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Abstract. We introduce the ∗-conformal curvature tensor and ∗η-Einstien manifolds
in contact manifolds. We investigate this tensor in the three main classes of contact
manifolds: Sasakian manifolds, Kenmotsu manifolds, and cosymplectic manifolds. We
prove that a manifold is η-Einstienian if and only if be ∗η-Einstienian manifold.
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1. Introduction

There are many similar concepts in complex geometry and contact geometry. Ta-
chibana introduces ∗-Ricci tensor within the framework of an almost Hermitian
manifold in their work [23]. Afterward, Hamada introduces the ∗-Ricci tensor for
the real hypersurfaces embedded in a non-flat complex space form [16]. This notion
on an almost contact metric manifold (M, g, η, ξ, φ) is defined as

∗Ric(X1, X2) =
1

2
trace{X3 → K(X1, φX2)φX3},(1.1)

for any vector field X1, X2. The ∗-Ricci operator ∗L is characterized by the relation
g(∗LX1, X2) =

∗Ric(X1, X2). With the help of the ∗-Ricci tensor, several authors
have investigated ∗-Ricci soliton in contact geometry (see [14], [10], [25], [2]). In
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general, the equality ∗Ric(X1, X2) =
∗Ric(X2, X1) does not always hold.

In a Riemannian manifold (M2n+1, g), the conformal curvature tensor C is ex-
pressed as

C(X1, X2)X3 = K(X1, X2)X3 − 1

2n− 1

(
Ric(X2, X3)X1 −Ric(X1, X3)X2

+ g(X2, X3)LX1 − g(X1, X3)LX2

)
+

r

2n(2n− 1)

(
g(X2, X3)X1 − g(X1, X3)X2

)
,(1.2)

where K represents the curvature tensor of (1,3) type, Ric indicates the Ricci ten-
sor, r is the scalar curvature and L is the Ricci operator of (M, g).

The paper is organized as follows: In Section 2, we express some preliminary def-
initions, then we proceed to investigate ∗-conformal curvature tensor of the contact
manifolds. We examine some features of ∗-conformal curvature tensor.

In Section 3, we considered the Sasakian structure. Then, having the ∗-Ricci,
we determined the relationship between η-Einstien and ∗η-Einstien manifold.

Theorem 1.1. Let M2n+1 be a manifold with a Sasakian structure (g, η, ξ, φ).
The manifold (M2n+1, g, η, ξ, φ) is an η-Einstien manifold if and only if it is a
∗η-Einstien manifold.

Then, we investigate the ∗-conformal curvature tensor of the Sasakian manifolds. In
addition, we show that ξ-conformally flat and ξ-∗conformally flat will not co-occur in
Sasakian manifolds. By the condition ∗Ric(X1, X2) and

∗r for a 2n+1-dimensional
Sasakian manifold, we get the following (0, 2)-tensor

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.

We conclude that if n > 1, then ∗-conformal curvature tensor ans and ∗D(X1, X2)X3

do not vanish simultaneously.

In Section 4, we find some conditions for a Kenmotsu 3-manifold to have vanish-
ing ∗-conformal curvature tensor. We show that for a special case, the ∗-conformal
tensor of this manifold becomes zero as in the following Theorem.

Theorem 1.2. If a Kenmotsu 3-manifold is of quasi-constant curvature of the
form

K(X1, X2)X3 = α(X1 ∧X2)(X3) − α
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,

where α = r
2 + 2, then ∗-conformal curvature tensor vanishes.
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But in general, we show that on Kenmotsu manifolds, the ∗-conformal tensor cannot
vanish identically. Similarly, the equivalence of η-Einstien and ∗η-Einstien is also
established in Kenmotsu manifolds. The same result about ∗-conformal curvature
tensor and ∗D(X1, X2)X3 on the Sasakian manifold is obtained for the Kenmotsu
manifold.

