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Abstract. The objective of this paper is to investigate a class of β-Kenmotsu man-
ifold admitting generalized Tanaka-Webster connection. We use the connection ∇̃ to
investigate some curvature properties in the manifold. Here we study the projective
and ζ-projectively flat curvature tensors admitting the connection ∇̃ in the manifold.
Further, we discuss recurrent condition, conharmonic curvature tensor and Weyl con-
formal curvature tensor in the manifold admitting the connection ∇̃. Likewise, we
demonstrate Ricci pseudo-symmetric, quasi-concircularly flat and ζ-quasi-concircularly
flat β-Kenmotsu manifold admitting the connection ∇̃. Finally, we give an example of
a β-Kenmotsu manifold admitting the connection ∇̃ which support our results.
Keywords: β-Kenmotsu manifold, generalized Tanaka-Webster connection, projec-
tive curvature tensor, conharmonic curvature tensor, Weyl conformal curvature tensor,
quasi-concircularly flat, recurrent.

1. Introduction

Tanno [19] introduced the Tanaka-Webster connection which is a generalization
of the well-known connection defined by Tanaka [18] and Webster [21]. This connec-
tion is canonical affine connection defined on a non-degenerate pseudo-Hermitian
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CR-manifold [18,21]. Also, this connection coincides with the Tanaka-Webster con-
nection if the associated CR-structure is integrable. Using the generalized Tanaka-
Webster connection, few geometers have studied some characterizations of real
hypersurfaces in complex space forms [17]. Recently many authors [8, 10, 12, 13]
have studied generalized Tanaka-Webster connection in Kenmotsu manifold. A
trans-Sasakian manifold of type (0, 0), (α, 0) and (0, β) are called the cosympletic,
α-Sasakian and β-Kenmotsu manifold respectively, where α and β are the scalar
functions [3]. In particular if α = 0, β = 1; α = 0, β is constant and α = 1, β = 0
then the trans-Sasakian manifold are said to be a Kenmotsu manifold; a class of β-
Kenmotsu manifold and Sasakian manifold respectively [9]. β-Kenmotsu manifold
have been studied by several authors like Shaikh and Hui [15,16], De [4] and many
others.

Motivated by above studies, the present work has been classified as follows:
After introduction, we recall basic formulas and results of β-Kenmotsu manifold
in section 2. In section 3. we study some curvature tensors and its properties
with respect to the connection ∇̃ in the manifold. Section 4. deals with the study
of recurrent condition, conharmonic curvature tensor and Weyl conformal curva-
ture tensor in the manifold admitting the connection ∇̃. In section 5. we discuss
Ricci pseudo-symmetric, quasi-concircularly flat and ξ-quasi-concircularly flat β-
Kenmotsu manifold admitting the connection ∇̃. Finally, in section 6. we give
an example of a 3-dimensional β-Kenmotsu manifold admitting the connection ∇̃
which verify our results.

2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M2n+1 is said to be an almost
contact metric manifold [2] if it admits a (1, 1)-tensor field φ, a vector field ζ, a
1-form η and a Riemannian metric g which satisfies

φ2(E1) = −E1 + η(E1)ζ, η(ζ) = 1,(2.1)

φζ = 0, η(φE1) = 0, g(E1, ζ) = η(E1),(2.2)

g(φE1, φE2) = g(E1, E2)− η(E1)η(E2), g(φE1, E2) = −g(E1, φE2)(2.3)

∀ E1, E2 ∈ X(M); where X(M) is a set of all smooth vector fields on M.

An almost contact metric manifold M2n+1(φ, ζ, η, g) is said to be β-Kenmotsu
manifold if the following conditions hold:

∇E1ζ = β[E1 − η(E1)ζ],(2.4)

and

(∇E1φ)E2 = β[g(φE1, E2)ζ − η(E2)φE1],(2.5)
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where ∇ denotes the Riemannian connection of g. If β = 1 then β-Kenmotsu
manifold becomes Kenmotsu manifold and if β is constant then it becomes a class
of β-Kenmotsu manifold.

