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Abstract. In this paper, we introduce a novel metric known as a Berger-type Cheeger-
Gromoll metric on the tangent bundle 7'M over an anti-paraKahler manifold (M, ¢, g).
This metric is defined as a natural metric with respect to the base metric g on TM.
We begin by exploring the properties of the Levi-Civita connection associated with this
metric. Subsequently, we compute all the components of the Riemannian curvature
tensor and provide an explicit expression for the sectional curvature and the scalar
curvature. In the final part of our analysis, we delve into the geometry of the -
unit tangent bundle, which is endowed with the Berger-type Cheeger-Gromoll metric.
Within this context, we provide the Levi-Civita connection and detail all forms of the
Riemannian curvature tensors associated with this metric.
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1. Introduction

The study of tangent bundles has been a subject of extensive research, with piv-
otal contributions made by Sasaki in his seminal paper [17]. Sasaki’s work primarily
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focused on the differential geometry of tangent bundles associated with Rieman-
nian manifolds, leading to the introduction of the Sasaki metric as a fundamental
Riemannian metric on these bundles. Following Sasaki’s groundbreaking work, re-
searchers have delved into exploring various geometric properties related to the
Sasaki metric, as evidenced by references such as [6, 12, 14, 15, 20]. However, a
significant limitation encountered in many of these studies was the inherent flatness
of the base Riemannian manifold. This limitation prompted researchers to seek
alternative deformations of the Sasaki metric to address this issue. In the direction,
Musso and Tricerri introduced another Riemannian metric on the tangent bundle
TM over a Riemannian manifold, which they referred to as the Cheeger-Gromoll
metric. Although the metric was initially formulated by Cheeger and Gromoll in
their paper [5], Musso and Tricerri provided a more accessible expression for it and
played a significant role in its construction. In recognition of their contributions,
they gave this metric its distinctive name [14]. Notably, Abbassi and Sarih, [1],
introduced a family of natural metrics on both the tangent bundle and the unit
tangent bundles. These metrics encompassed a wide range of cases, including the
Sasaki metric, the Cheeger-Gromoll metric, the Kaluza-Klein type metric, and oth-
ers (see [2, 11, 18]). Their work was inspired by prior contributions in the field, as
indicated by [4, 7, 25]. Furthermore, Yampolsky introduced an innovative approach
to deform the Sasaki metric on slashed and unit tangent bundles over Ké&hlerian
manifolds, incorporating the use of an almost complex structure J. This deforma-
tion resulted in the ”Berger type deformed Sasaki metric,” with a subsequent study
of geodesics associated with this metric, as outlined in [19]. In the comprehensive
work presented in [3], Altunbas, Simsek and Gezer extended the exploration of the
Berger type deformed Sasaki metric to the tangent bundle over an anti-paraK&hler
manifold. They not only calculated all Riemannian curvature tensors for this met-
ric but also provided significant geometric insights. Additionally, they introduced
almost anti-paraHermitian structures on the tangent bundle and investigated the
conditions under which these structures can be classified as anti-paraKéhler or
quasi-anti-paraKahler. It is important to note that the deformations of the Sasaki
metric on the tangent bundle or cotangent bundle are not limited to the ones dis-
cussed here. This is evident from references such as [8, 9, 10, 13, 21, 22, 23, 24, 25],
where researchers have likely explored additional deformation approaches. The field
of differential geometry in this context has seen numerous contributions and remains
an active and evolving area of research.

This research is primarily focused on a comprehensive exploration of the geom-
etry associated with the Berger-type Cheeger-Gromoll metric, specifically applied
to the tangent bundle T'M over an anti-paraK#hler manifold (M, ¢, g). Our study
unfolds in several key stages: We begin by thoroughly investigating the properties of
the Levi-Civita connection corresponding to this metric. This investigation is elab-
orated in Theorem 3.1. We proceed to derive and present all relevant formulas for
the Riemannian curvature tensors associated with this metric. This detailed analy-
sis is encapsulated in Theorem 4.1 and Theorem 4.2. In addition to the Riemannian
curvature tensors, we also establish formulas for the Ricci curvature, a fundamental
curvature measure in Riemannian geometry. This aspect of our research is delin-
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eated in Theorem 4.3. We delve into characterizing the sectional curvature, offering
insights into this curvature quantity in the context of the Berger-type Cheeger-
Gromoll metric. The specifics of our findings are detailed in Theorem 4.4. Another
crucial curvature measure, the scalar curvature, is comprehensively examined, and
we provide explicit formulas for it. This component of our research is presented
in Theorem 4.5. In the final section of our research, we extend our study to the
geometry of the p-unit tangent bundle. Within this framework, we present formulas
for the Levi-Civita connection, as outlined in Theorem 5.1. Moreover, we provide a
thorough exploration of the Riemannian curvature tensors pertinent to this specific
context, which is detailed in Theorem 5.2. In summary, this research delves com-
prehensively into the geometry of the Berger-type Cheeger-Gromoll metric on the
tangent bundle T'M over an anti-paraKéahler manifold. It encompasses a thorough
examination of the Levi-Civita connection, Riemannian curvature tensor, Ricci cur-
vature, sectional curvature, scalar curvature, as well as an exploration of the -unit
tangent bundle with corresponding metric properties, thereby contributing to a
deeper understanding of these mathematical structures.

2. Preliminaries

Consider T'M as the tangent bundle over an m-dimensional Riemannian mani-
fold (M, g), with the natural projection 7 : TM — M. When we have a local chart
(u,2");_17 for M, it induces a local chart (7~ '(u),2’,u’),_y5 for TM. Let I'};
represent the Christoffel symbols of g, and let V denote the Levi-Civita connection

of g.

