FACTA UNIVERSITATIS (NIŠ) SER. MATH. INFORM. Vol. 39, No 2 (2024), 327-342 https://doi.org/10.22190/FUMI231216023F **Original Scientific Paper**

***-CONFORMAL CURVATURE OF CONTACT METRIC** MANIFOLDS

Hannane Faraji, Behzad Najafi and Tayebeh Tabatabaeifar

Department of Mathematics and Computer Sciences Amirkabir University of Technology (Tehran Polytechnic) 1591634321 Tehran, Iran

ORCID IDs: Hannane Faraji Behzad Najafi Tayebeh Tabatabaeifar https://orcid.org/0009-0008-6143-4941 https://orcid.org/0000-0003-2788-3360 厄 N/A

Abstract. We introduce the *-conformal curvature tensor and $^*\eta$ -Einstien manifolds in contact manifolds. We investigate this tensor in the three main classes of contact manifolds: Sasakian manifolds, Kenmotsu manifolds, and cosymplectic manifolds. We prove that a manifold is η -Einstienian if and only if be $^*\eta$ -Einstienian manifold. **Keywords**: *-conformal curvature, $^*\eta$ -Einstien manifolds, Sasakian manifolds, Kenmotsu manifolds, Cosymplectic manifolds.

1. Introduction

There are many similar concepts in complex geometry and contact geometry. Tachibana introduces *-Ricci tensor within the framework of an almost Hermitian manifold in their work [23]. Afterward, Hamada introduces the *-Ricci tensor for the real hypersurfaces embedded in a non-flat complex space form [16]. This notion on an almost contact metric manifold $(M, g, \eta, \xi, \varphi)$ is defined as

(1.1)
$$*Ric(X_1, X_2) = \frac{1}{2} trace \{ \mathbf{X_3} \rightarrow K(X_1, \varphi X_2) \varphi \mathbf{X_3} \},$$

for any vector field X_1, X_2 . The *-Ricci operator *L is characterized by the relation $g(*LX_1, X_2) = *Ric(X_1, X_2)$. With the help of the *-Ricci tensor, several authors have investigated *-Ricci soliton in contact geometry (see [14], [10], [25], [2]). In

Received December 16, 2023, accepted: February 11, 2024

Communicated by Uday Chand De

Corresponding Author: Behzad Najafi. E-mail addresses: hanaaa.faraji@aut.ac.ir (H. Faraji), behzad.najafi@aut.ac.ir (B. Najafi), t.tabatabaeifar@aut.ac.ir (T. Tabatabaeifar) 2020 Mathematics Subject Classification. Primary 53D10; Secondary 53C18

^{© 2024} by University of Niš, Serbia | Creative Commons License: CC BY-NC-ND

general, the equality $*Ric(X_1, X_2) = *Ric(X_2, X_1)$ does not always hold.

In a Riemannian manifold (M^{2n+1}, g) , the conformal curvature tensor C is expressed as

$$C(X_1, X_2)X_3 = K(X_1, X_2)X_3 - \frac{1}{2n-1} \Big(Ric(X_2, X_3)X_1 - Ric(X_1, X_3)X_2 \\ + g(X_2, X_3) LX_1 - g(X_1, X_3) LX_2 \Big) \\ (1.2) + \frac{r}{2n(2n-1)} \Big(g(X_2, X_3)X_1 - g(X_1, X_3)X_2 \Big),$$

where K represents the curvature tensor of (1,3) type, Ric indicates the Ricci tensor, r is the scalar curvature and L is the Ricci operator of (M, g).

The paper is organized as follows: In Section 2, we express some preliminary definitions, then we proceed to investigate *-conformal curvature tensor of the contact manifolds. We examine some features of *-conformal curvature tensor.

In Section 3, we considered the Sasakian structure. Then, having the *-Ricci, we determined the relationship between η -Einstien and * η -Einstien manifold.

Theorem 1.1. Let M^{2n+1} be a manifold with a Sasakian structure (g, η, ξ, φ) . The manifold $(M^{2n+1}, g, \eta, \xi, \varphi)$ is an η -Einstein manifold if and only if it is a $*\eta$ -Einstein manifold.

Then, we investigate the *-conformal curvature tensor of the Sasakian manifolds. In addition, we show that ξ -conformally flat and ξ -*conformally flat will not co-occur in Sasakian manifolds. By the condition * $Ric(X_1, X_2)$ and *r for a 2n + 1-dimensional Sasakian manifold, we get the following (0, 2)-tensor

$${}^{*}T(X_{1}, X_{2}) = -\frac{{}^{*}Ric(X_{1}, X_{2})}{2n-1} + \frac{{}^{*}r \ g(X_{1}, X_{2})}{4n(2n-1)}.$$

We conclude that if n > 1, then *-conformal curvature tensor and $D(X_1, X_2)X_3$ do not vanish simultaneously.

In Section 4, we find some conditions for a Kenmotsu 3-manifold to have vanishing *-conformal curvature tensor. We show that for a special case, the *-conformal tensor of this manifold becomes zero as in the following Theorem.

Theorem 1.2. If a Kenmotsu 3-manifold is of quasi-constant curvature of the form

$$K(X_1, X_2)X_3 = \alpha(X_1 \wedge X_2)(X_3) - \alpha [\eta(X_2)\eta(X_3)X_1 - \eta(X_1)\eta(X_3)X_2 + g(X_2, X_3)\eta(X_1)\xi - g(X_1, X_3)\eta(X_2)\xi],$$

where $\alpha = \frac{r}{2} + 2$, then *-conformal curvature tensor vanishes.

But in general, we show that on Kenmotsu manifolds, the *-conformal tensor cannot vanish identically. Similarly, the equivalence of η -Einstien and * η -Einstien is also established in Kenmotsu manifolds. The same result about *-conformal curvature tensor and * $D(X_1, X_2)X_3$ on the Sasakian manifold is obtained for the Kenmotsu manifold.