In a class of β-Kenmotsu manifold the following relations hold [9]

(∇E1η)E2 = β[g(E1, E2)− η(E1)η(E2)],(2.6)

η(R(E1, E2)E3) = β2[g(E1, E3)η(E2)− g(E2, E3)η(E1)],(2.7)

R(E1, E2)ζ = β2[η(E1)E2 − η(E2)E1],(2.8)

R(ζ, E1)E2 = β2[η(E2)E1 − g(E1, E2)ζ],(2.9)

R(ζ, E1)ζ = β2[E1 − η(E1)ζ],(2.10)

S(E1, E2) = g(QE1, E2),(2.11)

S(E1, ζ) = −2nβ2η(E1),(2.12)

QE1 = −2nβ2E1,(2.13)

Qζ = −2nβ2ζ,(2.14)

S(φE1, φE2) = g(QφE1, φE2),(2.15)

Using (2.3), (2.11), (2.13) and Qφ = φQ in (2.15), we have

S(φE1, φE2) = S(E1, E2)− 2nβ2η(E1)η(E2),(2.16)

S(ζ, ζ) = −2nβ2(2.17)

∀ E1, E2, E3 ∈ X(M); R, S and Q denote the curvature tensor of type (1, 3), Ricci
tensor of type (0, 2) and Ricci operator of the Levi-Civita connection∇, respectively.

Definition 2.1. A β-Kenmotsu manifold M2n+1 is said to be an η-Einstein man-
ifold if its Ricci tensor S of type (0, 2) satisfies

S(E1, E2) = Θ1g(E1, E2) + Θ2η(E1)η(E2),(2.18)

where Θ1 and Θ2 are smooth functions on M2n+1. In particular, if Θ2 = 0, then
the manifold M2n+1 is an Einstein manifold.
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Definition 2.2. The quasi-concircular curvature tensor C on a (2n+1)-dimensional
β-Kenmotsu manifold M with respect to the connection ∇ is given by [11,14]

C(E1, E2)E3 = aR(E1, E2)E3 +
r

2n+ 1

( a

2n
+ 2b

)
[g(E2, E3)E1 − g(E1, E3)E2],(2.19)

where a and b are constants such that a, b ̸= 0 and R is the curvature tensor, r is
the scalar curvature with respect to the connection ∇ on M. If a = 1 and b = − 1

2n ,
then (2.19) takes the form

C(E1, E2)E3 = R(E1, E2)E3 −
r

2n(2n+ 1)
[g(E2, E3)E1 − g(E1, E3)E2]

= C̃(E1, E2)E3,(2.20)

where C̃ is the concircular curvature tensor.

3. The generalized Tanaka-Webster connection (GTWC) ∇̃

The generalized Tanaka-Webster connection (GTWC) ∇̃ defined by Tanno for
contact metric manifold is given by [19]

∇̃E1E2 = ∇E1E2 + (∇E1η)(E2)ζ − η(E2)∇E1ζ − η(E1)φE2(3.1)

∀ E1, E2 ∈ X(M). By virtue of (2.4) and (2.6), (3.1) takes the form

∇̃E1E2 = ∇E1E2 + βg(E1, E2)ζ − βη(E2)E1 − η(E1)φE2.(3.2)

Replacing E2 by ζ in (3.2) and using (2.1), (2.2) and (2.4), we have

∇̃E1ζ = 0.(3.3)

Now

(∇̃E1η)(E2) = ∇̃E1(ηE2)− η(∇̃E1E2).(3.4)

Using (3.2) in (3.4), we have

(∇̃E1η)(E2) = (∇E1η)(E2)− βg(E1, E2) + βη(E1)η(E2),(3.5)

Using (2.6) in (3.5), we have

(∇̃E1η)(E2) = 0.(3.6)

Now

(∇̃E1φ)(E2) = ∇̃E1(φE2)− φ(∇̃E1E2).(3.7)
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Using (3.2) in (3.7), we have

(∇̃E1φ)(E2) = (∇E1φ)(E2) + βη(E2)φE1 − η(E1)E2 + η(E1)η(E2)ζ,(3.8)

Using (2.5) in (3.8), we have

(∇̃E1φ)(E2) = βg(φE1, E2)ζ − η(E1)E2 + η(E1)η(E2)ζ.(3.9)

Now

(∇̃E1g)(E2, E3) = ∇̃E1g(E2, E3)− g(∇̃E1E2, E3)− g(E2, ∇̃E1E3).(3.10)

Using (3.2) in (3.10), we have

(∇̃E1
g)(E2, E3) = 0.(3.11)

Hence, we have the following:

Theorem 3.1. In a β-Kenmotsu manifold the GTWC ∇̃ is a metric connection.

Theorem 3.2. In a β-Kenmotsu manifold ζ, η and g are parallel with respect to
the GTWC ∇̃.

Proposition 3.1. In a β-Kenmotsu manifold, the integral curves of the vector
field ζ are geodesic with respect to the GTWC ∇̃.