In the last section, we prove the ∗-conformal curvature tensor is identically
zero on the 3-dimensional cosymplectic manifolds. We confirm a conformally flat
cosymplectic manifold is an ∗η-Einstien manifold. We prove the following theorem:

Theorem 1.3. Let (M2n+1, g, η, ξ, φ) be a 2n+1-dimension cosymplectic manifold
with n > 1. If M is a ∗-conformally flat manifold, then ∗D = 0.

2. Preliminaries

Definition 2.1. Consider a contact metric manifold (M, g, η, ξ, φ) of dimension
2n+ 1. The ∗-conformal curvature tensor for (M, g, η, ξ, φ) is expressed as

∗C(X1, X2)X3 = K(X1, X2)X3 − 1

2n− 1

(
∗Ric(X2, X3)X1 − ∗Ric(X1, X3)X2

+ g(X2, X3)
∗LX1 − g(X1, X3)

∗LX2

)
+

∗r

2n(2n− 1)

(
g(X2, X3)X1 − g(X1, X3)X2

)
,(2.1)

where ∗r represents the ∗-scalar curvature, which is the trace of the ∗-Ricci tensor.

Definition 2.2. A contact metric manifold is named ∗η-Einstien if

∗Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2), c, d ∈ C∞(M).(2.2)

A differentiable manifold M2n+1 has an almost contact structure [2] if it admits
a 1-form η, a characteristic vector field ξ, and a (1, 1)-tensor field φ, which satisfy

φ2 = −I + η ⊗ ξ, η(ξ) = 1,(2.3)

where I indicates the identity endomorphism. Then, by (2.3), can see that

φξ = 0, η ◦ φ = 0.(2.4)

If an almost contact manifold M2n+1 admits a Riemannian metric g with the prop-
erty:

g(φX1, φX2) = g(X1, X2)− η(X1)η(X2), ∀X1, X2 ∈ χ(M),(2.5)

then (M2n+1, g, η, ξ, φ) is called an almost contact metric manifold. The 2-form
Φ(X1, X2) = g(X1, φX2) is called the fundamental 2-form on the almost contact
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metric manifold (M2n+1, g, η, ξ, φ). An almost contact metric manifold is called
normal if the (1,2)-type torsion tensor Nφ vanishes, where Nφ = [φ,φ] + 2dη ⊗ ξ
is the Nijenhuis tensor of φ. A normal almost contact metric manifold is called a
Sasakian manifold. A Sasakian manifold is also characterized by(

∇X1φ
)
X2 = g(X1, X2)ξ − η(X2)X1, ∀X1, X2 ∈ χ(M).

On a Sasakian manifold beside (2.3)-(2.5), we also have

∇X1ξ = −φX1, K(X1, X2)ξ = η(X2)X1 − η(X1)X2,(2.6)

where K denotes the curvature tensor of (1,3) type. The importance and appli-
cation of Sasakian structures are in holomorphic statistical structures and are also
related to string theory (see [1]).

If the 1-form η is closed and dΦ = 2η ∧ Φ, then the almost contact metric
manifold is called almost Kenmotsu manifold. A normal almost Kenmutsu manifold
is a Kenmutsu manifold, which is equivalent to:

(∇X1φ)X2 = g(φX1, X2)ξ − η(X2)φX1, ∀X1, X2 ∈ χ(M).

It is known that every Kenmotsu manifold is locally a warped product I ×f N2n,
where N2n is a Kahler manifold, I is an open interval with coordinate t, and the
warping function f defined by f = cet for some positive constant c [19]. For a
(2n+ 1)-dimensional Kenmotsu manifold, we have

∇X1ξ = X1 − η(X1)ξ,(2.7)

K(X1, X2)ξ = η(X1)X2 − η(X2)X1,(2.8)

Ric(X1, ξ) = −2n η(X1),(2.9)

K(ξ,X1)X2 = η(X2)X1 − g(X1, X2)ξ,(2.10)

Ric(ϕX1, ϕX2) = Ric(X1, X2) + 2n η(X1)η(X2).(2.11)

An almost contact metric manifold is termed an almost cosymplectic manifold
when both the 1-form η and 2-form Φ are closed. A normal almost cosymplectic
manifold is called a cosymplectic manifold [3], [15]. Every cosymplectic manifold
satisfies the following:

∇X1ξ = 0, K(X1, X2)ξ = 0, Ric(X1, ξ) = 0.(2.12)

The cosymplectic structure is a tool for time-dependent Hamiltonian mechanics. It
has some applications in string theory, which shows the importance of cosymplectic
manifolds.