In the last section, we prove the *-conformal curvature tensor is identically zero on the 3-dimensional cosymplectic manifolds. We confirm a conformally flat cosymplectic manifold is an $^{*}\eta$ -Einstien manifold. We prove the following theorem:

Theorem 1.3. Let $(M^{2n+1}, g, \eta, \xi, \varphi)$ be a 2n+1-dimension cosymplectic manifold with $n \ge 1$. If M is a *-conformally flat manifold, then *D = 0.

2. Preliminaries

Definition 2.1. Consider a contact metric manifold $(M, g, \eta, \xi, \varphi)$ of dimension 2n + 1. The *-conformal curvature tensor for $(M, g, \eta, \xi, \varphi)$ is expressed as

$${}^{*}C(X_{1}, X_{2})X_{3} = K(X_{1}, X_{2})X_{3} - \frac{1}{2n-1} \Big({}^{*}Ric(X_{2}, X_{3})X_{1} - {}^{*}Ric(X_{1}, X_{3})X_{2} \\ + g(X_{2}, X_{3}) {}^{*}LX_{1} - g(X_{1}, X_{3}) {}^{*}LX_{2} \Big) \\ (2.1) + \frac{{}^{*}r}{2n(2n-1)} \Big(g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2} \Big),$$

where *r represents the *-scalar curvature, which is the trace of the *-Ricci tensor.

Definition 2.2. A contact metric manifold is named $*\eta$ -Einstien if

(2.2) $*Ric(X_1, X_2) = c g(X_1, X_2) + d \eta(X_1)\eta(X_2), \quad c, d \in C^{\infty}(M).$

A differentiable manifold M^{2n+1} has an almost contact structure [2] if it admits a 1-form η , a characteristic vector field ξ , and a (1, 1)-tensor field φ , which satisfy

(2.3)
$$\varphi^2 = -I + \eta \otimes \xi, \qquad \eta(\xi) = 1$$

where I indicates the identity endomorphism. Then, by (2.3), can see that

(2.4)
$$\varphi \xi = 0, \qquad \eta \circ \varphi = 0.$$

If an almost contact manifold M^{2n+1} admits a Riemannian metric g with the property:

(2.5)
$$g(\varphi X_1, \varphi X_2) = g(X_1, X_2) - \eta(X_1)\eta(X_2), \quad \forall X_1, X_2 \in \chi(M),$$

then $(M^{2n+1}, g, \eta, \xi, \varphi)$ is called an almost contact metric manifold. The 2-form $\Phi(X_1, X_2) = g(X_1, \varphi X_2)$ is called the fundamental 2-form on the almost contact

metric manifold $(M^{2n+1}, g, \eta, \xi, \varphi)$. An almost contact metric manifold is called normal if the (1,2)-type torsion tensor N_{φ} vanishes, where $N_{\varphi} = [\varphi, \varphi] + 2d\eta \otimes \xi$ is the Nijenhuis tensor of φ . A normal almost contact metric manifold is called a Sasakian manifold. A Sasakian manifold is also characterized by

$$(\nabla_{X_1}\varphi)X_2 = g(X_1, X_2)\xi - \eta(X_2)X_1, \qquad \forall X_1, X_2 \in \chi(M).$$

On a Sasakian manifold beside (2.3)-(2.5), we also have

(2.6)
$$\nabla_{X_1} \xi = -\varphi X_1, \qquad K(X_1, X_2) \xi = \eta(X_2) X_1 - \eta(X_1) X_2$$

where K denotes the curvature tensor of (1,3) type. The importance and application of Sasakian structures are in holomorphic statistical structures and are also related to string theory (see [1]).

If the 1-form η is closed and $d\Phi = 2\eta \wedge \Phi$, then the almost contact metric manifold is called almost Kenmotsu manifold. A normal almost Kenmutsu manifold is a Kenmutsu manifold, which is equivalent to:

$$(\nabla_{X_1}\varphi)X_2 = g(\varphi X_1, X_2)\xi - \eta(X_2)\varphi X_1, \qquad \forall X_1, X_2 \in \chi(M).$$

It is known that every Kenmotsu manifold is locally a warped product $I \times_f N^{2n}$, where N^{2n} is a Kahler manifold, I is an open interval with coordinate t, and the warping function f defined by $f = ce^t$ for some positive constant c [19]. For a (2n + 1)-dimensional Kenmotsu manifold, we have

(2.7)
$$\nabla_{X_1} \xi = X_1 - \eta(X_1)\xi,$$

(2.8)
$$K(X_1, X_2)\xi = \eta(X_1)X_2 - \eta(X_2)X_1,$$

(2.9)
$$Ric(X_1,\xi) = -2n \eta(X_1),$$

(2.10)
$$K(\xi, X_1)X_2 = \eta(X_2)X_1 - g(X_1, X_2)\xi,$$

(2.11)
$$Ric(\phi X_1, \phi X_2) = Ric(X_1, X_2) + 2n \eta(X_1)\eta(X_2).$$

An almost contact metric manifold is termed an almost cosymplectic manifold when both the 1-form η and 2-form Φ are closed. A normal almost cosymplectic manifold is called a cosymplectic manifold [3], [15]. Every cosymplectic manifold satisfies the following:

(2.12)
$$\nabla_{X_1}\xi = 0, \quad K(X_1, X_2)\xi = 0, \quad Ric(X_1, \xi) = 0.$$

The cosymplectic structure is a tool for time-dependent Hamiltonian mechanics. It has some applications in string theory, which shows the importance of cosymplectic manifolds.

Suppose that $(M^{2n+1}, g, \eta, \xi, \varphi)$ is an almost contact metric manifold and *C is its *-conformal curvature tensor, which is defined by (2.1). A direct computation shows some symmetries of *C.