Now, the torsion tensor T̃ with respect to the GTWC ∇̃ is given by

T̃ (E1, E2) = ∇̃E1E2 − ∇̃E2E1 − [E1, E2].(3.12)

Using (3.2) in (3.12), we have

T̃ (E1, E2) = βη(E1)E2 − βη(E2)E1 − η(E1)φE2 + η(E2)φE1.(3.13)

Hence, we have the following:

Theorem 3.3. In a β-Kenmotsu manifold the GTWC ∇̃ associated with Levi-
Civita connection ∇ is just the only one affine connection which is metric and its
torsion tensor is of the form (3.13).

Any metric connection can be expressed with the help of its torsion tensor T̃ in the
following way:

g(∇̃E1E2, E3) = g(∇E1E2, E3) +
1

2
[g(T̃ (E1, E2), E3)

−g(T̃ (E1, E3), E2)− g(T̃ (E2, E3), E1)].(3.14)
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Using (3.13) in (3.14), we have

g(∇̃E1E2, E3) = g(∇E1E2, E3) + βg(E1, E2)g(ζ, E3)
−βg(E1, E3)η(E2)− g(φE2, E3)η(E1).(3.15)

Contracting E3 in above equation, we have

∇̃E1E2 = ∇E1E2 + βg(E1, E2)ζ − βη(E2)E1 − η(E1)φE2.(3.16)

Let R and R̃ denote the curvature tensors of ∇ and ∇̃ respectively, then we have

R̃(E1, E2)E3 = ∇̃E1
∇̃E2

E3 − ∇̃E2
∇̃E1

E3 − ∇̃[E1,E2]E3.(3.17)

Using (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (3.2) in (3.17), we have

R̃(E1, E2)E3 = R(E1, E2)E3 + β2[g(E2, E3)E1 − g(E1, E3)E2],(3.18)

where

R(E1, E2)E3 = ∇E1∇E2E3 −∇E2∇E1E3 −∇[E1,E2]E3(3.19)

is the curvature tensor with respect to the Levi-Civita connection ∇.
Contracting E1 in (3.18), we have

S̃(E2, E3) = S(E2, E3) + 2nβ2g(E2, E3).(3.20)

Using (2.11) in (3.20), we have

Q̃E2 = QE2 + 2nβ2E2.(3.21)

Contracting E2 and E3 in (3.20), we have

r̃ = r+ 2n(2n+ 1)β2.(3.22)

Replacing E3 by ζ in (3.18) and using (2.2) and (2.8), we have

R̃(E1, E2)ζ = 0.(3.23)

Hence, we have the following:

Theorem 3.4. Every (2n + 1)-dimensional β-Kenmotsu manifold admitting the

GTWC ∇̃ is irregular.

Taking R̃(E1, E2)E3 = 0 in (3.18), we have

R(E1, E2)E3 = −β2[g(E2, E3)E1 − g(E1, E3)E2].(3.24)

Taking inner product with U in (3.24), we have

R(E1, E2, E3,U) = −β2[g(E2, E3)g(E1,U)− g(E1, E3)g(E2,U)].(3.25)
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Let ζ⊥ denotes the (2n + 1)-dimensional distribution orthogonal to ζ in a β-

Kenmotsu manifold admitting the GTWC ∇̃ whose curvature tensor vanishes. Then
∀ E1 ∈ ζ⊥, g(E1, ζ) = 0 or η(E1) = 0. Now, we shall determine the sectional curva-
ture ′R of the plane determine by the vectors E1, E2 ∈ ζ⊥.
Taking E3 = E2 and U = E1 in (3.25), we have

R̃(E1, E2, E2, E1) = −β2[g(E1, E1)g(E2, E2)− g(E1, E2)2].(3.26)

Now

′R(E1, E2) =
R̃(E1, E2, E2, E1)

[g(E1, E1)g(E2, E2)− g(E1, E2)2]
= −β2.(3.27)

Hence, we can state the following:

Theorem 3.5. If the curvature tensor of a β-Kenmotsu manifold admitting the
GTWC ∇̃ vanishes, then the sectional curvature of the plane determined by two
vectors E1, E2 ∈ ζ⊥ is −β2.

Now, the projective curvature tensor [22] P̃ with respect to the GTWC ∇̃ is defined
by

P̃(E1, E2)E3 = R̃(E1, E2)E3 −
1

2n
[S̃(E2, E3)E1 − S̃(E1, E3)E2].(3.28)

If the projective curvature tensor P̃ with respect to the GTWC ∇̃ vanishes, then
(3.28) takes the form

R̃(E1, E2)E3 =
1

2n
[S̃(E2, E3)E1 − S̃(E1, E3)E2].(3.29)

By virtue of (3.18) and (3.20), (3.29) takes the form

R(E1, E2)E3 =
1

2n
[S(E2, E3)E1 − S(E1, E3)E2].(3.30)