Suppose that (M2n+1, g, η, ξ, φ) is an almost contact metric manifold and ∗C is
its ∗-conformal curvature tensor, which is defined by (2.1). A direct computation
shows some symmetries of ∗C.
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Proposition 2.1. In a contact metric manifold, the ∗-conformal curvature tensor
obeys the following:

1. ∗C(X1, X2)X3 = −∗C(X2, X1)X3,

2. ∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2

= − 1
2n−1{

∗Ric(X1, X2)X3+
∗Ric(X2, X3)X1+

∗Ric(X3, X1)X2

− ∗Ric(X1, X3)X2 − ∗Ric(X2, X1)X3 − ∗Ric(X3, X2)X1}.

Definition 2.3. A contact metric manifold is called ξ-conformally flat and ξ-
∗conformally flat, respectively, if C(X1, X2)ξ = 0 and ∗C(X1, X2)ξ = 0, respec-
tively.

3. ∗-conformal curvature tensor in Sasakian manifolds

In [14], Ghash and Patra obtained the ∗-Ricci tensor in a (2n+ 1)-dimensional
Sasakian manifold as follows

∗Ric(X1, X2) = Ric(X1, X2)− (2n− 1) g(X1, X2)− η(X1)η(X2).(3.1)

Equation (3.1) provides

∗LX1 = LX1 − (2n− 1)X1 − η(X1)ξ,(3.2)

and

∗r = r − 4n2.(3.3)

Theorem 3.1. Let M2n+1 be a manifold with a Sasakian structure (g, η, ξ, φ).
The manifold (M2n+1, g, η, ξ, φ) is an η-Einstien manifold if and only if it is a
∗η-Einstien manifold.

Proof. If (M2n+1, g, η, ξ, φ) is an η-Einstien manifold, then

∃c, d ∈ C∞(M), Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2).(3.4)

From (3.1) and (3.4), we have

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2),(3.5)

where c̃ = c − (2n − 1) and d̃ = d − 1. Thus, (M2n+1, g, η, ξ, φ) is a ∗η-Einstien
manifold. In this case, there are smooth scalar functions c̃ and d̃

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2).(3.6)

By (3.6) and (3.1), we conclude that M is a η-Einstien manifold.
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A Sasakian manifold is said to be a ϕ−recurrent manifold if there exists a nonzero
1−form A such that

ϕ2((∇X1K)(X2, X3)X4) = A(X1)K(X2, X3)X4,(3.7)

for arbitrary vector fields X1, X2, X3, and X4 on the manifold M [11]. As a result,
a ϕ−recurrent Sasakian manifold is an Einstein manifold. Thus, by Theorem 3.1,
it follows that every ϕ−recurrent Sasakian manifold is a ∗η-Einstein manifold.

In 1968, Yano and Sawaki [27] defined quasi-conformal curvature tensor as fol-
lows:

W (X1, X2)X3 = [−(n− 2) d ]C(X1, X2)X3

+ [c+ (n− 2) d ] C̃(X1, X2)X3,(3.8)

where c and d are arbitrary constants, C is the conformal curvature tensor, and C̃
given by

C̃(X1, X2)X3 = K(X1, X2)X3

− r

n(n− 1)

[
g(X2, X3)X1 − g(X1, X3)X2

]
,(3.9)

where K is the Riemannian curvature tensor.