Proposition 2.1. In a contact metric manifold, the *-conformal curvature tensor obeys the following:

1.
$${}^{*}C(X_{1}, X_{2})X_{3} = -{}^{*}C(X_{2}, X_{1})X_{3},$$

2. ${}^{*}C(X_{1}, X_{2})X_{3} + {}^{*}C(X_{2}, X_{3})X_{1} + {}^{*}C(X_{3}, X_{1})X_{2}$
 $= -\frac{1}{2n-1} \{ {}^{*}Ric(X_{1}, X_{2})X_{3} + {}^{*}Ric(X_{2}, X_{3})X_{1} + {}^{*}Ric(X_{3}, X_{1})X_{2}$
 $- {}^{*}Ric(X_{1}, X_{3})X_{2} - {}^{*}Ric(X_{2}, X_{1})X_{3} - {}^{*}Ric(X_{3}, X_{2})X_{1} \}.$

Definition 2.3. A contact metric manifold is called ξ -conformally flat and ξ *conformally flat, respectively, if $C(X_1, X_2)\xi = 0$ and $C(X_1, X_2)\xi = 0$, respectively.

3. *-conformal curvature tensor in Sasakian manifolds

In [14], Ghash and Patra obtained the *-Ricci tensor in a (2n + 1)-dimensional Sasakian manifold as follows

(3.1)
$$*Ric(X_1, X_2) = Ric(X_1, X_2) - (2n-1)g(X_1, X_2) - \eta(X_1)\eta(X_2).$$

Equation (3.1) provides

(3.2)
$${}^{*}LX_1 = LX_1 - (2n-1)X_1 - \eta(X_1)\xi,$$

and

$$(3.3) *r = r - 4n^2.$$

Theorem 3.1. Let M^{2n+1} be a manifold with a Sasakian structure (g,η,ξ,φ) . The manifold $(M^{2n+1}, g, \eta, \xi, \varphi)$ is an η -Einstein manifold if and only if it is a $*\eta$ -Einstein manifold.

Proof. If $(M^{2n+1}, g, \eta, \xi, \varphi)$ is an η -Einstien manifold, then

(3.4)
$$\exists c, d \in C^{\infty}(M), \quad Ric(X_1, X_2) = c g(X_1, X_2) + d \eta(X_1) \eta(X_2).$$

From (3.1) and (3.4), we have

(3.5)
$$*Ric(X_1, X_2) = \tilde{c} g(X_1, X_2) + \tilde{d} \eta(X_1) \eta(X_2),$$

where $\tilde{c} = c - (2n - 1)$ and $\tilde{d} = d - 1$. Thus, $(M^{2n+1}, g, \eta, \xi, \varphi)$ is a * η -Einstien manifold. In this case, there are smooth scalar functions \tilde{c} and \tilde{d}

(3.6)
$$*Ric(X_1, X_2) = \tilde{c} g(X_1, X_2) + \tilde{d} \eta(X_1) \eta(X_2).$$

By (3.6) and (3.1), we conclude that M is a η -Einstien manifold. \Box

A Sasakian manifold is said to be a $\phi-{\rm recurrent}$ manifold if there exists a nonzero 1–form A such that

(3.7)
$$\phi^2((\nabla_{X_1}K)(X_2,X_3)X_4) = A(X_1)K(X_2,X_3)X_4,$$

for arbitrary vector fields X_1, X_2, X_3 , and X_4 on the manifold M [11]. As a result, a ϕ -recurrent Sasakian manifold is an Einstein manifold. Thus, by Theorem 3.1, it follows that every ϕ -recurrent Sasakian manifold is a $*\eta$ -Einstein manifold.

In 1968, Yano and Sawaki [27] defined quasi-conformal curvature tensor as follows:

(3.8)

$$W(X_1, X_2)X_3 = [-(n-2)d]C(X_1, X_2)X_3 + [c+(n-2)d]\tilde{C}(X_1, X_2)X_3,$$

where c and d are arbitrary constants, C is the conformal curvature tensor, and \tilde{C} given by

(3.9)
$$\tilde{C}(X_1, X_2)X_3 = K(X_1, X_2)X_3 - \frac{r}{n(n-1)} \left[g(X_2, X_3)X_1 - g(X_1, X_3)X_2 \right],$$

where K is the Riemannian curvature tensor.

A quasi-conformally flat Sasakian manifold or a quasi-conformally semi-symmetric Sasakian manifold is an η -Einstein manifold [9]. Using Theorem 3.1, we infer every quasi-conformally flat or quasi-conformally semi-symmetric Sasakian manifold is a $^{*}\eta$ -Einstein manifold.

By using (3.1), (3.2) and (3.3), from (2.1), we get

$${}^{*}C(X_{1}, X_{2})X_{3} = C(X_{1}, X_{2})X_{3} + \frac{2n-2}{2n-1} \Big(g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2} \Big) \\ + \frac{1}{2n-1} \Big(\eta(X_{2})\eta(X_{3})X_{1} - \eta(X_{1})\eta(X_{3})X_{2} \\ + g(X_{2}, X_{3})\eta(X_{1})\xi - g(X_{1}, X_{3})\eta(X_{2})\xi \Big).$$

$$(3.10)$$

In Sasakian manifolds, Proposition 2.1 reduces to Proposition 3.1.

Proposition 3.1. In a Sasakian manifold, the *-conformal curvature tensor obeys the following:

$${}^{*}C(X_{1}, X_{2})X_{3} + {}^{*}C(X_{2}, X_{3})X_{1} + {}^{*}C(X_{3}, X_{1})X_{2} = 0.$$

In a 3-dimensional manifold, C vanishes identically, and hence, we have:

$${}^{*}C(X_{1}, X_{2})X_{3} = \eta(X_{2})\eta(X_{3})X_{1} - \eta(X_{1})\eta(X_{3})X_{2} + g(X_{2}, X_{3})\eta(X_{1})\xi - g(X_{1}, X_{3})\eta(X_{2})\xi$$

In this case, (3.11) infers C does not vanish identically. Indeed, for any non-zero vector filed X in the kernel of η , we have

$$^*C(2\tilde{X}+\xi,\tilde{X}+\xi)\xi = \tilde{X}.$$

Suppose $(M^{2n+1}, g, \eta, \xi, \varphi)$ is a Sasakian manifold. By putting $X_3 = \xi$ in (3.10), we have

(3.12)
$${}^*C(X_1, X_2)\xi = C(X_1, X_2)\xi + K(X_1, X_2)\xi.$$

Based on (3.12) and $K(X_1, X_2)\xi \neq 0$, we infer the Sasakian manifold does not become ξ -conformally flat and ξ -*conformally flat simultaneously.