Taking inner product with W in (3.30), we have

g(R(E1, E2)E3,W) =
1

2n
[S(E2, E3)g(E1,W)− S(E1, E3)g(E2,W)].(3.31)

Replacing W by ζ in (3.31) and using (2.2) and (2.7), we have

S(E2, E3)η(E1)− S(E1, E3)η(E2) = 2nβ2[g(E1, E3)η(E2)− g(E2, E3)η(E1)].(3.32)

Taking E1 = ζ in (3.32) and using (2.1), (2.2) and (2.12), we have

S(E2, E3) = −2nβ2g(E2, E3).(3.33)
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Contracting (3.33), we have

r = −2n(2n+ 1)β2.(3.34)

Using (3.33) in (3.20), we have

S̃(E2, E3) = 0.(3.35)

By virtue of (3.29) and (3.35), we have

R̃(E1, E2)E3 = 0.(3.36)

Hence, we have the following:

Theorem 3.6. In a β-Kenmotsu manifold M2n+1 admitting the GTWC ∇̃, van-
ishing of projective curvature tensor P̃ with respect to the GTWC ∇̃ leads to van-
ishing of curvature tensor R̃ with respect to the GTWC ∇̃.

using (3.36) in (3.18), we have

R(E1, E2)E3 = −β2[g(E2, E3)E1 − g(E1, E3)E2].(3.37)

Taking inner product with W in (3.37), we have

R(E1, E2, E3,W) = −β2[g(E2, E3)g(E1,W)− g(E1, E3)g(E2,W)].(3.38)

Hence, we have the following:

Theorem 3.7. In a β-Kenmotsu manifold M2n+1 admitting the GTWC ∇̃, the
curvature tensor R̃ with ∇̃ vanishes iff the manifold M2n+1 is isomorphic to the
hyperbolic space H2n+1(−β2).

Replacing E3 by ζ in (3.28) and using (3.23) and (3.20), we have

P̃(E1, E2)ζ = 0.(3.39)

Hence, we have the following:

Theorem 3.8. A β-Kenmotsu manifold M2n+1 is ζ-projectively flat with respect
to the GTWC ∇̃.

Using (3.18) and (3.20) in (3.28), we have

P̃(E1, E2)E3 = P(E1, E2)E3.(3.40)

where

P(E1, E2)E3 = R(E1, E2)E3 −
1

2n
[S(E2, E3)E1 − S(E1, E3)E2].(3.41)

is the projective curvature tensor with respect to the connection ∇. Hence, we can
state the following:
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Theorem 3.9. The projective curvature tensor of a β-Kenmotsu manifold M2n+1

with respect to the connections ∇̃ and ∇ are equivalent.

Replacing E3 by ζ in (3.41), we have

P̃(E1, E2)ζ = P(E1, E2)ζ.(3.42)

Hence, we have the following:

Theorem 3.10. A (2n + 1)-dimensional β-Kenmotsu manifold is ζ-projectively
flat with respect to the GTWC iff the manifold M2n+1 is ζ-projectively flat with
respect to the connection ∇.

4. Recurrent, conharmonic curvature tensor and Weyl conformal
curvature tensor in β-Kenmotsu manifold (M2n+1, φ, ζ, η, g)

admitting the GTWC ∇̃

Definition 4.1. A β-Kenmotsu manifoldM2n+1 admitting the GTWC ∇̃ is called
recurrent if its curvature tensor R̃ satisfies the condition

(∇̃E1R̃)(E2, E3)W = A(E1)R̃(E2, E3)W(4.1)

∀ E1, E2, E3,W ∈ X(M), where R̃ is the curvature tensor with respect to the GTWC

∇̃ and A is 1-form. By virtue of (4.1), we have

∇̃E1R̃(E2, E3)W − R̃(∇̃E1E2, E3)W
−R̃(E2, ∇̃E1E3)W − R̃(E2, E3)∇̃E1W = A(E1)R̃(E2, E3)W.(4.2)

Using (3.2) and (3.18) in (4.2), we have

βg(E1,R(E2, E3)W)ζ + β3g(E1, E2)g(E3,W)ζ − β3g(E1, E3)g(E2,W)ζ

−β3g(E1,W)η(E2)E3 + β3g(E1,W)η(E3)E2 + β3g(E1, E3)η(W)E2
−β3g(E1, E2)η(W)E3 − βη(R(E2, E3)W)E1 + βR(E1, E3)η(E2)W
+R(φE2, E3)η(E1)W + βR(E2, E1)η(E3)W +R(E2, φE3)η(E1)W
+βR(E2, E3)η(W)E1 = β2A(E1)[g(E3,W)E2 − g(E2,W)E3].(4.3)