The Levi-Civita connection V establishes a direct sum decomposition of the
tangent bundle at any point (z,u) € TM into a vertical subspace:

; 0 i
‘/(z,u)TM = Ker(dw(z’u)) = {g BN |(z,u)a g S R},
and a horizontal subspace:
HipooTM = {610 ik, 2 ‘eR
(z,u) - {f @kx,u) - é- u ijW'(m,uﬁ é- € }

Note that the mapping & — ¢ = ¢'2:|, ) — §iqu§j%|(w,u) establishes an
isomorphism between the vector spaces T, M and H(, ,,)T'M. Similarly, the mapping
£ Ve = fl% (z,u) forms an isomorphism between the vector spaces T, M and
Viz,wyTM. Tt is evident that any tangent vector Z € T(, ,)T'M can be expressed in
the form Z = X + VY, where X and Y are uniquely determined vectors belonging

to T, M.
Consider a local vector field X = X*

gi on M. We define the vertical and

)
horizontal lifts of X as follows:
.0
2.1 VX = X' —
( ) 8’&“
.0 . 0
H 7 k
X = X - — T ——).
(81:1 Wi 8uk)
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It is worth noting that #( 8(3:1') = a?,:i — ujl“fj% and V( 321-) = aii' Therefore, the

set (H( 8(2:1' ), V( a?:i )) for i = 1 to m forms a local adapted frame on TT M.

In particular, we have the vertical spray Vu and the horizontal spray fu on TM
defined by

Vo Dy D e 9

- 'Y, ——).
out’ oz i 8uk)
1%

u is also called the canonical or Liouville vector field on T'M.

The bracket operation of vertical and horizontal vector fields is given by the
formulas [6, 20]:

HxHy] =H[X,Y] - Y(R(X,Y)u),
(2.2) HX VY| =Y(VxY),
VX,YY] =0

for all vector fields X and Y on M.

3. The Berger-type Cheeger-Gromoll metric

An almost product structure ¢ on an m-dimensional manifold M is a (1,1)-
tensor field on M satisfying ¢? = idy;, where id;; represents the identity tensor field
of type (1,1) on M. Importantly, ¢ must not be equal to idy;. The pair (M, ¢) is
then referred to as an almost product manifold. An almost para-complex manifold is
essentially an almost product manifold (M, o) for which the two eigenbundles TM ™+
and T'M~, associated with the eigenvalues +1 and —1 of ¢, respectively, have the
same rank. It is essential to note that the dimension of an almost para-complex
manifold is always even.

The integrability of an almost para-complex structure ¢ is determined by the
vanishing of the Nijenhuis tensor:

Ny(X,Y) = [0X, pY] — o[ X, pY] — p[pX, Y]+ [X, Y],

which must vanish identically for all vector fields X and Y on M. Furthermore,
an almost para-complex structure ¢ is integrable if and only if we can introduce a
torsion-free linear connection V such that Vi = 0 [16].

A (pseudo-)Riemannian metric g is considered an anti-paraHermitian metric if
it satisfies the condition:

9(pX, 0Y) = g(X,Y),

or equivalently (referred to as the purity condition or B-metric):

9(pX,Y) = g(X, pY)
for all vector fields X and Y on M [16].
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When (M, ¢) is an almost para-complex manifold equipped with an anti- para-
Hermitian metric g, the triple (M, ¢, g) is referred to as an almost anti-paraHermitian
manifold or an almost B-manifold. Furthermore, (M, p,g) is considered an anti-
paraKéahler manifold or B-manifold if ¢ is parallel with respect to the Levi-Civita
connection V of g, i.e., Vo = 0 [16].

It is well-established that in an anti-paraKéhler manifold (M, ¢, g), the Rieman-
nian curvature tensor has a specific property, where:

R(pY,pZ) =R(Y,Z),
for all vector fields Y and Z on M [16].

{ R(¢Y,Z) = R(Y,pZ) = R(Y, Z)p = ¢R(Y, Z),

Definition 3.1. Consider a 2m-dimensional almost anti-paraHermitian manifold
(M, @, g), with its tangent bundle denoted as TM. A Berger-type Cheeger-Gromoll
metric on T'M is defined as follows: For all vector fields X and Y on M

g("x. 1Y) = g(X,Y),
g(vX7 HY) g(HX7 VY) =0,
BOXY) = L)+ (X pu)g(Y: o),

where o = 1+ 6%g(u,u) = 1+ 62|u|? and |.| represents the norm with respect to the
metric g.

Lemma 3.1. [1] Consider a Riemannian manifold (M, g) with its tangent bundle

denoted as TM. Additionally, let f: R — R be a smooth function. In this context,
we can establish the following relationships:

for any vector fields X,Y on M, where % = g(u,u).

Lemma 3.2. Consider an anti-paraKdhler manifold (M, ,g) with its tangent
bundle denoted as TM. Then we have the following:

for any vector fields X,Y on M.
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Proof. From (2.1) we obtain

1) "X (gl ) = X 8ii<g<u,sou>>—usrlkxk (gl pu)

, 0 0
= (glju @t )_“SrlkX 9u l(glju @t )

SOU) — GijU FstkQDtu - glju 902 SFZka

pu) — 9(Vxu, pu) — g(u, oV xu)

2) VX (g ou) = Xiaii@(u,w))

) ,
= X'o (g’ giut)
= X'(gijplu’ + giju'el)
= g(X,pu) + g(u, pX)
= 29(X, pu).
9 . L, 0 _
18 . (gleltpiu ) — uSI” 8 ,(glelwiut)
= X(g(Y,pu)) — T X" g,;Y' ]
9(VxY,pu) + g(Y, Vx(pu) — g;YV'pluT?, X*
9(VxY,pu) + g(Y, Vx(pu) — g(Y, o(Vxu))
= (VXY, gau).