Every Sasakian manifold is K-contact, but in general, every K-contact manifold is not Sasakian. For 3-dimensional manifolds, these are equivalent. In [28], the authors prove that a K-contact manifold is ξ -conformally flat if and only if it is an η -Einstein Sasakian manifold. From Theorem 3.1, we can say that a K-contact manifold is ξ -conformally flat if and only if it is a * η -Einstein Sasakian manifold.

In [8], the authors defined the (0, 2)-tensor field T on M^{2n+1} as follows:

(3.13)
$$T(X_1, X_2) = -\frac{Ric(X_1, X_2)}{2n - 1} + \frac{r g(X_1, X_2)}{4n(2n - 1)}.$$

The conformal curvature tensor is given by

$$C(X_1, X_2)X_3 = K(X_1, X_2)X_3 + T(X_2, X_3) \cdot X_1 - T(X_1, X_3) \cdot X_2$$

(3.14)
$$+ g(X_2, X_3) \hat{T}(X_1) - g(X_1, X_3) \hat{T}(X_2),$$

where $T(X_1, X_2) = g(\hat{T}(X_1), X_2)$. For n > 1, If C = 0, then

(3.15)
$$\nabla_{X_1} T(X_2, X_3) - \nabla_{X_2} T(X_1, X_3) = 0$$

We put $D(X_1, X_2)X_3 := \nabla_{X_1}T(X_2, X_3) - \nabla_{X_2}T(X_1, X_3)$. Now, we define (0, 2)-tensor field *T on a Sasakian manifold M^{2n+1} as follows:

(3.16)
$$*T(X_1, X_2) = -\frac{*Ric(X_1, X_2)}{2n - 1} + \frac{*r \ g(X_1, X_2)}{4n(2n - 1)}.$$

By (3.1) and (3.3), we can write (3.16) as follows

(3.17)
$$^{*}T(X_1, X_2) = T(X_1, X_2) + \frac{n-1}{2n-1} g(X_1, X_2) + \frac{1}{2n-1} \eta(X_1)\eta(X_2).$$

Also, we define the conformal curvature tensor as follows:

where ${}^*T(X_1, X_2) = g({}^*\hat{T}(X_1), X_2)$. So (0, 1)-tensor field ${}^*\hat{T}$ is given by

(3.19)
$${}^{*}\hat{T}(X_1) = \hat{T}(X_1) + \frac{n-1}{2n-1} X_1 + \frac{1}{2n-1} \eta(X_1)\xi.$$

By putting (3.17) and (3.19) in (3.18), we have

$${}^{*}C(X_{1}, X_{2})X_{3} = C(X_{1}, X_{2})X_{3} + \frac{2(n-1)}{2n-1} [g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2}] + \frac{1}{2n-1} [g(X_{2}, X_{3})\xi - \eta(X_{3})X_{2}]\eta(X_{1}) - \frac{1}{2n-1} [g(X_{1}, X_{3})\xi - \eta(X_{3})X_{1}]\eta(X_{2}).$$

We consider

(3.21)
$$*D(X_1, X_2)X_3 := \nabla_{X_1} *T(X_2, X_3) - \nabla_{X_2} *T(X_1, X_3).$$

A direct computation shows that

$$\begin{aligned} \nabla_{X_1}^* T(X_2, X_3) &= \nabla_{X_1} T(X_2, X_3) + \mu \, \nabla_{X_1} g(X_2, X_3) + \lambda \, \nabla_{X_1} (\eta(X_2) \eta(X_3)) \\ &= \nabla_{X_1} T(X_2, X_3) + \mu \, \nabla_{X_1} g(X_2, X_3) \\ (3.22) &+ \lambda \left[\left(\nabla_{X_1} \eta(X_2) \right) \, \eta(X_3) + \eta(X_2) \, \left(\nabla_{X_1} \eta(X_3) \right) \right], \end{aligned}$$

and

$$\nabla_{X_{2}}^{*}T(X_{1}, X_{3}) = \nabla_{X_{2}}T(X_{1}, X_{3}) + \mu \nabla_{X_{2}}g(X_{1}, X_{3}) + \lambda \nabla_{X_{2}}(\eta(X_{1})\eta(X_{3}))
= \nabla_{X_{2}}T(X_{1}, X_{3}) + \mu \nabla_{X_{2}}g(X_{1}, X_{3})
(3.23) + \lambda \left[(\nabla_{X_{2}}\eta(X_{1}))\eta(X_{3}) + \eta(X_{1}) (\nabla_{X_{2}}\eta(X_{3})) \right],$$

where $\mu = \frac{2n-2}{2n-1}$ and $\lambda = \frac{1}{2n-1}$. By putting (3.22) and (3.23) in (3.21), we have

$${}^{*}D(X_{1}, X_{2})X_{3} = D(X_{1}, X_{2})X_{3} + \lambda \left\{ 2g(X_{1}, \phi X_{2})\eta(X_{3}) + (\nabla_{X_{1}}\eta)(X_{3})\eta(X_{2}) - (\nabla_{X_{2}}\eta)(X_{3})\eta(X_{1}) \right\}.$$

$$(3.24) + (\nabla_{X_{1}}\eta)(X_{3})\eta(X_{2}) - (\nabla_{X_{2}}\eta)(X_{3})\eta(X_{1}) \left\}.$$

If M^{2n+1} is a conformally flat Sasakian manifold with n > 1, then

$${}^{*}D(X_{1}, X_{2})X_{3} = \lambda \left\{ 2g(X_{1}, \phi X_{2})\eta(X_{3}) + (\nabla_{X_{1}}\eta)(X_{3})\eta(X_{2}) - (\nabla_{X_{2}}\eta)(X_{3})\eta(X_{1}) \right\}.$$
(3.25)

From (3.24), it can be concluded that, if M^{2n+1} is a Sasakian manifold of dimension greater than 3, then $D(X_1, X_2)X_3 = 0$ and $*D(X_1, X_2)X_3 = 0$ do not hold simultaneously, because otherwise, we have $d\eta = 0$, which is a contradiction with the Sasakian structure.

