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ON (LCS)n-MANIFOLDS

Rajesh Kumar

Abstract. In the present paper we studied the Pseudo projectively flat (LCS)n-
manifold with several properties. Among other interesting results we obtained necessary
and sufficient conditions for a 3-dimensional (LCS)n-manifold in the space form.
Keywords: Lorentzian manifold, Pseudo projective curvature tensor, Lorentzian met-
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1. Introduction

An n-dimensional Lorentzian manifold M is a smooth connected paracompact
Hausdroff manifold with a Lorentzian metric of type (0, 2) such that for each point
p ǫ M , the tensor gp : TpM × TpM → R is a non-degenerate inner product of
signature (−,+, ...,+) where TpM denotes the tangent vector space of M at p and
R is the real number space. A non-zero vector ν ǫ TpM is said to be timelike (resp.
non-spacelike, null, spacelike,) if it satisfies gp(ν, ν) < 0(res. ≤ 0,= 0, > 0) ([1],[6]).

Let M be the Lorentzian manifold admitting a unit timelike concircular vector
field ξ, called the characteristic vector field of the manifold. Then we have

g(ξ, ξ) = −1.(1.1)

Since ξ is a unit concircular vector field, there exists a non-zero 1-form η such that
for

g(X, ξ) = η(X),(1.2)

the equation of the following form holds

(∇Xη)(Y ) = α{g(X,Y ) + η(X)η(Y )}, (α 6= 0),(1.3)

for all vector fields X ,Y where ∇ denotes the operator of covariant differentiation
with respect to the Lorentzian metric g and α is a non-zero scalar function satisfying

∇Xα = (Xα) = α(X) = ρη(X),(1.4)
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ρ being a certain scalar function.
If we put

ϕX =
1

α
∇Xξ,(1.5)

then from (1.3) and (1.5) we have

ϕX = X + η(X)ξ,(1.6)

from which it follows that ϕ is a symmetric (1, 1) tensor. From (1.3) and (1.5) we
have

ϕ2X = X + η(X)ξ.(1.7)

Hence M is a manifold with a Lorentzian almost paracontact structure (ϕ, ξ, η, g)
introduced by Matsumoto [4], Mihai and Rosca [5]. Thus the Lorentzian manifold
M together with the unit timelike vector field ξ, its associated 1-form η and (1, 1)
tensor field ϕ is said to be a Lorentzian almost paracontact manifold with a structure
of the concircular type and such a manifold is said to be a (LCS)n-manifold ([8],
[10]).

2. Preliminaries

A differentiable manifold M of dimension n is called (LCS)n-manifold if it ad-
mits a (1, 1) tensor field ϕ, a contravariant vector field ξ, a covariant vector field η

and a Lorentzian metric g which satisfy

η(ξ) = −1,(2.1)

φ2(X) = X + η(X)ξ,(2.2)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ),(2.3)

g(X, ξ) = η(X),(2.4)

φξ = 0, η(φX) = 0,(2.5)

for all X,Y ǫ TM .

Also in a (LCS)n-manifold M the following relations are satisfied [9]

η(R(X,Y )Z) = g(R(X,Y )Z, ξ) = (α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )],(2.6)

R(ξ, Y )Z = (α2 − ρ)[g(Y, Z)ξ − η(Z)Y ](2.7)

R(X,Y )ξ = (α2 − ρ)[η(Y )X − η(X)Y ],(2.8)

R(ξ,X)ξ = (α2 − ρ)[η(X)ξ +X ],(2.9)

(∇Xϕ)(Y ) = α[g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ],(2.10)

S(X, ξ) = (α2 − ρ)(n− 1)η(X),(2.11)

S(ϕX,ϕY ) = S(X,Y ) + (α2 − ρ)(n− 1)η(X)η(Y ),(2.12)

where S is the Ricci curvature and Q is the Ricci operator given by
S(X,Y ) = g(QX, Y ).
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3. Pseudo projectively flat (LCS)n-manifold

The Pseudo projective curvature tensor is given by [7].

P̃ (X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y ](3.1)

−
r

n

(
a

n− 1
+ b

)
[g(Y, Z)X − g(X,Z)Y ],

where a and b are constants such that a, b 6= 0, R is the curvature tensor, S is the
Ricci tensor and r is the scalar curvature.

If the pseudo projective curvature tensor vanishes, then from (3.1), we have

′R(X,Y, Z,W ) = −
b

a
[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )](3.2)

+
r

n

(
1

n− 1
+

b

a

)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

where ′R(X,Y, Z,W ) = g(R(X,Y )Z,W ).
Putting ξ for W in (3.2) and using (2.6) and (2.11), we get

(α2 − ρ)[g(Y, Z)η(X)− g(X,Z)η(Y )] = −
b

a
[S(Y, Z)X − S(X,Z)Y ](3.3)

+
r

n

(
1

n− 1
+

b

a

)
[g(Y, Z)η(X)− g(X,Z)η(Y )].