A quasi-conformally flat Sasakian manifold or a quasi-conformally semi-symmetric
Sasakian manifold is an η-Einstein manifold [9]. Using Theorem 3.1, we infer every
quasi-conformally flat or quasi-conformally semi-symmetric Sasakian manifold is a
∗η-Einstein manifold.

By using (3.1), (3.2) and (3.3), from (2.1), we get

∗C(X1, X2)X3 = C(X1, X2)X3 +
2n− 2

2n− 1

(
g(X2, X3)X1 − g(X1, X3)X2

)
+

1

2n− 1

(
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
)
.(3.10)

In Sasakian manifolds, Proposition 2.1 reduces to Proposition 3.1.

Proposition 3.1. In a Sasakian manifold, the ∗-conformal curvature tensor obeys
the following:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

In a 3-dimensional manifold, C vanishes identically, and hence, we have:

∗C(X1, X2)X3 = η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ,(3.11)
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In this case, (3.11) infers ∗C does not vanish identically. Indeed, for any non-zero
vector filed X̃ in the kernel of η, we have

∗C(2X̃ + ξ, X̃ + ξ)ξ = X̃.

Suppose (M2n+1, g, η, ξ, φ) is a Sasakian manifold. By putting X3 = ξ in (3.10),
we have

∗C(X1, X2)ξ = C(X1, X2)ξ +K(X1, X2)ξ.(3.12)

Based on (3.12) and K(X1, X2)ξ ̸= 0, we infer the Sasakian manifold does not
become ξ-conformally flat and ξ-∗conformally flat simultaneously.

Every Sasakian manifold is K-contact, but in general, every K-contact manifold
is not Sasakian. For 3-dimensional manifolds, these are equivalent. In [28], the
authors prove that a K-contact manifold is ξ-conformally flat if and only if it is
an η-Einstien Sasakian manifold. From Theorem 3.1, we can say that a K-contact
manifold is ξ-conformally flat if and only if it is a ∗η-Einstien Sasakian manifold.

In [8], the authors defined the (0, 2)-tensor field T on M2n+1 as follows:

T (X1, X2) = −Ric(X1, X2)

2n− 1
+

r g(X1, X2)

4n(2n− 1)
.(3.13)

The conformal curvature tensor is given by

C(X1, X2)X3 = K(X1, X2)X3 + T (X2, X3) ·X1 − T (X1, X3) ·X2

+ g(X2, X3) T̂ (X1)− g(X1, X3) T̂ (X2),(3.14)

where T (X1, X2) = g(T̂ (X1), X2). For n > 1, If C = 0, then

∇X1T (X2, X3)−∇X2T (X1, X3) = 0.(3.15)

We put D(X1, X2)X3 := ∇X1T (X2, X3) − ∇X2T (X1, X3). Now, we define (0, 2)-
tensor field ∗T on a Sasakian manifold M2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(3.16)

By (3.1) and (3.3), we can write (3.16) as follows

∗T (X1, X2) = T (X1, X2) +
n− 1

2n− 1
g(X1, X2) +

1

2n− 1
η(X1)η(X2).(3.17)

Also, we define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(3.18)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So (0, 1)-tensor field ∗T̂ is given by

∗T̂ (X1) = T̂ (X1) +
n− 1

2n− 1
X1 +

1

2n− 1
η(X1)ξ.(3.19)
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By putting (3.17) and (3.19) in (3.18), we have

∗C(X1, X2)X3 = C(X1, X2)X3 +
2(n− 1)

2n− 1

[
g(X2, X3)X1 − g(X1, X3)X2

]
+

1

2n− 1

[
g(X2, X3)ξ − η(X3)X2

]
η(X1)

− 1

2n− 1

[
g(X1, X3)ξ − η(X3)X1

]
η(X2).(3.20)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(3.21)

A direct computation shows that

∇X1

∗T (X2, X3) = ∇X1T (X2, X3) + µ ∇X1g(X2, X3) + λ ∇X1(η(X2)η(X3))

= ∇X1T (X2, X3) + µ ∇X1g(X2, X3)