Replacing W by ζ in (4.3) and using (2.1), (2.2), (2.7) and (2.8), we have

β3g(E1, E3)E2 − β3g(E1, E2)E3 − β2η(E1)η(E3)φE2
+β2η(E1)η(E2)φE3 + βR(E2, E3)E1 = β2A(E1)[η(E3)E2 − η(E2)E3].(4.4)
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Taking inner product with U in (4.4), we have

β3g(E1, E3)g(E2,U)− β3g(E1, E2)g(E3,U)
−β2η(E1)η(E3)g(φE2,U) + β2η(E1)η(E2)g(φE3,U)
+βg(R(E2, E3)E1,U) = β2A(E1)[η(E3)g(E2,U)− η(E2)g(E3,U)].(4.5)

Let {ς1, ς2, ς3, ......, ς2n+1} be a local orthonormal basis of vector fields in M. Then
by putting E2 = U = ςi in (4.5) and summing up over i ∈ [1, 2n+ 1], we have

S(E3, E1) = −2nβ2g(E1, E3) + 2nβA(E1)η(E3).(4.6)

Suppose the associated 1-form A is equal to the associated 1-form η, then from
(4.6), we have

S(E3, E1) = −2nβ2g(E1, E3) + 2nβη(E1)η(E3).(4.7)

Hence, we have the following:

Theorem 4.1. If a β-Kenmotsu manifold M2n+1 admitting the GTWC ∇̃ is re-
current and the associated 1-form A is equal to the associated 1-form η, then the
manifold M2n+1 is an η-Einstein manifold.

The conharmonic curvature tensor [5] K̃ admitting the GTWC ∇̃ is defined by

K̃(E1, E2)E3 = R̃(E1, E2)E3 −
1

2n− 1
[S̃(E2, E3)E1 − S̃(E1, E3)E2

+g(E2, E3)Q̃E1 − g(E1, E3)Q̃E2].(4.8)

If K̃(E1, E2)E3 with respect to the GTWC ∇̃ vanishes, then from (4.8), we have

R̃(E1, E2)E3 =
1

2n− 1
[S̃(E2, E3)E1 − S̃(E1, E3)E2

+g(E2, E3)Q̃E1 − g(E1, E3)Q̃E2].(4.9)

Using (3.18), (3.20) and (3.21) in (4.9), we have

R(E1, E2)E3 =
1

2n− 1
[S(E2, E3)E1 − S(E1, E3)E2

+4nβ2g(E2, E3)E1 − 4nβ2g(E1, E3)E2
+g(E2, E3)QE1 − g(E1, E3)QE2]
−β2[g(E2, E3)E1 − g(E1, E3)E2].(4.10)

Taking inner product with U in (4.10) and using (2.11), we have

g(R(E1, E2)E3,U) =
1

2n− 1
[{S(E2, E3) + 4nβ2g(E2, E3)}g(E1,U)

−{S(E1, E3) + 4nβ2g(E1, E3)}g(E2,U)
+S(E1,U)g(E2, E3)− S(E2,U)g(E1, E3)]
−β2[g(E2, E3)g(E1,U)− g(E1, E3)g(E2,U)].(4.11)
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Replacing U by ζ in (4.11) and using (2.2), (2.7) and (2.12), we have

S(E2, E3)η(E1)− S(E1, E3)η(E2) = 2nβ2{g(E1, E3)η(E2)− g(E2, E3)η(E1)}.(4.12)

Taking E1 = ζ in (4.12) and using (2.1), (2.2) and (2.12), we have

S(E2, E3) = −2nβ2g(E2, E3).(4.13)

Contracting (4.13), we have

r = −2nβ2(2n+ 1).(4.14)

Using (2.13), (3.20), (3.21) and (4.13) in (4.9), we have

R̃(E1, E2)E3 = 0.(4.15)

Hence, we have the following:

Theorem 4.2. In a β-Kenmotsu manifold M2n+1, vanishing of conharmonic cur-
vature tensor admitting the GTWC ∇̃ leads to vanishing of curvature tensor admit-
ting the GTWC ∇̃ and the manifold M2n+1 is an Einstein manifold.