3) "X (g(Y,pu)) =

The remaining formulas are derived through analogous calculations. O

Lemma 3.3. Consider an anti-paraKahler manifold (M, ¢, g) and its tangent bun-
dle (TM, g) equipped with the Berger-type Cheeger-Gromoll metric. In this context,
the following relationships hold:

>HX( (" 12)) = X(9(Y,2)),
VX (g("v,"z)) = o,
X (3" V7)) = a("(VxY),YZ) +3("Y, Y (Vx Z)),
VX (g("v,VZ)) = g((X,wY)g(Z,sDU)+9(Y7s0u)g(X,<pZ))
262

—=—9(X,u)g("Y,"2)
for all vector fields X, Y and Z on M.

Proof. The results can be directly deduced from Definition 3.1, Lemma 3.1, and
Lemma 3.2. O
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Let us derive the Levi-Civita connection V for the tangent bundle 7'M endowed
with the Berger-type Cheeger-Gromoll metric g. This connection is defined by the
Koszul formula, which expresses the metric compatibility of the connection:

(3.1) 20(VsY,2) = X(§(Y,2))+Y(3(Z,X))

Z(G(R.7) +3(Z
+9(Y [2 X]) —Q(X,DN/,Z])

™
=

for all vector fields X , Y and Z on TM.

Theorem 3.1. Consider an anti-paraKdhler manifold (M, ¢, g) along with its tan-
gent bundle (TM,q) equipped with the Berger-type Cheeger-Gromoll metric. In this
context, we can establish the following relationships:

1.Vaxly = H(VXY)—%V(R(X,Y)u),

2.VuyY = iH(R(u,Y)X)JrV(VXY),

3.Vvx Yy = %H(R(u,X)Y),

4.VvyY = ‘:( (X, u)VY + g(V,u)"X) + 625XV, YV )u"

2
£ (X, 0¥) — gl u)a(XY YY) Vigu)

for all vector fields X, Y on M, where V denotes the Levi-Civita connection and R
represents its Riemannian curvature tensor of (M, , g).

Proof. In the proof, we will make use of (2.2), Koszul formula (3.1) and Lemma
3.3. 1. By performing direct calculations, we obtain:

20(Vux Y, 72) = Hx(3("v,"2)) + Py (3("2,7X))
=12 (5("x. ")) +9("Z. "X, Y]
+g("Y, [12,7X]) - g("X, [Ty, 2])
= Xg(Y Z)+YQ(Z X) Zg(va)‘i’g(Zv[XaYD

+9(Y,[Z, X]) — 9(X,[Y, Z])
= 29(VxY,Z)
25("(VxY),"2)
and
25(Vuxv,Vz) = "X (g(",V2)) + "y (3(VZ, X)) - VZ(3(" X, "Y))
+9(VZ7 [HXvHY])"_g(HYa [VszX])_g(HX7[HYaVZD
= 3(VZ,["X, "))

= —g("(R(X,Y)u),"2),
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from which we find
~ 1
VY = H(VxY) - §V(R(X, Y)u).

2. Similar calculations as those provided above lead to:

2@(%HXVKHZ) — H (~V HZ) Y( (HZ HX))
7 ("X, YY) + "z, ["X,VY])
+3("Y, ["2,7X]) — g("X, [VY, " Z))
= 9("v,["2,7X))

= —9("Y,"(R(Z, X)u))

L (glY, RUZ, X)) + (Y, pu)g(R(Z, X, o).

As the Riemannian curvature tensor field is pure with respect to ¢, we can conclude

that:
g(R(Z’ X)u’ (pu) = g(R((,OZ, X)u7 U) =0
and
~9(Y,R(Z, X)u) = g(R(u,Y)X, Z) = (*(R(u,Y)X),"Z),
then

25(Vux"Y,"2) = —g(*(R(u,Y)X),"2).

1.
Also, it follows that
25(Vux"V,VZ) = X (3("V,V2)) + VY (3(VZ, X))
—VZ(§("X,"V)) + ("2, ["X,"Y))
+g(VYv [V27 HX]) - g(HX7 [VY’ VZD
= HXg(VYv VZ) + g(vzv [HXv VY]) + g(VY’ [VZﬂ HX])
= 9("(VxY),V2) + ('Y, "(Vx 2))
+3(V2,Y(VxY)) - ('Y, (Vx 2))
= 25("(VxY),"Z2).

So, we see that

~ 1
Viy Y = %H(R(u, V)X) +Y(VxY).