Again if we put ξ for X in (3.3) and using (2.5) and (2.11), we obtain

S(Y, Z) =
a

b

[
r

n

(
1

n− 1
+

b

a

)
− (α2 − ρ)

]
g(Y, Z)(3.4)

+
a

b

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

]
η(Y )η(Z).

Differentiating (3.4) covariantly along X , we get

(∇XS)(Y, Z) =
a

b

[
dr(X)

n

(
1

n− 1
+

b

a

)]
[g(Y, Z) + η(Y )η(Z)]

+
a

b

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

] [
(∇Xη)(Y )η(Z)

+ (∇Xη)(Z)η(Y )

]
.

where dr(X) = ∇Xr. On using (1.3) this implies that

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
a

b

[
dr(X)

n

(
1

n− 1
+

b

a

)][
g(Y, Z)(3.5)
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+η(Y )η(Z)

]
−

a

b

[
dr(Y )

n

(
1

n− 1
+

b

a

)][
g(X,Z)

+η(X)η(Z)

]
+

aα

b

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

]

[g(X,Z)η(Y )− g(Y, Z)η(X)]

On the other hand, in our case, since we have (∇X P̃ )(X,Y )Z = 0, we get divP̃ = 0,

where div denotes the divergence. So for n > 1, divP̃ = 0 gives

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1

n(a+ b)

[
a+ (n− 1)b

n− 1

]
[g(Y, Z)dr(X)(3.6)

−g(X,Z)dr(Y )].

It follows from (3.5) and (3.6) that

1

n(a+ b)

[
a+ (n− 1)b

n− 1

]
[g(Y, Z)dr(X)− g(X,Z)dr(Y )](3.7)

=
a

b

[
dr(X)

n

(
1

n− 1
+

b

a

)]
[g(Y, Z) + η(Y )η(Z)]

−
a

b

[
dr(Y )

n

(
1

n− 1
+

b

a

)]
[g(X,Z) + η(X)η(Z)]

+
aα

b

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

]
[g(X,Z)η(Y )

−g(Y, Z)η(X)] .

If r is constant, then from (3.7), we obtain

aα

b

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

]
= 0.

Since aα
b

6= 0, the above equation gives

r =
an2(α2 − ρ)(n− 1)

a+ (n− 1)b
.(3.8)

Now substituting (3.4) in (3.2), we get

′R(X,Y, Z,W ) = (α2 − ρ)[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )](3.9)

−

[
r

n

(
1

n− 1
+

b

a

)
− n(α2 − ρ)

]
[g(X,W )η(Y )− g(Y,W )η(X)]η(Z).

On using (3.8) in (3.9), we have

′R(X,Y, Z,W ) = (α2 − ρ)[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

This shows that the manifold is of constant curvature. Thus we can state the
following:
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Theorem 3.1. In a pseudo projectively flat (LCS)n-manifold M(n > 1) if the

scalar curvature r is constant, then M is of constant curvature.

Now putting X = W = ξ in (3.2) and using (2.1) and (2.11), we get

′R(ξ, Y, Z, ξ) =
b

a
[S(Y, Z) + (n− 1)(α2 − ρ)η(Y )η(Z)](3.10)

−
r

n

(
1

n− 1
+

b

a

)
[g(Y, Z) + η(Y )η(Z)].

In view of (2.7) and (3.10), we get

[
(α2 − ρ)

(
a+ b(n− 1)

a

)
−

r

n

(
a+ b(n− 1)

a(n− 1)

)]
g(ϕY, ϕZ) = 0(3.11)

Since g(ϕY, ϕZ) 6= o,

hence from (3.11), we get

r = n(n− 1)(α2 − ρ).

Hence we can state the following:

Theorem 3.2. The scalar curvature r of a pseudo projective flat (LCS)n-manifold

M is constant, given by

r = n(n− 1)(α2 − ρ),

provided that (α2 − ρ) is constant.