+ λ
[(
∇X1η(X2)

)
η(X3) + η(X2)

(
∇X1η(X3)

)]
,(3.22)

and

∇X2

∗T (X1, X3) = ∇X2T (X1, X3) + µ ∇X2g(X1, X3) + λ ∇X2(η(X1)η(X3))

= ∇X2T (X1, X3) + µ ∇X2g(X1, X3)

+ λ
[(
∇X2η(X1)

)
η(X3) + η(X1)

(
∇X2η(X3)

)]
,(3.23)

where µ = 2n−2
2n−1 and λ = 1

2n−1 . By putting (3.22) and (3.23) in (3.21), we have

∗D(X1, X2)X3 = D(X1, X2)X3 + λ

{
2g(X1, ϕX2)η(X3)

+ (∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.(3.24)

If M2n+1 is a conformally flat Sasakian manifold with n > 1, then

∗D(X1, X2)X3 = λ

{
2g(X1, ϕX2)η(X3)+(∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.

(3.25)
From (3.24), it can be concluded that, if M2n+1 is a Sasakian manifold of dimen-
sion greater than 3, then D(X1, X2)X3 = 0 and ∗D(X1, X2)X3 = 0 do not hold
simultaneously, because otherwise, we have dη = 0, which is a contradiction with
the Sasakian structure.

Example 3.1. We consider the Sasakian manifold (R3, g, η, ξ, φ), where the 1-form η,
vector field ξ, Riemannian metric g, and (1, 1)-tensor field φ respectively as follows

η =
1

2
(dz − ydx), ξ = 2

∂

∂z
, g = η ⊗ η +

1

4

(
(dx)2 + (dy)2

)
,
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and φ == dx⊗ ∂
∂y

− dy ⊗ ∂
∂x

+ ydz ⊗ ∂
∂y

. Also, the vector fields are given by

X1 = 2
∂

∂y
, X2 = 2(

∂

∂x
+ y

∂

∂z
), X3 = ξ.

So, we have
φX1 = X2, φX2 = −X1, φξ = 0.

We know that, R3 is a conformally flat manifold, then C = 0. By (3.10) and C(X1, X2)X3 =
0, we have ∗C(X1, X2)X3 = −y X1. Therefore, for this 3-dimensional Sasakian manifold,
the tensor ∗C will not be zero. On the other hand, we know that since C(X1, X2)X3 = 0,
then D(X1, X2)X3 = 0. Therefore, having (3.25), we calculate the tensor ∗D as follows:

∗D(X1, X2)X3 = −2.

4. ∗-conformal curvature tensor in Kenmotsu manifolds

In [25], the author proves that in a Kenmotsu 3-manifold the ∗-Ricci tensor is given
by

∗Ric(X1, X2) = (
r

2
+ 2)g(φX1, φX2),(4.1)

∗r = r + 4,(4.2)

∗LX1 = (
r

2
+ 2)

[
X1 − η(X1)ξ

]
.(4.3)

By substituting (4.1), (4.2), and (4.3) into (2.1) yields

∗C(X1, X2)X3 = K(X1, X2)X3 − (
r

2
+ 2)

[
g(X2, X3)X1 − g(X1, X3)X2

]
+ (

r

2
+ 2)

[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
.(4.4)

Definition 4.1. [18] If the curvature tensor K of an almost contact metric mani-
fold obeys the subsequent condition, then is called quasi-constant curvature:

K(X1, X2)X3 = α(X1 ∧X2)(X3) + β
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,(4.5)

where (X1∧X2)(X3) := g(X2, X3)X1−g(X1, X3)X2, α and β are smooth functions.

By some calculation, one concludes that the following holds.