The remaining formulas can be derived through similar calculations. [

In the following, we will provide some lemmas without proofs since their proofs
can be easily obtained through standard calculations. Additionally, these lemmas

are required for proving certain results in the future.
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Lemma 3.4. In the context where we have an anti-paraKdhler manifold (M, p, g)
and its tangent bundle (T'M, ) endowed with the Berger-type Cheeger-Gromoll met-
ric, the following results hold:

1. %HXVU = %VuHX = O7
< Vv Ly g v, 0 %
2.Vvx'u = —TX Eg(u, ou)g(X, pu)u + Eg(X, u)’ (pu)
54 :
——g(u, eu)g(VX, )Y (pu),
% l—ay g v, 0 v
3.V, X = —="X+ Eg(u, ou)g(X, pu)u + Eg(X, pu)’ (pu)
54 3
——glu, eu)g(VX, Y)Y (pu),
~ 1 52 .
4.Vv,u = ~(1+ §*g(u, pu)®)Vu + —g(u, pu)(1— §%5(Vu, Yu)) ¥ (pu)

for any vector field X on M.

Lemma 3.5. In the context where we have an anti-paraKdahler manifold (M, ¢, g)
and its tangent bundle (T M, ) endowed with the Berger-type Cheeger-Gromoll met-
ric, we have the following results:

1.6HXV(QO'UJ) = 6V(¢U)HX:O,
~ 52
2.Vvx(pu) = Y(pX) = —g(u,pu) "X +%9(X, pu) u
54 v
= 9, pu)g(X, pu) " (pu),
~ 174 52 1% 2 V. 54 V
3. Vvigu) X = ——g(u,pu)" X +8°g(X, pu) v — —g(u, pu)g(X, pu) " (pu),
4. Vv (pu) = o u—8g(u, ou)"(pu)

for any vector field X on M.

Furthermore, in order to calculate the curvature tensors of the tangent bundle
TM with the Berger-type Cheeger-Gromoll metric g, we will provide the following
definitions and propositions. We would like to note that the proof of the proposition
can be readily obtained through standard calculations.

Definition 3.2. Consider a Riemannian manifold (M, g) and a smooth bundle en-
domorphism F : TM — T M. We can respectively define the vertical and horizontal
vector fields VF and F on TM as follows:

VF. TM — TTM Hp . TM — TTM
(z,u) — Y(Fu),’ (z,u) = H(Fu),.
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Locally, we have

0

Fw = WG,
) = W)

Proposition 3.1. In the context of an anti-paraKihler manifold (M, ¢, g) and its
tangent bundle (T M, §) equipped with the Berger-type Cheeger-Gromoll metric, the
following formulas hold:

LV (F) = H(VxF) - L V(ROX, Fuu),

2 VuxV(Fu) = iH(R(u,Fu)X)JrV((VXF)u),

3. Vux(Fu) = H(FX)+%H(R(U,X)FU),

4.VvxV(Fu) = Y(FX)- g(g(X, w)V(Fu) + g(Fu,u)VX) + 625(YX, V(Fu)) u
52

+(9(pX, Fu) = 8% g(u, pu)g ("X, V(Fu))) " (ou)
for any vector field X on M.

Proof. The results can be directly derived from Theorem 3.1. [

4. The Riemannian curvatures of the Berger-type Cheeger-Gromoll
metric

We will perform the computation of the Riemannian curvature tensor R for TM
using the Berger-type Cheeger-Gromoll metric g. The Riemannian curvature tensor
is characterized by the formula:

where X , Y and Z are vector fields defined on T M.

Theorem 4.1. In the context of an anti-paraKdhler manifold (M, ¢, g) and its
tangent bundle (T M, §) equipped with the Berger-type Cheeger-Gromoll metric, the
following formulas hold:

(4.1)

RX )iz = H(R(X,Y)Z)+iH(R(u,R(X,Y)u)Z)
+$H(R(u, R(X,Z)u)Y) — iH(R(u, R(Y, Z)u)X)

5 (V2R)(X,Y ),
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(4.2)

RIIX, "z =

(4.4)

RX,VVWz =

(4.5)
RVX,VY)Hz

5 (Ve R)@,Y)2) — -V (R(X, R, ) Z)u)

2
VR, 2)Y) — 5g(¥ ) (R(X, Z)u)

2 2

1) 1)
2c 2a
54

_ﬁg(@h (pu)g(R(X, Z)u, Y)V(SDU)7

%H((VXR)(u, Z)Y) — %H((VyR)(m 7)X)
+Y(R(X,Y)Z) - iV(R(X, R(u, Z)Y)u)

_~_£V(R(Y, R(u, Z)X)u) — %g(Z, w) " (R(X,Y)uu
+§ Vg(R(X,Y)u, Z) + (gg(R(X’ Y)u,02)
_%g(u, pu)g(R(X, Y )u, 2))"(pu),

~ LR, 2)X) - ¥R (u,Y)(R(u, Z)X)

200 ’ 40[2
+;79(Y, w) (R, 2)X) = 5 59(Z,u) " (R(u, Y)X)

= AY,Z2)VX — AX,2)"Y + B(Y, 2)V(pX)
—B(X,2)V(oY) + C(X,Y, Z)Yu+ D(X,Y, Z)"(pu),
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for all vector fields X,Y and Z on M, where

2 6 2

(47) A 2) = (ot gt pu)a(, V2) + (e, 2)

- ez - Lo owg(s. 02),

52 o4

(4.8) B(x,Z) = —g(+,92) = —g(u, pu)g(*+,'2),

9 Cxv.2) = L (grwa("X.V2) ~ o(X. ('Y, V2),
4

(110)  DXY.Z) = Sp(eVua(X,0Z) — (X u)g(Y, $Z)

4
+% (9(Y,ou)g(X, Z) — g(X, pu)g(Y, 2))
2 ) O(X. Y. 2).

Proof. In the proof, we will utilize the following mathematical results: Theorem
3.1, Lemma 3.4, Lemma 3.5 and Theorem 3.1.