Example 3.1. We consider the Sasakian manifold $(\mathbb{R}^3, g, \eta, \xi, \varphi)$, where the 1-form η , vector field ξ , Riemannian metric g, and (1, 1)-tensor field φ respectively as follows

$$\eta = \frac{1}{2}(dz - ydx), \qquad \xi = 2\frac{\partial}{\partial z}, \qquad g = \eta \otimes \eta + \frac{1}{4}\left((dx)^2 + (dy)^2\right),$$

and $\varphi == dx \otimes \frac{\partial}{\partial y} - dy \otimes \frac{\partial}{\partial x} + y dz \otimes \frac{\partial}{\partial y}$. Also, the vector fields are given by

$$X_1 = 2\frac{\partial}{\partial y}, \qquad X_2 = 2(\frac{\partial}{\partial x} + y\frac{\partial}{\partial z}), \qquad X_3 = \xi.$$

So, we have

$$\varphi X_1 = X_2, \qquad \varphi X_2 = -X_1, \qquad \varphi \xi = 0.$$

We know that, \mathbb{R}^3 is a conformally flat manifold, then C = 0. By (3.10) and $C(X_1, X_2)X_3 = 0$, we have ${}^*C(X_1, X_2)X_3 = -yX_1$. Therefore, for this 3-dimensional Sasakian manifold, the tensor *C will not be zero. On the other hand, we know that since $C(X_1, X_2)X_3 = 0$, then $D(X_1, X_2)X_3 = 0$. Therefore, having (3.25), we calculate the tensor *D as follows:

$$^{*}D(X_{1}, X_{2})X_{3} = -2.$$

4. *-conformal curvature tensor in Kenmotsu manifolds

In [25], the author proves that in a Kenmotsu 3-manifold the *-Ricci tensor is given by

(4.1)
$$*Ric(X_1, X_2) = (\frac{r}{2} + 2)g(\varphi X_1, \varphi X_2),$$

(4.2)
$$*r = r+4,$$

(4.3)
$${}^{*}LX_{1} = (\frac{7}{2} + 2) [X_{1} - \eta(X_{1})\xi].$$

By substituting (4.1), (4.2), and (4.3) into (2.1) yields

$${}^{*}C(X_{1}, X_{2})X_{3} = K(X_{1}, X_{2})X_{3} - (\frac{r}{2} + 2) [g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2}] + (\frac{r}{2} + 2) [\eta(X_{2})\eta(X_{3})X_{1} - \eta(X_{1})\eta(X_{3})X_{2} + g(X_{2}, X_{3})\eta(X_{1})\xi - g(X_{1}, X_{3})\eta(X_{2})\xi].$$

$$(4.4)$$

Definition 4.1. [18] If the curvature tensor K of an almost contact metric manifold obeys the subsequent condition, then is called quasi-constant curvature:

$$K(X_1, X_2)X_3 = \alpha(X_1 \wedge X_2)(X_3) + \beta [\eta(X_2)\eta(X_3)X_1 - \eta(X_1)\eta(X_3)X_2 + g(X_2, X_3)\eta(X_1)\xi - g(X_1, X_3)\eta(X_2)\xi],$$
(4.5)

where $(X_1 \wedge X_2)(X_3) := g(X_2, X_3)X_1 - g(X_1, X_3)X_2$, α and β are smooth functions.

By some calculation, one concludes that the following holds.

Theorem 4.1. If a Kenmotsu 3-manifold is of quasi-constant curvature of the form

$$K(X_1, X_2)X_3 = \alpha(X_1 \wedge X_2)(X_3) - \alpha \big[\eta(X_2)\eta(X_3)X_1 - \eta(X_1)\eta(X_3)X_2 + g(X_2, X_3)\eta(X_1)\xi - g(X_1, X_3)\eta(X_2)\xi\big],$$
(4.6)

where $\alpha = \frac{r}{2} + 2$, then *-conformal curvature tensor vanishes.

Suppose $(M^{2n+1}, g, \eta, \xi, \varphi)$ is a Kenmostu manifold. By [21], we have

$$(4.7) \quad *Ric(X_1, X_2) = Ric(X_1, X_2) + (2n-1)g(X_1, X_2) + \eta(X_1)\eta(X_2),$$

(4.8)
$$*r = r + 4n^2$$

(4.9)
$${}^{*}LX_1 = LX_1 + (2n-1)X_1 + \eta(X_1)\xi$$

By putting $X_2 = \xi$ in (4.7) and from (2.9), we have

(4.10)
$$*Ric(X_1,\xi) = 0,$$

from (2.11) and (4.7), we have

(4.11)
$$*Ric(\phi X_1, \phi X_2) = *Ric(X_1, X_2).$$

Theorem 4.2. Suppose M^{2n+1} is a manifold and (g, η, ξ, φ) is a Kenmotsu structure on M. The M is an η -Einstien manifold if and only if it is a $*\eta$ -Einstien manifold.

Proof. In [5], the contact metric structure is said to be η -Einstein if

(4.12)
$$L = c I + d \eta \otimes \xi, \qquad c, d \in C^{\infty}(M).$$

Let $(M^{2n+1},g,\eta,\xi,\varphi)$ be a $\eta\text{-Einstein Kenmotsu manifold. By (4.9) and (4.12), we have$

$$(4.13) ^*L = \tilde{c}I + \tilde{d}\eta \otimes \xi,$$

where $\tilde{c} = c + (2n - 1)$ and $\tilde{d} = c + 1$.