Theorem 4.1. If a Kenmotsu 3-manifold is of quasi-constant curvature of the
form

K(X1, X2)X3 = α(X1 ∧X2)(X3) − α
[
η(X2)η(X3)X1 − η(X1)η(X3)X2

+ g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ
]
,(4.6)

where α = r
2 + 2, then ∗-conformal curvature tensor vanishes.
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Suppose (M2n+1, g, η, ξ, φ) is a Kenmostu manifold. By [21], we have

∗Ric(X1, X2) = Ric(X1, X2) + (2n− 1)g(X1, X2) + η(X1)η(X2),(4.7)
∗r = r + 4n2,(4.8)

∗LX1 = LX1 + (2n− 1)X1 + η(X1)ξ.(4.9)

By putting X2 = ξ in (4.7) and from (2.9), we have

∗Ric(X1, ξ) = 0,(4.10)

from (2.11) and (4.7), we have

∗Ric(ϕX1, ϕX2) =
∗Ric(X1, X2).(4.11)

Theorem 4.2. Suppose M2n+1 is a manifold and (g, η, ξ, φ) is a Kenmotsu struc-
ture on M . The M is an η-Einstien manifold if and only if it is a ∗η-Einstien
manifold.

Proof. In [5], the contact metric structure is said to be η-Einstein if

L = c I + d η ⊗ ξ, c, d ∈ C∞(M).(4.12)

Let (M2n+1, g, η, ξ, φ) be a η-Einstein Kenmotsu manifold. By (4.9) and (4.12), we
have

∗L = c̃ I + d̃ η ⊗ ξ,(4.13)

where c̃ = c+ (2n− 1) and d̃ = c+ 1.

Suppose (M2n+1, g, η, ξ, φ) is a ∗η-Einstein Kenmotsu manifold, then there are
smooth functions c̃, and d̃ such that

∗Ric(X1, X2) = c̃ g(X1, X2) + d̃ η(X1)η(X2).(4.14)

By (4.14) and (4.7), we have

Ric(X1, X2) = c g(X1, X2) + d η(X1)η(X2),(4.15)

where c = c̃− (2n− 1) and d = d̃− 1.

By substituting (4.7), (4.8), and (4.9) into (2.1) yields

∗C(X1, X2)X3 = C(X1, X2)X3 − 2n− 2

2n− 1

[
g(X2, X3)X1 − g(X1, X3)X2

]
− 1

2n− 1

[
g(X2, X3)η(X1)ξ − g(X1, X3)η(X2)ξ

+ η(X2)η(X3)X1 − η(X1)η(X3)X2

]
.(4.16)

By putting X3 = ξ in (4.16), we obtain

∗C(X1, X2)ξ = C(X1, X2)ξ +K(X1, X2)ξ.(4.17)
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From (4.17), we conclude that if C(X1, X2)ξ = 0 then ∗C(X1, X2)ξ ̸= 0. In other
words, the Kenmotsu manifold cannot be ξ-conformally flat and ξ-∗conformally flat
simultaneously.

In the Kenmotsu manifold, (2) results in ∗Ric(X1, X2) = ∗Ric(X2, X1). By
Proposition 2.1 and ∗Ric(X1, X2) =

∗Ric(X2, X1), the ∗-conformal curvature tensor
satisfies in Bianchi type identity, which leads to the next proposition.

Proposition 4.1. In a Kenmotsu manifold, the ∗-conformal curvature tensor obeys
the relation:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

Let us define

C(X1, X2, X3, X4) := g
(
C(X1, X2)X3, X4

)
, ∀X1, X2, X3, X4 ∈ χ(M).

By substituting (4.7) into (2.1), we have

∗C(X1, X2, X3, X4) = C(X1, X2, X3, X4)

− 2n− 2

2n− 1

[
g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)

]
− 1

2n− 1

[
g(X2, X3)η(X1)η(X4)− g(X1, X3)η(X2)η(X4)

+ g(X1, X4)η(X2)η(X3)− g(X2, X4)η(X1)η(X3)
]
.(4.18)

Proposition 4.2. For a Kenmotsu manifold, the ∗-conformal tensor cannot van-
ish identically.