1) Counsider the bundle endomorphism F' : TM — TM defined as follows: for any
vector w in TM, we have Fu = R(Y, Z)u. Let us perform explicit calculations:

(4.11)

ViV 2 = Vux (v 2) — 5V(Fu)
= HVyxVyZ) - %V(R(X, VyZ)u) — %V(VX(R(Y, Z)u))
45RO, 2)(Vxw) — =" (R(u, R(Y, Z2)u)X).

By permuting the symbols X and Y in the formula (4.11), we obtain the following
expression:

~ = 1
(412)  VmyVuxfZ = H(VyVxZ) - §V(R(Y, VxZ)u)
1 1
~5 (T (R(X, Z)w) + 5 V(R(X, 2)(Vyw)
L g
~1a (R(u, R(X, Z)u)Y).
Also, we find
(413) ﬁ[HX,Hy]HZ == 6H[X,Y] HZ - €V(R(ny)u)HZ
1
= MVixv2) - §V(R([X, Y], Z)u)

—%H(R(u, R(X,Y)u)Z).
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From (4.11), (4.12) and (4.13) we find
RIXx Iz = HR(X,Y)Z)+ iH(R(u, R(X,Y)u)Z)
+%H(R(u, R(X, Z)u)Y) — iH(R(u, R(Y, Z)u)X)
S (xR)(Y, 2)u) + S (V¥ B)(X, Z)u).
Utilizing the second Bianchi identity:

(VxR)(Y,Z)+ (VyR)(Z,X)+ (VzR)(X,Y) =0,

we can derive the formula (4.1).
2) Given the bundle endomorphism F : TM — TM defined as Fu = R(u,Y)Z, we
can deduce the following result:

ﬁHXeVyHZ = 6HX(%H(PWU))
- iH(VX(R(u, Y)Z)) - %H(R(VX% Y)Z)
,iV(R(X, R(u,Y)Z)u).

Consider the bundle endomorphism F': TM — TM given by Fu = R(X, Z)u. We
obtain

Vo Ui’z = Ty (M(Vx2) — 5V (Fu)

2

= 5 R Y)VZ) — SYROGZY) + 5oV, (ROX, Z)u)

gV, ROC Z00) Y — (¥, ROX, Z)u) ()
gl gV, R, Z00) ().
Also,
Viax vy)7Z = Vviyov) P2 = iH(R(u, VxY)Z),
which gives the formula (4.2).

3) By applying formula (4.2) and the first Bianchi identity, we can express the result
as follows:

H(Vx R)(u, Z)Y) — ~—V(R(X, R(u, Z)Y )u)

R(MX,Vz)Hy o

1

2a
1y 5 v

+5 (R(X,Y)Z) = 5-9(Z,u) " (R(X, Y)u)

52 52
+%9(R(X, Y)u, Z)Vu + %g(R(X, Y)u, goZ)V(gou)
54

539 pu)g(R(X.Y)u, 2)" (pu)
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and

ROV, V2)EX = LV, R)(u, 2)X) — iV(R(Y, Rlu, 2) X )u)

2a
52

+%V(R(Y, X)2) = 5-9(Zu) Y(R(Y, X)u)

—I—;iag(R(Y, X)u, Z)Vu + %g(R(Y, X)u, 0Z)Y(ou)
4
s pu)g(ROY, X)u, 2) (),

which gives the formula (4.3).

Similar calculations yield the other formulas, but to avoid redundancy, we will
omit them in this presentation. [J

Theorem 4.2. Consider an anti-paraKdhler manifold (M, p,g) and its tangent
bundle (T M, §) equipped with the Berger-type Cheeger-Gromoll metric. If the tan-
gent bundle (TM, ) is flat, then it follows that (M, p,g) must also be flat.

Proof. We can readily observe from equation (4.1) that if we assume R = 0 and
compute the Riemann curvature tensor for three horizontal vector fields at the point
(z,0), we obtain:

R0y (X, V)7 = H(R,(X,Y)Z) =
O

Now, let (z,u) € TM with u # 0 and {E } be a local orthonormal frame

i=1,2m

on (M, p,g) at x, such that £y = U Then
lpul IUI
(4.14) {F, ="YE;, Foppi1 = VE1, Fapyj = \/avjzj}izlwd,:zW

denotes a local orthonormal frame on TM at (z,u), where o = 1 + 62g(u, u).

Theorem 4.3. Consider an anti-paraKdahler manifold (M, p,g) and its tangent
bundle (T M, g) equipped with the Berger-type Cheeger-Gromoll metric. If we denote

the Ricci curvature of (M, ¢, g) as Ric and the Ricci curvature of (TM,§) as Ric,
then we can state the relationship as follows:

2m

(4.15) Ric("X, 1Y) = Ric(X,Y) Zg (Eq, X)u, R(Eq, Y )u),
1 2m
(4.16) Ric(X,VY) = Zg Vi, R)(u,Y)X, E,),

a=1
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2m

(4.17) Ric(VX,VY) = é > " g(R(u, X)Eq, R(u,Y)E,)
=1
+(2m — 1)A(X,Y) + AB(X,Y)
_B(SOXa Y) + C(’LL, Xa Y) + D(quv Xa Y)v
2m

where A, B,C, D are defined in Theorem 4.1 and \ = Zg(Ea, oE,).

a=1

Proof. Utilizing the local orthonormal frame (4.14) on T'M, we can express the
following:

- 2m

Ric("X,"y) = > g(R("E,, "X)"y,"E,) + g(R(E:, "X)"Y, VEy)

a=1

—I—aZg R(VE,, "X)"y,VE,).