In a Riemannian manifold Weyl conformal curvature tensor C̃ admitting the GTWC
∇̃ is defined by

C̃(E1, E2)E3 = R̃(E1, E2)E3 −
1

2n− 1
[S̃(E2, E3)E1 − S̃(E1, E3)E2

+g(E2, E3)Q̃E1 − g(E1, E3)Q̃E2]

+
r̃

2n(2n− 1)
[g(E2, E3)E1 − g(E1, E3)E2].(4.16)

Using (3.18), (3.20), (3.21) and (3.22) in (4.16), we have

C̃(E1, E2)E3 = R(E1, E2)E3 −
1

2n− 1
[S(E2, E3)E1 − S(E1, E3)E2

+g(E2, E3)QE1 − g(E1, E3)QE2]

+
r

2n(2n− 1)
[g(E2, E3)E1 − g(E1, E3)E2].(4.17)

By virtue of (4.17), we have

C̃(E1, E2)E3 = C(E1, E2)E3.(4.18)

where

C(E1, E2)E3 = R(E1, E2)E3 −
1

2n− 1
[S(E2, E3)E1 − S(E1, E3)E2

+g(E2, E3)QE1 − g(E1, E3)QE2]

+
r

2n(2n− 1)
[g(E2, E3)E1 − g(E1, E3)E2].(4.19)

Hence, we have the following:

Theorem 4.3. The Weyl conformal curvature tensor of a β-Kenmotsu manifold
M2n+1 with respect to the connections ∇̃ and ∇ are equivalent.
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5. Ricci pseudo-symmetric, quasi-concircularly flat and
ζ-quasi-concircularly flat β-Kenmotsu manifold admitting the

GTWC ∇̃

Definition 5.1. A β-Kenmotsu manifoldM2n+1 is said to be Ricci pseudo-symmetric
iff the relation [6, 7]

R · S = fQ(g,S),(5.1)

holds on the set US={x ∈ M : S ̸= 0 at x}, where f is a function on US , R · S and
Q(g,S) are respectively defined as

(R(E1, E2) · S)(U ,V) = −S(R(E1, E2)U ,V)− S(U ,R(E1, E2)V),(5.2)

and

Q(g,S) = ((E1 ∧g E2) · S)(U ,V),(5.3)

where

(E1 ∧g E2)E3 = g(E2, E3)E1 − g(E1, E3)E2(5.4)

∀ E1, E2,U ,V ∈ X(M).

Suppose that the manifold M2n+1 is a Ricci pseudo-symmetric β-Kenmotsu mani-
fold admitting the GTWC ∇̃, then we have

(R̃(E1, E2) · S̃)(U ,V) = fQ̃(g, S̃)(E1, E2;U ,V)(5.5)

∀ E1, E2,U ,V ∈ X(M). It is equivalent to

(R̃(E1, E2) · S̃)(U ,V) = f((E1 ∧g E2) · S̃)(U ,V),(5.6)

By virtue of (5.2) and (5.4), we have

−S̃(R̃(E1, E2)U ,V) = S̃(U , R̃(E1, E2)V) + f [S̃(E2,V)g(E1,U)
−S̃(E1,V)g(E2,U)− S̃(U , E1)g(E2,V)
+S̃(U , E2)g(E1,V)].(5.7)

Taking U = ζ in (5.7) and using (2.2), (3.20) and (3.23), we have

f [η(E1)S̃(E2,V)− η(E2)S̃(E1,V)] = 0,(5.8)

Since f ̸= 0 therefore from (5.8), we have

[η(E1)S̃(E2,V)− η(E2)S̃(E1,V)] = 0.(5.9)



A Class of β-Kenmotsu Manifold Admitting Generalized Tanaka-Webster Connection311

Taking E2 = ζ in (5.9) and using (2.1) and (3.20), we have

S̃(E1,V) = 0.(5.10)

Using (3.20) in (5.10), we have

S(E1,V) = −2nβ2g(E1,V).(5.11)

Hence, we have the following:

Theorem 5.1. A (2n+1)-dimensional Ricci pseudo-symmetric β-Kenmotsu man-

ifold M admitting the GTWC ∇̃ is an Einstein manifold.

Analogous to the definition (2.2) the quasi-concircular curvature tensor C̃ on (2n+1)-

dimensional β-Kenmotsu manifold admitting the GTWC ∇̃ is given by

C̃(E1, E2)E3 = aR̃(E1, E2)E3 +
r̃

2n+ 1

(
a

2n
+ 2b

)
[g(E2, E3)E1 − g(E1, E3)E2],(5.12)

where a and b are constants such that a, b ̸= 0. First we suppose that the manifold
M2n+1 admitting the GTWC ∇̃ is quasi-concircularly flat, i. e.