Proof. One can see that

C(X1, X2, X3, X4) = −C(X1, X2, X4, X3).(4.19)

Suppose that ∗C vanishes identically. Therefore, by (4.18) and (4.19), we have

2(2n− 2)

[
g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)

]
+ 2

[
g(X2, X3)η(X1)η(X4)− g(X1, X3)η(X2)η(X4)

+ g(X1, X4)η(X2)η(X3)− g(X2, X4)η(X1)η(X3)
]
= 0.(4.20)

Putting X3 = X1 = ξ into (4.20) implies that

(2n− 1)
(
g(X2, X4)− η(X2)η(X4)

)
= 0.(4.21)

Since 2n− 1 is an odd number, we have

g(X2, X4)− η(X2)η(X4) = 0, ∀X2, X4 ∈ χ(M),(4.22)

which is impossible.
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Using Propositions 4.1 and 4.2, one concludes that a Kenmotsu 3-manifold cannot
be of quasi-constant curvature of the form (4.6).

Now, we consider (0, 2)-tensor field ∗T on Kenmotsu manifold M2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(4.23)

By (4.8) and (4.7), we can write (4.23) as follows:

∗T (X1, X2) = T (X1, X2) +
(1− n)

(2n− 1)
g(X1, X2) +

−1

2n− 1
η(X1)η(X2).(4.24)

Also, we define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(4.25)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So
∗T̂ is given by

∗T̂ (X1) = T̂ (X1) +
(1− n)

(2n− 1)
X1 +

−1

2n− 1
η(X1)ξ.(4.26)

By putting (4.24) and (4.26) in (4.25), we have

∗C(X1, X2)X3 = C(X1, X2)X3 +
2(1− n)

(2n− 1)

[
g(X2, X3)X1 − g(X1, X3)X2

]
+ (

−1

2n− 1
)
[
g(X2, X3)ξ − η(X3)X2

]
η(X1)

− (
−1

2n− 1
)
[
g(X1, X3)ξ − η(X3)X1

]
η(X2).(4.27)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(4.28)

Now, we consider can we conclude ∗D(X1, X2)X3 = 0 if ∗C(X1, X2)X3 = 0. So

∇X1

∗T (X2, X3) = ∇X1T (X2, X3) + µ ∇X1g(X2, X3) + λ ∇X1(η(X2)η(X3))

= ∇X1T (X2, X3) + µ ∇X1g(X2, X3)

+ λ
[(
∇X1η(X2)

)
η(X3) + η(X2)

(
∇X1η(X3)

)]
,(4.29)

and

∇X2

∗T (X1, X3) = ∇X2T (X1, X3) + µ ∇X2g(X1, X3) + λ ∇X2(η(X1)η(X3))

= ∇X2
T (X1, X3) + µ ∇X2

g(X1, X3)

+ λ
[(
∇X2η(X1)

)
η(X3) + η(X1)

(
∇X2η(X3)

)]
,(4.30)
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where µ = 2(1−n)
(2n−1) and λ = −1

2n−1 . By putting (4.29) and (4.30) in (4.28), we have

∗ D(X1, X2)X3 = D(X1, X2)X3

+ λ

{
(∇X1η)(X3)η(X2)− (∇X2η)(X3)η(X1)

}
.(4.31)

Theorem 4.3. Let M be a 2n+ 1-dimension manifold with n > 1 and (g, η, ξ, φ)
is a Kenmotsu structure on M . Then D(X1, X2)X3 = 0 and ∗D(X1, X2)X3 = 0 do
not hold at the same time.

Proof. From (4.31), it is easily proved.

Example 4.1. We consider the Kenmotsu manifold (R3 − (0, 0, 0), g, η, ξ, φ), where the
1-form η, vector field ξ, Riemannian metric g, and (1, 1)-tensor field φ respectively as
follows

η = −1

z
dz, ξ = −z

∂

∂z
, g = (dx)2 + (dy)2 + (dz)2,

and φ = dx⊗ ∂
∂y

− dy ⊗ ∂
∂x

. Also, the vector fields are given by

X1 = z
∂

∂x
, X2 = z

∂

∂y
, X3 = ξ.