By considering equations (4.1) and (4.2), we can deduce the following result:

Ric("X,Y) = Ric(X,Y) Zg (Eq, X)u, R(E,, Y )u)
1 2m
+oo ; g(R(u, E.)X, R(u, E,)Y).
Using
Zg (Ea, X)u, R(Eq, Y )u Zg E)X,R(u, E,)Y),
we get
Ric("X,lY) = Ric(X,Y) Zg (Eq, X)u, R(E,,Y)u)

1
— R(u,E,)X, R(u, E,)Y).
- a;a (1, Ba) X, R(u, E)Y)
Similar calculations lead to the derivation of the other formulas. [

In the following, we denote @(V, W) as the square of the area of the parallelo-
gram with sides V' and W, given by:

QV,W) = g(V,V)g(W, W) — g(V, W)
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If we have a point p € T'M and vectors V,, and W, that are linearly independent

at point p, then the sectional curvature K (Vp, W) of the plane spanned by V,, and
W, can be calculated as:

R, W) = 3R (V. W)W, V).
Q(Vp, W)

Here, K (Vp, W,,) represents the sectional curvature for the plane defined by the
vectors V,, and W,

Let K(PX,HY), K(#X,VY) and K(VX,"Y) denote the sectional curvature of
the plane spanned by the sets: {#X, 7Y}, {#X,VY'} and {YX,"VY'} on the tangent
bundle (T'M, g), where X and Y are vector fields on M.

Theorem 4.4. In the context of an anti-paraKdhler manifold (M, ¢, g) and its
tangent bundle (TM, ) equipped with the Berger-type Cheeger-Gromoll metric, the
sectional curvature K satisfies the following equations:

1) KX, My) = K(X7Y)—4a(|X‘2|Y‘23ig(X Y)2)|R(X,Y)u|2,
- (H V- _ 1 u 2
DECE) = LR+ gy ) A
- 1 _ N
3)K(VX,"Y) = W(y(VX,VX)A(Y,Y)—g(VX,VY)A(X,Y)

+§(VX’ V‘)OX)B(Y’ Y) - g(vxv V@Y)B(Xv Y)
+3("X, "W)C(X,Y,Y) + g(X, pu) D(X,Y,Y)),

where K denotes the sectional curvature of (M, ¢, g).

Proof. i) From the formula (4.1), we can deduce the following:
~ 1
GROX, M)y X)) = g(R(X,Y)Y, X) + 5 —g(R(u, R(X, Y)u)Y, X)

+$g(R(u,R(X7Y)U)Yv X)

G(R(X, Y)Y, X) = 2 g(R(X,Y)u, RO, Y )u)
= G(ROCY)Y X) — ROVl

i1) From the formula (4.4), we have

1
1a2?
(R(u, V)X, R(u,Y)X)

JREX, Y)Y, IX) = ——5g(R(u,Y)R(u,Y)X, X)

1027
1
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iii) It follows immediately from the formula (4.6) that

GREX'Y)YVX) = §(VX,VX)A(Y,Y) - §(VX, YY) AX,Y)
—5("X,YeX)B(Y,Y) - §(VX,VpY)B(X,Y)
+3(VX, Yu)C(X,Y,Y) + g(X,ou) D(X,Y,Y).

On the other hand, we have the followings:

i) QUIX YY) = (X, HX)g("y, fly) — ("X, Hy)?

XY P —g(X,Y)?,

i) Q(IX,VY) = (X, "X)5("v,"Y) - ("X, VY)?
1
CIXP(YP + 89V pu)?),
i) QUVX,VY) = VX, VX)3("Y,"Y) - g(VX,VY)?

1
= ;(\Xl2 +6%9(X, ou)?) + (|Y > + 6%g(Y, pu)?)

_é(g(X’ Y) + 8%9(X, pu)g(Y, pu))”

85

1
= S(XPYP = g(X,Y)? + 82X Pg(Y, ou)” + 0*[Y g (X, pu)”

—26%9(X, Y )g(X, pu)g(Y, ¢u)).

The division of §(R(X® Y7)Y7 X?%) by Q(X! Y7) for i,j € {H,V} gives the re-

sult. O

Now, let us consider the scalar curvature o of (T'M, §). With standard calcula-

tions, we obtain the following result:

Theorem 4.5. Consider an anti-paraKdahler manifold (M, p,g) and its tangent
bundle (T M, g) equipped with the Berger-type Cheeger-Gromoll metric. If we denote
the scalar curvature of (M, @, g) as o and the scalar curvature of (TM,§) as o, then

we can state the relationship as follows:

1 2m
— 2
g = o- agl |R(Eq,, Ep)u|
—4 1
+620\2 + a-fmtl 5*g(u, pu)\
a? — (4m? —2m+ 3)a + 4m? — 2m
- 0[2(04 — 1) 629(”7 SOU)Q
~(2m - 1)a? — (4m? — 4m)a — 4m? + 1 52

(67
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2m

where \ = Zg(Ea, oE,) and {E.}, 135 is a local orthonormal frame on M.

a=1

Proof. Let (Fi),—1zm be alocal orthonormal frame on (7'M, g) defined by equation
(4.14). By applying Theorem 4.3 and utilizing the definition of scalar curvature, we
can derive the following:

2m 2m
o0 =Y Ric(Fy, [}) + Ric(Fomy1, Fomy1) + Z Ric(Famtby Fam+b)-
b=1 b=2
Using (4.15) and (4.16), we get
2m o 1 2m
> Ric(Fy, Fy) =0 - o > |R(Eq, By)ul?,
b=1 a,b=1
Ric(Fomi1, Fami1) = (2m—1)A(Ey, Ey) + W.B(Ey, Ey)
—B(E1, ¢E1) + C(u, Er, Er)
and
2m . 1 2m 2m
> Ric(Fpiy, Frps) = " > R, By)Eo* + (2m — Doy A(Ey, Ey)
b=2 ab=1 b=2
2m 2m
+aX Y B(Ey, By) —ay | B(Ey, ¢Ep)
b=2 b=2
2m 2m
+a Z C(u, By, Bp) — « Z D(ypu, Ey, Ep).
b=2 b=2

So, the expression for o takes the following form

2m 2m
. 1 "
¢ o= o- - > |R(Ea, Ey)pl* + (2m —1)a Y A(E,, Ey))
a,b=1 b=2
2m 2m 2m
+a)Y B(Ey, Ey) —a Y B(Ey, ¢E,) +a ) C(u, By, By)
b=2 b=2 b=2
2m
—a Y D(pu, By, Ey) + (2m — 1) A(E1, E1) + AB(E\, Ex)
b=2

—B(Ey, 9E1) + C(u, By, Ey).

To simplify this last expression, we can make use of equations (4.7), (4.8), (4.9) and
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(4.10). This yields the following result:

2m

~ 1 9 9o oa—4m+1
g = o- ;1|R(Ea,Eb)u| + 0N+ ——— 5% g(u, pu)A
a? — (4m? — 2m + 3)a + 4m? — 2m
_ 62 2
a?(a—1) 9w, pu)
~(2m - 1)a? — (4m? — 4m)a — 4m? + 1 52
- .

O

5. The Berger-type Cheeger-Gromoll metric on the p-unit tangent
bundle TY M

The hypersurface that corresponds to the ¢-unit tangent (sphere) bundle over
an anti-paraK&hler manifold (M, ¢, g) can be expressed as follows:

TPM = {(z,u) € TM, g(u, pu) = 1}.
We have the function f defined as:

f:T™ — R
(x,u) = f(zau):g(uawu)_la

where z is a point in the base manifold M, and u is a tangent vector in the tangent
space at z. This function is used to define the hypersurface 7Y M as:

T1<PM ={(z,u) € TM, f(x,u)=0}.

Let g/;(;l f (the gradient of f with respect to the metric §) be a normal vector field
to TY M. From the Lemma 3.2, for any vector field X on M, we have the following
relationships:

g(1X, gradf) = "X(f)="X(g(u, pu) — 1) =0,
§("X,gradf) = VX(f)="X(g(u,pu) —1) = 29(X, pu) = 23(VX, V(pu)).

From these equations, we conclude that:
gradf = 2"(pu).

The unit normal vector field to Ty M is given by

gradf — V(pw)  V(eu) 52%

gradfl; Mewls o o Va-1

ou).
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where o = 1+ §%g(u,u).

The tangential lift X of a vector X € T, M with respect to § at the point
(x,u) € TY M is defined as the tangential projection of the vertical lift of X to
(z,u) with respect to A/, which can be expressed as:

52 v
792(X, 0u)" (P) (2,0 -

X =YX = G ("X N ) N = "X -

2

_ a—1
have TX = VX. From the above equation, we can derive a direct sum decomposition
as follows:

(5.1) TwwTM = TyTY M & span{N .}
= TouwT¥M & span{"(pu) 4w},

To simplify the notation for clarity, let us use X = X —

9(X, pu)pu, so we

where (z,u) € TY M.
Indeed, if V' € T(, )T M, then they exist X,Y € T, M, such that

(5.2) Vv = x4+
= XY 4 G (Y N ) Ny
= X +7Y + %%(Ya ou)" (o) (2,0
From (5.2), we can conclude that the tangent space T, )Ty M of T M at (x,u) is
given by
Ty TYM = {"X +7Y | X € T,M,Y € {pu}*" C T, M},

where {pu} = {Y € T, M, g(Y, pu) = 0}. Hence T(, )T M is spanned by vectors
of the form X and Y.

Given a vector field X on M, the tangential lift X of X is given by

Koy = (X = GOXNIN) o = (X = 29X, 00)(pu)) , .

Lemma 5.1. Consider an anti-paraKahler manifold (M, ¢, g) and its tangent bun-
dle (TM, g) equipped with the Berger-type Cheeger-Gromoll metric. In this context,
we can derive the following results:

1) g(HX7N) =0,

2) g(TXaN) =0,

3) TX =VX & g(X, pu) =0,
4) Hpu) =0,

5) 9(X,pu) =0

for any vector field X on M.
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Definition 5.1. In the context of an anti-paraKahler manifold (M, p,g) and its
tangent bundle (T'M, §) equipped with the Berger-type Cheeger-Gromoll metric,
the Riemannian metric g on 77 M, induced by g, is completely determined by the
following identities:

g("x,1y) 9(X.Y),

g('x."y) = g("x,7y) =0,

N 1 52

gUXTY) = —(9(X,Y) = ——=g(X, pu)g(Y, pu)).

We will compute the Levi-Civita connection V of TP M equipped with the
Berger-type Cheeger-Gromoll metric g. This connection is defined by the formula:

(5.3) VoV =VuV = §(VuV, NN,

where U and V are vector fields on 77 M.