Suppose $(M^{2n+1}, g, \eta, \xi, \varphi)$ is a * η -Einstein Kenmotsu manifold, then there are smooth functions \tilde{c} , and \tilde{d} such that

(4.14)
$$*Ric(X_1, X_2) = \tilde{c} g(X_1, X_2) + \tilde{d} \eta(X_1) \eta(X_2).$$

By (4.14) and (4.7), we have

(4.15)
$$Ric(X_1, X_2) = c g(X_1, X_2) + d \eta(X_1) \eta(X_2),$$

where $c = \tilde{c} - (2n - 1)$ and $d = \tilde{d} - 1$. \Box

By substituting (4.7), (4.8), and (4.9) into (2.1) yields

$${}^{*}C(X_{1}, X_{2})X_{3} = C(X_{1}, X_{2})X_{3} - \frac{2n-2}{2n-1} [g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2}] - \frac{1}{2n-1} [g(X_{2}, X_{3})\eta(X_{1})\xi - g(X_{1}, X_{3})\eta(X_{2})\xi + \eta(X_{2})\eta(X_{3})X_{1} - \eta(X_{1})\eta(X_{3})X_{2}].$$

By putting $X_3 = \xi$ in (4.16), we obtain

(4.17)
$$*C(X_1, X_2)\xi = C(X_1, X_2)\xi + K(X_1, X_2)\xi$$

From (4.17), we conclude that if $C(X_1, X_2)\xi = 0$ then $*C(X_1, X_2)\xi \neq 0$. In other words, the Kenmotsu manifold cannot be ξ -conformally flat and ξ -*conformally flat simultaneously.

In the Kenmotsu manifold, (2) results in $*Ric(X_1, X_2) = *Ric(X_2, X_1)$. By Proposition 2.1 and $*Ric(X_1, X_2) = *Ric(X_2, X_1)$, the *-conformal curvature tensor satisfies in Bianchi type identity, which leads to the next proposition.

Proposition 4.1. In a Kenmotsu manifold, the *-conformal curvature tensor obeys the relation:

$$C(X_1, X_2)X_3 + C(X_2, X_3)X_1 + C(X_3, X_1)X_2 = 0.$$

Let us define

$$C(X_1, X_2, X_3, X_4) := g(C(X_1, X_2)X_3, X_4), \qquad \forall X_1, X_2, X_3, X_4 \in \chi(M).$$

By substituting (4.7) into (2.1), we have

Proposition 4.2. For a Kenmotsu manifold, the *-conformal tensor cannot vanish identically.

Proof. One can see that

(4.19)
$$C(X_1, X_2, X_3, X_4) = -C(X_1, X_2, X_4, X_3).$$

Suppose that *C vanishes identically. Therefore, by (4.18) and (4.19), we have

$$2(2n-2) \begin{bmatrix} g(X_2, X_3)g(X_1, X_4) - g(X_1, X_3)g(X_2, X_4) \end{bmatrix} \\ + 2[g(X_2, X_3)\eta(X_1)\eta(X_4) - g(X_1, X_3)\eta(X_2)\eta(X_4) \\ + g(X_1, X_4)\eta(X_2)\eta(X_3) - g(X_2, X_4)\eta(X_1)\eta(X_3)] = 0.$$

Putting $X_3 = X_1 = \xi$ into (4.20) implies that

(4.21)
$$(2n-1)\Big(g(X_2,X_4)-\eta(X_2)\eta(X_4)\Big)=0.$$

Since 2n - 1 is an odd number, we have

(4.22)
$$g(X_2, X_4) - \eta(X_2)\eta(X_4) = 0, \quad \forall X_2, X_4 \in \chi(M),$$

which is impossible. $\hfill\square$

Using Propositions 4.1 and 4.2, one concludes that a Kenmotsu 3-manifold cannot be of quasi-constant curvature of the form (4.6).

Now, we consider (0, 2)-tensor field *T on Kenmotsu manifold M^{2n+1} as follows:

(4.23)
$${}^{*}T(X_1, X_2) = -\frac{{}^{*}Ric(X_1, X_2)}{2n - 1} + \frac{{}^{*}r \ g(X_1, X_2)}{4n(2n - 1)}.$$

By (4.8) and (4.7), we can write (4.23) as follows:

$$(4.24)^{*}T(X_{1}, X_{2}) = T(X_{1}, X_{2}) + \frac{(1-n)}{(2n-1)} g(X_{1}, X_{2}) + \frac{-1}{2n-1} \eta(X_{1})\eta(X_{2}).$$

Also, we define the conformal curvature tensor as follows:

where ${}^*T(X_1, X_2) = g({}^*\hat{T}(X_1), X_2)$. So ${}^*\hat{T}$ is given by

(4.26)
$${}^{*}\hat{T}(X_1) = \hat{T}(X_1) + \frac{(1-n)}{(2n-1)} X_1 + \frac{-1}{2n-1} \eta(X_1)\xi.$$

By putting (4.24) and (4.26) in (4.25), we have

$${}^{*}C(X_{1}, X_{2})X_{3} = C(X_{1}, X_{2})X_{3} + \frac{2(1-n)}{(2n-1)} [g(X_{2}, X_{3})X_{1} - g(X_{1}, X_{3})X_{2}]$$

+ $(\frac{-1}{2n-1}) [g(X_{2}, X_{3})\xi - \eta(X_{3})X_{2}]\eta(X_{1})$
(4.27) $- (\frac{-1}{2n-1}) [g(X_{1}, X_{3})\xi - \eta(X_{3})X_{1}]\eta(X_{2}).$

We consider

(4.28)
$$*D(X_1, X_2)X_3 := \nabla_{X_1} *T(X_2, X_3) - \nabla_{X_2} *T(X_1, X_3).$$