Contracting (3.1) with respect to X , we get

(C1

1
P̃ )(Y, Z) = [a+ b(n− 1)]S(Y, Z)−

r

n
[a+ b(n− 1)]g(Y, Z),(3.12)

where (C1

1
P̃ )(Y, Z) denotes the contraction of P̃ (X,Y )Z with respect to X .

Let us assume that in an (LCS)n-manifold,

(C1

1
P̃ )(Y, Z) = 0.(3.13)

In view of (3.12) and (3.13), we have

[a+ b(n− 1)]
[
S(Y, Z)−

r

n
g(Y, Z)

]
= 0.(3.14)

If [a+ b(n− 1)] 6= 0, then from (3.14), we get

S(Y, Z) =
r

n
g(Y, Z),



498 R. Kumar

which shows that M is an Einstein manifold.
On putting ξ for Z in (3.14), we get

[a+ b(n− 1)]
[
(n− 1)(α2 − ρ)−

r

n

]
η(Y ) = 0.(3.15)

Since η(Y ) 6= 0,
hence from (3.15), we have

r = n(n− 1)(α2 − ρ)

Hence we can state the following:

Theorem 3.3. If in an (LCS)n-manifold M the relation (C1

1
P̃ )(Y, Z) = 0 holds,

then M is an Einstein manifold with scalar curvature

r = n(n− 1)(α2 − ρ), provided that [a+ b(n− 1)] 6= 0.

4. An Einstein (LCS)n-manifold Satisfying R(X,Y ) · P̃ = 0

In this section we assume that

(R(X,Y ) · P̃ )(U, V )W = 0.(4.1)

Let an (LCS)n-manifold be an Einstein manifold, then its Ricci tensor S is of the
form

S(X,Y ) = kg(X,Y ),(4.2)

where k is a constant.
From (3.1) and (4.2), we have

P̃ (X,Y )Z = aR(X,Y )Z + bk[g(Y, Z)X − g(X,Z)Y ]

−
r

n

(
a

n− 1
+ b

)
[g(Y, Z)X − g(X,Z)Y ].

It can be written as

′P̃ (X,Y, Z,W ) = a ′R(X,Y, Z,W ) +

[
bk −

r

n

(
a

n− 1
+ b

)]
(4.3)

[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )].

Putting ξ for W in (4.3) and using (2.6), we get

η(P̃ (X,Y )Z) =

[
a(α2 − ρ) + bk −

r

n

(
a

n− 1
+ b

)]
[g(Y, Z)η(X)(4.4)

−g(X,Z)η(Y )].
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Putting ξ for X in (4.4), we get

η(P̃ (ξ, Y )Z) =

[
a(α2 − ρ) + bk −

r

n

(
a

n− 1
+ b

)]
[−g(Y, Z)(4.5)

−η(Y )η(Z)].

Again putting ξ for Z in (4.4), we get

η(P̃ (X,Y )ξ) = 0.(4.6)

Now,

(R(X,Y ) · P̃ )(U, V )W = R(X,Y )P̃ (U, V )W − P̃ (R(X,Y )U, V )W

−P̃ (U,R(X,Y )V )W − P̃ (U, V )R(X,Y )W.

In view of (4.1), we get

R(X,Y )P̃ (U, V )W − P̃ (R(X,Y )U, V )W(4.7)

−P̃ (U,R(X,Y )V )W − P̃ (U, V )R(X,Y )W = 0.

Therefore,

g(R(ξ, Y )P̃ (U, V )W, ξ)− g(P̃ (R(ξ, Y )U, V )W, ξ)

−g(P̃ (U,R(ξ, Y )V )W, ξ)− g(P̃ (U, V )R(ξ, Y )W, ξ) = 0.

From this it follows that

−′P̃ (U, V,W, Y )− η(Y )η(P̃ (U, V )W ) + η(U)η(P̃ (Y, V )W )(4.8)

+η(V )η(P̃ (U, Y )W ) + η(W )η(P̃ (U, V )Y )− g(Y, U)η(P̃ (ξ, V )W )

−g(Y, V )η(P̃ (U, ξ)W )− g(Y,W )η(P̃ (U, V )ξ) = 0.

Putting U for Y , in (4.8), we get

−′P̃ (U, V,W,U)− η(U)η(P̃ (U, V )W ) + η(U)η(P̃ (U, V )W )(4.9)

+η(V )η(P̃ (U,U)W ) + η(W )η(P̃ (U, V )U)− g(U,U)η(P̃ (ξ, V )W )

−g(U, V )η(P̃ (U, ξ)W )− g(U,W )η(P̃ (U, V )ξ) = 0.

Let {ei}, i = 1, 2, · · ·, n be an orthonormal basis of the tangent space at any
point. Then the sum 1 ≤ i ≤ n of the relation (4.9) for U = ei gives

η(P̃ (ξ, V )W ) =
1

(n− 1)

[
− aS(V,W )−

{
bk −

r

n

(
a

n− 1
+ b

)}
(4.10)

(n− 1)g(V,W )−

{
a(α2 − ρ) + bk −

r

n

(
a

n− 1
+ b

)}

(n− 1)η(V )η(W )
]
.