Theorem 5.1. Consider an anti-paraKdhler manifold (M, p,g) and its @-unit
tangent bundle equipped with the Berger-type Cheeger-Gromoll metric. In this con-
text, we can express the following formulas:

~ 1
Vaxy = HTxY) - TR Y ),

1
%H(R(u, YV)X) +1(VxY),
~ 1
Y = —f XY
vX 20 (R(U, ) )a
N 52 52
Y = —(g(Y,u)—
vX @ (g( 7u) a—1
g — (X )Ty
- (9(X,u) = ——9(X, pu
52 T 52
9(Y, ou) (¢ X) + —(9(X,Y)

ViV =

9(Y, pu))'X

a—1
+(ai1)29(X’ <pu)g(Y, SO’U’))TU

for all vector fields X,Y on M, where V represents the Levi-Civita connection and
R denotes its Riemannian curvature tensor of (M, v, g).

Proof. 1. By direct calculations, we have
Vi y Vax Y — §(Vax 7Y, )N

= H(VxY)  YRXY ) — (-5 V(ROX, Y Ju), AON
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2. We have ViuyxTY = Vuy TV — §(VauxTY, N)N, direct calculations give

~ 1 ~
Viax Ty = %H(R(u, V)X) +T(VxY)and §(Vux'Y,N)=0.

Hence

~ 1
Vi 'Y = %H(R(u, YV)X) +T(VxY).

3. Also, we have Vry Y = Vo HY — f](%TXHY, MN. Tt follows that

~ 1 ~
Vexly = %H(R(U,Y)X) and §(VuxTY,N)=0.

Hence

~ 1
Vax Y = %H(R(u, Y)X).

4. Similarly, in the context mentioned above, we can present the following formulas:

Vo TY = Vaoy TY — §(VrxTY, N)N, which give
~ -6 52
VoY = —(g(Y,u) — —

52 52 v
—(9(X,0) = —=9(X,pu)) 'Y

C9(Y,pu) X

+(Ga o oeey) - Ga(x.y)

254 54
(202 + a —1)4°

X (Y ) (pu)

+
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and
2 2
1) v )
o a—1
52 §° 1%
—9(X. o) gV NN

X Y) + (X eualY. o) u NN

62 ~ _ 52
— 19(Y7 pu)g(* (9 X), NN + (m
264 54

+WQ(X7 u)g(Y, pu) + WQ(X’ eu)g(Y,u)

54 (20% + a —1)6°
_@g(XaY)_ a2(a—1)3

g(ﬁTXTya N)N g(Yv @u))g(VXvN)N

I

I
—

Q
~

<
=

I

g(X, oY)

9(X, pu)g(Y, @u)) Y(u).

Hence

o 7 52 5?
Ve = e - g

(Y, o)) "X
2 2
0y~ g (X )Y

T g ex) + (g, v)

+WQ(X» pu)g(Y, SDU))T“-

When providing proofs, we use the Lemma 3.1, Theorem 3.1, Lemma 3.5 and the
formula (5.3). O

Next, we will compute the Riemannian curvature tensor of Ty M with the
Berger-type Cheeger-Gromoll metric g. Denoting R as the Riemannian curvature
tensor of (17 M, g), we can derive the following expression from the Gauss equation
for hypersurfaces:

(5.4) RU VYW = R(U, V)W) — B(U,W).AxV + B(V,W).AxU,

where U,V and W are vector fields on 7Y M and {R(U, V)W) represents the tan-
gential component of (5.1). Axs is the shape operator of T M in (T M, g) derived
from NV, and B is the second fundamental form of T’ M as a hypersurface immersed
in TM, associated to ' on T M. The tangential component of —Vy N, is given
by:
AnU = —{(VyN).

Furthermore, B(U, V) can be expressed using Gauss’s formula: VgV = VoV +
B(U,V).N, which allows us to calculate B(U,V) as

B(U,V) = §(VeV.N).
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Theorem 5.2. Consider an anti-paraKdhler manifold (M, p,g) and its @-unit
tangent bundle equipped with the Berger-type Cheeger-Gromoll metric. In this con-
text, we can express the following formulas:

RIX, Iz = H(R(X,Y)Z)+%H(R(u,R(X,Y)u)Z)

+$H(R(u, R(X, Z)u)Y) — iH(R(w R(Y, Z)u)X)

5T (VZR)(X, Y u),

RX, )iz = %H((VXR)(U,Y)Z)fiT(R(X,R(u,Y)Z)u)

H(VyR)(u, 2)X) + T(R(X,Y)Z)

"(R(Y, R(u, Z) X )u)




The Berger-type Cheeger-Gromoll Metric on Tangent Bundle. . . 93

2

- 5
for all vector fields X,Y and Z on M, where X = X — o 9(X, pu)pu and

-1
2 1 - 52
(2a* — 3a® — 302 + 3a — 1)4*

Proof. By utilizing Theorem 3.1 and Lemma 3.5, we can derive the following results:

(5.5) AnIX =0,
(5.6)
52 82 52
T _ o v T T
ANTX = = (X = T(eX) + (X pu) ),
(5.7) BEX,1y) = B(#X,Ty) = B("X,fy) = 0
and
(5.8)
LIS N
Ty T _ - 7
BOX,Y) = —| == (£9(X,07) = S9(X.Y)

+(20/1 —3a% — 30 4+ 3a — 1)8*
a?(a—1)2

9(X, pu)g(Y, W))-

We can obtain the necessary formulas for the curvature tensor by simply applying
Theorem 4.1 along with equations (5.4) through (5.8). O
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