Now, we consider can we conclude ${}^*D(X_1, X_2)X_3 = 0$ if ${}^*C(X_1, X_2)X_3 = 0$. So

$$\begin{aligned} \nabla_{X_1}^* T(X_2, X_3) &= \nabla_{X_1} T(X_2, X_3) + \mu \, \nabla_{X_1} g(X_2, X_3) + \lambda \, \nabla_{X_1} (\eta(X_2) \eta(X_3)) \\ &= \nabla_{X_1} T(X_2, X_3) + \mu \, \nabla_{X_1} g(X_2, X_3) \\ (4.29) &+ \lambda \, \left[\left(\nabla_{X_1} \eta(X_2) \right) \, \eta(X_3) + \eta(X_2) \, \left(\nabla_{X_1} \eta(X_3) \right) \right], \end{aligned}$$

and

$$\begin{aligned} \nabla_{X_2}^* T(X_1, X_3) &= \nabla_{X_2} T(X_1, X_3) + \mu \, \nabla_{X_2} g(X_1, X_3) + \lambda \, \nabla_{X_2} (\eta(X_1) \eta(X_3)) \\ &= \nabla_{X_2} T(X_1, X_3) + \mu \, \nabla_{X_2} g(X_1, X_3) \\ (4.30) &+ \lambda \, \left[\left(\nabla_{X_2} \eta(X_1) \right) \eta(X_3) + \eta(X_1) \, \left(\nabla_{X_2} \eta(X_3) \right) \right], \end{aligned}$$

where $\mu = \frac{2(1-n)}{(2n-1)}$ and $\lambda = \frac{-1}{2n-1}$. By putting (4.29) and (4.30) in (4.28), we have

$${}^{*} D(X_{1}, X_{2})X_{3} = D(X_{1}, X_{2})X_{3}$$

$$(4.31) + \lambda \left\{ (\nabla_{X_{1}} \eta)(X_{3})\eta(X_{2}) - (\nabla_{X_{2}} \eta)(X_{3})\eta(X_{1}) \right\}.$$

Theorem 4.3. Let M be a 2n + 1-dimension manifold with n > 1 and (g, η, ξ, φ) is a Kenmotsu structure on M. Then $D(X_1, X_2)X_3 = 0$ and $*D(X_1, X_2)X_3 = 0$ do not hold at the same time.

Proof. From (4.31), it is easily proved. \Box

Example 4.1. We consider the Kenmotsu manifold $(\mathbb{R}^3 - (0, 0, 0), g, \eta, \xi, \varphi)$, where the 1-form η , vector field ξ , Riemannian metric g, and (1, 1)-tensor field φ respectively as follows

$$\eta = -\frac{1}{z}dz, \qquad \xi = -z\frac{\partial}{\partial z}, \qquad g = (dx)^2 + (dy)^2 + (dz)^2,$$

and $\varphi = dx \otimes \frac{\partial}{\partial y} - dy \otimes \frac{\partial}{\partial x}$. Also, the vector fields are given by

$$X_1 = z \frac{\partial}{\partial x}, \qquad X_2 = z \frac{\partial}{\partial y}, \qquad X_3 = \xi.$$

So, we have

$$\varphi X_1 = -X_2, \qquad \varphi X_2 = X_1, \qquad \varphi \xi = 0.$$

By conformally flat manifold \mathbb{R}^3 , we have C = 0. By (4.16) and C = 0, then ${}^*C(X_1, X_2)X_3 = 0$. 0. We know that since $C(X_1, X_2)X_3 = 0$, then $D(X_1, X_2)X_3 = 0$. Therefore, having (4.31), ${}^*D(X_1, X_2)X_3 = 0$.

5. *-conformal curvature of the cosymplectic manifolds

Let (g, η, ξ, φ) be a cosymplectic structure on M^{2n+1} . In [17], it is proved that for a cosymplectic manifold

(5.1)
$$*Ric(X_1, X_2) = Ric(X_1, X_2),$$

and

$$(5.2) *r = r.$$

Theorem 5.1. Suppose $(M^{2n+1}, g, \eta, \xi, \varphi)$ is a cosymplectic manifold. Then M is an η -Einstien manifold if and only if it is a $*\eta$ -Einstien manifold.

Proof. It is easy to conclude from (5.1) that for the cosymplectic manifold, the η -Einstien manifold and $^*\eta$ -Einstien manifold are equivalent. \Box

Substituting (5.1) and (5.2) into (2.1) yields

(5.3)
$${}^*C(X_1, X_2)X_3 = C(X_1, X_2)X_3.$$

Proposition 5.1. In a cosymplectic manifold, the *-conformal curvature tensor obeys the relation:

$${}^{*}C(X_{1}, X_{2})X_{3} + {}^{*}C(X_{2}, X_{3})X_{1} + {}^{*}C(X_{3}, X_{1})X_{2} = 0.$$

The following results are obtained from (5.3).

Corollary 5.1. Let $(M^{2n+1}, g, \eta, \xi, \varphi)$ be a cosymplectic manifold. Then M is a conformally flat if and only if it is a *-conformally flat.

Corollary 5.2. Let $(M^{2n+1}, g, \eta, \xi, \varphi)$ be a cosymplectic manifold. Then M is a ξ -conformally flat if and only if it is a ξ -*conformally flat.

The conformal curvature tensor is zero in dimension 3. Thus we have:

Proposition 5.2. For a 3-dimensional cosymplectic manifold, *C is identically zero.

