 4s + 6s% + 1253 + 3s%)
(4 — b2 + 65 + 352)°
+b2(26 +48s + 1852 + n(—6 + 65 + 9s?)) o
(4 — b2 + 65 4 352)° v

and

0%A 0
oyioyl Oyt

8 + 2b% + 60s + 90s? + 3653 + 3n(8 + 4s + 65 + 125% + 3s%)
(4 — b2 + 65 + 3s2)°

b2(26 + 485 + 1852 + n(—6 + 65 + 9s?))
(4 — b2 + 65 + 3s2)°
8 + 2b% + 605 + 9052 + 365> + 3n(8 + 4s + 652 + 1252 + 3s%)
(4— b2+ 65 + 352)°

D?(26 +485 + 1857 + (=6 + 65+ 95) |
(4— b2 + 65 + 352)° v

[6(—91135 —45ns* —54s* — 360?53 —24b%ns3 — 12ns3 — 18053 + 24ns?

Syj

(4 — b2 + 65 + 352)"
+7156b252742b2n527168$2+12b2n57 12b*s —180b%s—3b*ns—T72ns

(4 — b2+ 65 + 3s2)*

—245 + 20b%n + 16 — 14b% — b*n — 56b% — 64n
(4 — b2 + 65 + 352)"
8 + 2b* + 60s + 90s% + 365> + 3n(8 + 4s + 65 + 1253 + 3s%)
(4 — b2 + 65 + 352)°
| DP(26 + 485 + 185 + n(—6+ 6s + 952))] L
(4 — b2 + 65 + 352)° v

Syi Syj

Theorem 6.1. Let G/H be a reductive homogeneous Finsler space with a decom-
position of the Lie algebra g = h+n, and F = \/a(a + B) be a G-invariant square-
root metric on G/H. Then the mean Berwald curvature of the homogeneous Finsler
space with suare-root metric is given by

1/1 0°A 5 0A ;04 A 34
Eij(H,y) = 5 <a0yi8yﬂ' - ﬁc‘)iyj - gaiyi — —0; + Oﬁyzyj> ([v,9)n,y)
1/10A Ay,

(255 - 22) (ovuia) + (o)
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1 /104 Ay

3 (355 Wl + ot
A

+ 5g ([0, v5]n, vi) + ([0, viln, vj)

(L a1 oA 1 oa
o \s+20yay  (5+22ay  (s+22°Y oy
2 (s+2)35y"3y3 (s+2)25y"y3 U, Yln, U
2\s+20y7 (s+ 2)2%] U Viln, ¥
1 1 0A A

(61) + 5 <$—§—28y1 - (S—|—2)28y7> <[’U,Uj]n7’l)>.

where v € n corresponds to the 1-form [ and n is identified with the tangent space
Ty (G/H) of G/H at the origin H.

Proof. From 4.3, we can write S-curvature at the origin as follows:

S(H,y) = ¢+,

where

A A
¢ = E<[vvy]my> and w = 87

5 (.31, 0)

Therefore, mean Berwald curvature is

62 s (P o
’ Y 20yioyd 2 \Oyioyl T oyioyd )’
where 651284;3- and 65;% - are calculated as follows:
0¢ o (A
Biyj = BiyJ <a<[ 7y]n7y>>
(104 Ay, A |
= (255 - S8 ottt + 5 (oviles) + (oralurih)
82¢ o [(10A Ay A
oy oy [(a@yi - a3> (v, yln,y) + a(([%%‘]myb + <[U73/]m“j>)]
1 Ay 0A y; 0A A 3A
~ (Savar s sy o) e
104 Ay,
+ (255 = 2 (v udn) + (onslenoi)
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1 0A Ay
(a - ) ([0, 051, 9) + ([0, s 03))
A
+ E(<[U7Uj]n7vi>+<[Uavi]nvvj>)v
and
oy 0 [ A
10— )
1 0A A
~ |50 - ooty | o) + T2 uho)
0% 0 1 0A A
o = [(Hwyj—wsyj) (.61} + 5ol
- 194 1 04
B S+23y16y7 T 5122 oy (s+2)2sy'7ayi)

oy’
(=

" ( s+2 35y % (HAz)zsyw) ([v,9]n;v)
(7

A ) e )
s+28y3 8—|—2) yd U, Vijn, UV

(s i 20y (s fg)zsyi) ([v,0)]n, ).

Substituting all above values in 6.2, we get formula 6.1. O
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