So, we have
φX1 = −X2, φX2 = X1, φξ = 0.

By conformally flat manifold R3, we have C = 0. By (4.16) and C = 0, then ∗C(X1, X2)X3 =
0. We know that since C(X1, X2)X3 = 0, then D(X1, X2)X3 = 0. Therefore, having
(4.31), ∗D(X1,X2)X3 = 0.

5. ∗-conformal curvature of the cosymplectic manifolds

Let (g, η, ξ, φ) be a cosymplectic structure on M2n+1. In [17], it is proved that for
a cosymplectic manifold

∗Ric(X1, X2) = Ric(X1, X2),(5.1)

and

∗r = r.(5.2)

Theorem 5.1. Suppose (M2n+1, g, η, ξ, φ) is a cosymplectic manifold. Then M is
an η-Einstien manifold if and only if it is a ∗η-Einstien manifold.

Proof. It is easy to conclude from (5.1) that for the cosymplectic manifold, the
η-Einstien manifold and ∗η-Einstien manifold are equivalent.

Substituting (5.1) and (5.2) into (2.1) yields

∗C(X1, X2)X3 = C(X1, X2)X3.(5.3)
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Proposition 5.1. In a cosymplectic manifold, the ∗-conformal curvature tensor
obeys the relation:

∗C(X1, X2)X3 +
∗C(X2, X3)X1 +

∗C(X3, X1)X2 = 0.

The following results are obtained from (5.3).

Corollary 5.1. Let (M2n+1, g, η, ξ, φ) be a cosymplectic manifold. Then M is a
conformally flat if and only if it is a ∗-conformally flat.

Corollary 5.2. Let (M2n+1, g, η, ξ, φ) be a cosymplectic manifold. Then M is a
ξ-conformally flat if and only if it is a ξ-∗conformally flat.

The conformal curvature tensor is zero in dimension 3. Thus we have:

Proposition 5.2. For a 3-dimensional cosymplectic manifold, ∗C is identically
zero.

We consider (0, 2)-tensor field ∗T on cosymplectic manifold M2n+1 as follows:

∗T (X1, X2) = −
∗Ric(X1, X2)

2n− 1
+

∗r g(X1, X2)

4n(2n− 1)
.(5.4)

By (5.1) and (5.2), we can

∗T (X1, X2) = T (X1, X2).(5.5)

Also, define the conformal curvature tensor as follows:

∗C(X1, X2)X3 = K(X1, X2)X3 + ∗T (X2, X3) ·X1 − ∗T (X1, X3) ·X2

+ g(X2, X3)
∗T̂ (X1)− g(X1, X3)

∗T̂ (X2),(5.6)

where ∗T (X1, X2) = g(∗T̂ (X1), X2). So (0, 1)-tensor field ∗T̂ is given by

∗T̂ (X1) = T̂ (X1).(5.7)

By putting (5.5) and (5.7) in (5.6), we have

∗C(X1, X2)X3 = C(X1, X2)X3.(5.8)

We consider

∗D(X1, X2)X3 := ∇X1

∗T (X2, X3)−∇X2

∗T (X1, X3).(5.9)

On the other hand, we have

∇X1

∗T (X2, X3) = ∇X1T (X2, X3),(5.10)
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and
∇X2

∗T (X1, X3) = ∇X2T (X1, X3).(5.11)

By putting (5.10) and (5.11) in (5.9), we have

∗D(X1, X2)X3 = D(X1, X2)X3.(5.12)

We know that if C = 0 for a 2n + 1-dimension cosymplectic manifold with n > 1,
then D = 0. Now, if we assume ∗C = 0, then according to (5.12), the following
theorem is obtained.

Theorem 5.2. Let (M2n+1, g, η, ξ, φ) be a 2n+1-dimension cosymplectic manifold
with n > 1. If M is a ∗-conformally flat manifold, then ∗D = 0.
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