C̃(E1, E2)E3 = 0.(5.13)

By virtue of (5.12), we have

aR̃(E1, E2)E3 +
r̃

2n+ 1

(
a

2n
+ 2b

)
[g(E2, E3)E1 − g(E1, E3)E2] = 0.(5.14)

Taking inner product with ζ in (5.14) and using (2.2), (2.7) and (3.18), we have

r̃

2n+ 1

(
a

2n
+ 2b

)
[g(E2, E3)η(E1)− g(E1, E3)η(E2)] = 0.(5.15)

Thus we have either

r̃

(
a+ 4bn

2n(2n+ 1)

)
= 0,(5.16)

i.e.,

r̃ = 0,
a+ 4bn

2n(2n+ 1)
̸= 0.(5.17)

Or

g(E2, E3)η(E1)− g(E1, E3)η(E2) = 0.(5.18)

Taking E2 = ζ in (5.18) and using (2.1) and (2.2), we have

−g(E1, E3) + η(E1)η(E3) = 0.(5.19)

Replacing E1 by Q̃E1 in (5.19) and using (2.2), (2.11) and (2.12), we have

S(E1, E3) = −2nβ2g(E1, E3).(5.20)

Hence, we have the following:
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Theorem 5.2. If a β-Kenmotsu manifold M2n+1 admitting the GTWC ∇̃ is quasi-
concircularly flat then either the scalar curvature r̃ is constant or the manifold
M2n+1 is an Einstein manifold.

Next, we suppose that the manifold M2n+1 admitting the GTWC ∇̃ is ζ-quasi-
concircularly flat, i.e.

C̃(E1, E2)ζ = 0.(5.21)

By virtue of (5.12), we have

aR̃(E1, E2)ζ +
r̃

2n+ 1

(
a

2n
+ 2b

)
[g(E2, ζ)E1 − g(E1, ζ)E2] = 0.(5.22)

Using (2.2) and (3.23) in (5.22), we have

r̃

2n+ 1

(
a

2n
+ 2b

)
[η(E2)E1 − η(E1)E2] = 0.(5.23)

Since [η(E2)E1 − η(E1)E2] ̸= 0, therefore we have

r̃ = 0,
a+ 4bn

2n(2n+ 1)
̸= 0.(5.24)

Hence, we have the following:

Theorem 5.3. If a β-Kenmotsu manifold M2n+1 admitting the GTWC ∇̃ is ζ-
quasi-concircularly flat, then the scalar curvature r̃ is constant.

6. Example of a class of β-Kenmotsu manifold

Example 6.1. Let us suppose M3={(t1, t2, t3) ∈ R : t3 > 0} be the 3-dimensional mani-
fold, where (t1, t2, t3) are the standard coordinates in R3. The vector fields [20]

ς1 = βt3
∂

∂t1
, ς2 = βt3

∂

∂t2
, ς3 = βt3

∂

∂t3

are linearly independent at each point of the manifold M3.

Let g be the Riemannian metric defined by

g =
dt21 + dt22 + dt23

β2t23
,

then we have

g(ςi, ςj) = 1,∀i, j(i = j) = 1, 2, 3, g(ςi, ςj) = 0, ∀i, j(i ̸= j) = 1, 2, 3.
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Let η be a 1-form defined by η(E1) = g(E1, ς3) for any vector field E1 ∈ X(M) and
φ be the (1, 1)-tensor field defined as

φς1 = ς2, φς2 = −ς1, φς3 = 0.(6.1)

Using the linearity of φ and g, we have

η(ς3) = η(ζ) = 1, φ2(E1) = −E1 + η(E1)ς3,
g(φE1, φE2) = g(E1, E2)− η(E1)η(E2)(6.2)

∀ E1, E2 ∈ X(M3). Thus for ς3 = ζ, the structure (φ, ζ, η, g) defines an almost
contact metric structure on M.
Let ∇ be the Levi-Civita connection with metric g, then we have

(6.3) [ς1, ς2] = 0, [ς1, ς3] = −βς1, [ς2, ς3] = −βς2.

Koszul’s formula for the Riemannian connection ∇ of the metric g is given by

2g(∇E1E2, E3) = E1g(E2, E3) + E2g(E1, E3)− E3g(E1, E2)
−g(E1, [E2, E3])− g(E2, [E1, E3]) + g(E3, [E1, E2]).

Using the above equation, we can easily calculate

(6.4)

∇ς1ς1 = βς3, ∇ς1ς2 = 0, ∇ς1ς3 = −βς1,

∇ς2ς1 = 0, ∇ς2ς2 = βς3, ∇ς2ς3 = −βς2,

∇ς3ς1 = 0, ∇ς3ς2 = 0, ∇ς3ς3 = 0.

From above calculations, it can be easily seen that the manifold M3(φ, ζ, η, g) sat-
isfies the condition

(∇E1φ)E2 = β[g(φE1, E2)ζ − η(E2)φE1], ∇E1ζ = β[E1 − η(E1)ζ].