500 R. Kumar

Using (4.4) and (4.10), it follows from (4.8) that

′P̃ (U, V,W, Y ) =

[
a(α2 − ρ) + bk −

r

n

(
a

n− 1
+ b

)]
(4.11)

[g(V,W )g(Y, U)− g(U,W )g(V, Y )].

From (4.3) and (4.11), we get

′R(U, V,W, Y ) = (α2 − ρ)[g(V,W )g(Y, U)− g(U,W )g(V, Y )], a 6= 0.

Therefore, we can state

Theorem 4.1. If in an Einstein (LCS)n-manifold , the relation (R(X,Y )·P̃ ) = 0
hold, then M is of constant curvature, provided a 6= 0.

5. 3-dimentional (LCS)n-manifold

Let us consider a 3-dimensional (LCS)n-manifold. In a 3-dimensional Rieman-
nian manifold we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y(5.1)

−
r

2
[g(Y, Z)X − g(X,Z)Y ].

Since the dimension of manifold is 3, so the equation (2.11) reduces to

S(X, ξ) = 2(α2 − ρ)η(X).(5.2)

Putting ξ for Z in (5.1) and using (2.8), we have

η(Y )QX − η(X)QY =
[
−(α2 − ρ) +

r

2

]
[η(Y )X − η(X)Y ].(5.3)

Putting ξ for Y in (5.3) and using (5.2) and (2.1), we get

QX =
[
−(α2 − ρ) +

r

2

]
X +

[
−3(α2 − ρ) +

r

2

]
η(X)ξ

i.e.,

S(X,Y ) =
[
−(α2 − ρ) +

r

2

]
g(X,Y ) +

[
−3(α2 − ρ) +

r

2

]
η(X)η(Y )(5.4)

Therefore a 3-dimensional manifold is η-Einstein.
Hence we can state the following:

Theorem 5.1. A 3-dimensional (LCS)n-manifold is an η-Einstein manifold.
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Using (5.4) in (5.1), we get

R(X,Y )Z =
[
−2(α2 − ρ) +

r

2

]
[g(Y, Z)X − g(X,Z)Y ](5.5)

+
[
−3(α2 − ρ) +

r

2

]
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+η(Y )η(Z)X − η(X)η(Z)Y ].

An (LCS)n-manifold M is said to be a manifold of quasi-constant curvature if
its curvature tensor R satisfies

R(X,Y )Z = A[g(Y, Z)X − g(X,Z)Y ] +B[g(Y, Z)η(X)ξ(5.6)

−g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y ].

where A and B are smooth functions on M and B is not identically zero on M .
The notion of a manifold of quasi-constant curvature was first introduced by Chen
and Yano in 1972 for a Riemannian manifold [2].

Hence in view of (5.5) and (5.6), we have the following theorem:

Theorem 5.2. A 3-dimensional (LCS)n-manifold is a manifold of quasi-constant

curvature.

An (LCS)n-manifold is said to be a space form if the manifold is a space of constant
curvature[4].

Hence from (5.5), we have the following:

Theorem 5.3. A 3-dimensional (LCS)n-manifold is a space form if and only if

r = 6(α2 − ρ).

Next, we consider a 3-dimensional (LCS)n-manifold which satisfies the condition

R(X,Y ) · S = 0.(5.7)

From (5.7), we have

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0.(5.8)

Again from (2.6), we get

R(X, ξ)Z = (α2 − ρ)[η(Z)X − g(X,Z)ξ].(5.9)

Putting ξ for Y in (5.8) and using (5.9), we get

η(U)S(X,V )− g(X,U)S(V, ξ) + η(V )S(U,X)(5.10)

−2(α2 − ρ)g(X,V )η(U) = 0.
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Taking a frame field and contracting over X and U from (5.10), we obtain

S(ξ, V ) + [r − 8(α2 − ρ)]η(V ) = 0.(5.11)

Using (5.2) in (5.11), we obtain

[r − 6(α2 − ρ)]η(V ) = 0.

This gives r = 6(α2 − ρ) (since η(V ) 6= 0 ), which implies by Theorem 5.3 that the
manifold is a space form.
Hence we can state the following:

Theorem 5.4. A 3-dimensional Ricci semi-symmetric (LCS)n-manifold is a space

form.

Since ∇S = 0 implies R(X,Y ) · S = 0, we get the following:

Corollary 5.1. A 3-dimensional Ricci semi-symmetric (LCS)n-manifold is a space

form.
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