We consider (0, 2)-tensor field *T on cosymplectic manifold M^{2n+1} as follows:

(5.4)
$${}^{*}T(X_1, X_2) = -\frac{{}^{*}Ric(X_1, X_2)}{2n - 1} + \frac{{}^{*}r \ g(X_1, X_2)}{4n(2n - 1)}.$$

By (5.1) and (5.2), we can

(5.5)
$$^{*}T(X_1, X_2) = T(X_1, X_2).$$

Also, define the conformal curvature tensor as follows:

where $T(X_1, X_2) = g(\hat{T}(X_1), X_2)$. So (0, 1)-tensor field \hat{T} is given by

(5.7)
$${}^{*}\hat{T}(X_1) = \hat{T}(X_1)$$

By putting (5.5) and (5.7) in (5.6), we have

(5.8)
$${}^*C(X_1, X_2)X_3 = C(X_1, X_2)X_3.$$

We consider

(5.9)
$$*D(X_1, X_2)X_3 := \nabla_{X_1} *T(X_2, X_3) - \nabla_{X_2} *T(X_1, X_3).$$

On the other hand, we have

(5.10)
$$\nabla_{X_1}^* T(X_2, X_3) = \nabla_{X_1} T(X_2, X_3)$$

and

5.11)
$$\nabla_{X_2}^* T(X_1, X_3) = \nabla_{X_2} T(X_1, X_3).$$

By putting (5.10) and (5.11) in (5.9), we have

(5.12)
$${}^*D(X_1, X_2)X_3 = D(X_1, X_2)X_3.$$

We know that if C = 0 for a 2n + 1-dimension cosymplectic manifold with $n \ge 1$, then D = 0. Now, if we assume *C = 0, then according to (5.12), the following theorem is obtained.

Theorem 5.2. Let $(M^{2n+1}, g, \eta, \xi, \varphi)$ be a 2n+1-dimension cosymplectic manifold with $n \ge 1$. If M is a *-conformally flat manifold, then *D = 0.

REFERENCES

- 1. S. AMARI and H. NAGAOKA: *Methods of information geometry*. Amer. Math. Soc. **191** (2000).
- 2. D. E. BLAIR: *Riemannian geometry of contact and symplectic manifolds*. Springer Science and Business Media (2010).
- D. E. BLAIR: The theory of quasi-Sasakian structures. J. Diff. Geom. 1 (1967), 331– 381.
- D. E. BLAIR: Two remarks on contact metric manifolds. Tohoku Math. J. 29 (1977), 319–324.
- 5. D. E. BLAIR, T. KOUFOGIORGOS and R. SHARMA: A classification of 3-dimensional contact metric manifolds with $Q\varphi = \varphi Q$. Kodai. J. Math, **13 (3)** (1990), 391–401.
- M. C. CHAKI and B. GUPTA: On conformally symmetric spaces. Indian J. Math. 5, (1963) 113–122.
- B. Y. CHEN and K. YANO: Hypersurfaces of conformally flat spaces. Tensor (N. S) 26 (1972), 318–322.
- B. CHEN and K. YANO: Special conformally flat spaces and canal hypersurfaces. Tohoku. J. Math. 25 (2) (1973), 177–184.
- 9. U. C. DE, J. B. JUN and A. K. GAZI: Sasakian manifolds with quasi-conformal curvature tensor. Bull. Korean Math. Soc. 45 (2) (2008), 313–319.
- U. C. DE, M. MAJHI and Y. J. SUH: *-Ricci soliton on Sasakian 3-manifolds. Publ. Math. Debrecen 93 (2018), 241–252.
- U. C. DE, A. A. SHAIKH and S. BISWAS: On φ-recurrent Sasakian manifolds. Novi Sad J. Math. 33 (2) (2003), 43–48.
- A. DERDZINSKI and W. ROTER: On Conformally Symmetric Manifolds with Metrics of Indices 0 and 1. Tensor N. S. 31 (1977) 255–259.
- 13. M. S. EL NASCHIE: Gödel universe, dualities and high energy particles in E-infinity. Chaos, Solitons & Fractals, **25 (3)** (2005), 759–764.
- A. GHOSH and D. S. PATRA: *-Ricci Soliton within the framework of Sasakian and (k, μ)-contact manifold. Int. J. Geom. methods modern Phys. 15 1850120 (2018).

- S. I GOLDBERG and K. YANO: Integrebility of almost cosymplectic structures. Pacific J. Math. 31 (1969), 373–382.
- T. HAMADA: Real hypersurfaces of complex space forms in terms of Ricci *-tensor. Tokyo J. Math. 25 (2002) 473–483.
- A. HASEEB, D. G. PRAKASHA and H. HARISH: *-Conformal η-Ricci solotons on α-cosymplectic manifolds. International Journal of Analysis and Applications 12 (2) (2021), 165–179.
- 18. S. IANUS and D. SMARANDA: Some remarkable structures on the product of an almost contact metric manifold with the real line. Soc. Sti. Mat., Univ. Timisoara, 1977.
- K. KENMOTSU: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24 (1972), 93–103.
- H. N. NICKERSON: On conformally symmetric spaces. Geometriae Dedicata 18 (1) (1985), 87–99.
- 21. D. S. PATRA, A. ALI and F. MOFARREH: Geometry of almost contact metrics as almost *-Ricci solitons. arXiv e-prints (2021): arXiv-2101.
- 22. W. SLOSARSKA: On some property of conformally symmetric manifold admitting a semi-symmetric metric connection. Demonstratio Math. 17 (4) (1984), 813–816.
- S. TACHIBANA: On almost-analytic vectors in almost Kahlerian manifolds. Tohoku Math. J. 11 (1959), 247–265.
- 24. S. TANNO: Note on infinitesimal transformations over contact manifolds. Tohoku Mathematical Journal, Second Series, **14** (4) (1962), 416–430.
- Y. WANG: Contact 3-manifolds and *-Ricci soliton. Kodai Math. J. 43 (2020), 256– 267.
- K. YANO: On semi-symmetric metric connections. Rev. Roumaine Math. Pures Appl. 15 (1970) 1579–1586.
- 27. K. YANO and S. SAWAKI; *Riemannian manifolds admitting a conformal transformation group.* Journal of Differential Geometry **2** (2) (1968), 161–184.
- G. ZHEN, J. L. COBRERIZO, L. M. FERANDEZ and M. FERNADEZ: On ξ-conformally flat contact metric manifolds. Indian J. Pure. Appl. Math. 28 (1997), 725–734.