Now for E1 = E1
1 ς1 + E2

1 ς2 + E3
1 ς3, we have

∇E1ζ = −β(E1
1 ς1 + E2

1 ς2),(6.5)

and

β[E1 − η(E1)ζ] = β(E1
1 ς1 + E2

1 ς2),(6.6)

From (6.5) and (6.6), we have

β(E1
1 ς1 + E2

1 ς2) = −β(E1
1 ς1 + E2

1 ς2)

i.e.,

β = 0,(6.7)
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Thus β is a constant. Hence, the structure (φ, ζ, η, g) is a β-Kenmotsu structure and
the manifold M3 equipped with β-Kenmotsu structure is a β-Kenmotsu manifold.
Using (6.4) in (3.2), we obtain

∇̃ς1ς1 = 2βς3, ∇̃ς1ς2 = 0, ∇̃ς1ς3 = −2βς1

∇̃ς2ς1 = 0, ∇̃ς2ς2 = 2βς3, ∇̃ς2ς3 = −2βς2

∇̃ς3ς1 = −ς2, ∇̃ς3ς2 = ς1, ∇̃ς3ς3 = 0.

(6.8)

By virtue of (3.13), the torsion tensor T̃ admitting the GTWC ∇̃ as follows:

T̃ (ςi, ςi) = 0, ∀i = 1, 2, 3,

and

T̃ (ς1, ς2) = 0, T̃ (ς1, ς3) = −βς1 + ς2, T̃ (ς2, ς3) = −βς2 − ς1.

Also we have

(∇̃ς1g)(ς2, ς3) = 0, (∇̃ς2g)(ς3, ς1) = 0, (∇̃ς3g)(ς1, ς2) = 0.

Hence, M3 is a 3-dimensional β-Kenmotsu manifold admitting the GTWC ∇̃ which
is a symmetric connection.
The curvature tensor R(ςi, ςj)ςk; i, j, k = 1, 2, 3 of ∇ can be calculated by using
(3.19), (6.3) and (6.4), we have

R(ς1, ς2)ς2 = −β2ς1, R(ς1, ς3)ς3 = −β2ς1, R(ς2, ς1)ς1 = −β2ς2,

R(ς2, ς3)ς3 = −β2ς2, R(ς3, ς1)ς1 = −β2ς3, R(ς3, ς2)ς2 = −β2ς3,

R(ς1, ς2)ς3 = 0, R(ς2, ς3)ς2 = −β2ς3, R(ς1, ς2)ς1 = −β2ς2.

(6.9)

Along with R(ςi, ςi)ςi = 0; ∀ i = 1, 2, 3. In view of above calculations, we can verify
(2.8), (2.9) and (2.10).
The Ricci tensor S(ςj , ςk); j, k = 1, 2, 3 of ∇ can be calculated by using (6.9), we
have

S(ςj , ςk) =
3∑

i=1

g(R(ςi, ςj)ςk, ςi).

It follows that

S(ςj , ςk) = −2β2, ∀j, k(j = k) = 1, 2, 3,

S(ςj , ςk) = 0, ∀j, k(j ̸= k) = 1, 2, 3.(6.10)

By virtue of (6.10), we can verify (2.11), (2.12), (2.17), (3.33), (4.13), (5.11) and
(5.20). The scalar curvature r of ∇ can also be calculated as under:

r = −6β2.(6.11)
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In view of (6.11), we can easily verify (3.34) and (4.14).

The curvature tensor R̃(ςi, ςj)ςk; i, j, k=1, 2, 3 with ∇̃ can be calculated by using
(6.3) and (6.8), we have

R̃(ς1, ς2)ς2 = −4β2ς1, R̃(ς1, ς3)ς3 = −2βς2 − 2β2ς1,

R̃(ς2, ς1)ς1 = −4β2ς2, R̃(ς2, ς3)ς3 = 2βς1 − 2β2ς2,

R̃(ς3, ς1)ς1 = −2β2ς3, R̃(ς3, ς2)ς2 = −2β2ς3,

R̃(ς1, ς2)ς3 = 0, R̃(ς2, ς3)ς2 = 4β2ς3,

R̃(ς1, ς2)ς1 = 4β2ς2.

(6.12)

Along with R̃(ςi, ςi)ςi = 0; ∀ i = 1, 2, 3.

The Ricci tensor S̃(ςj , ςk); j, k=1, 2, 3 with ∇̃ can be calculated by using (6.12), we
have

S̃(ςj , ςk) =
3∑

i=1

g(R̃(ςi, ςj)ςk, ςi).

It follows that

S̃(ς1, ς1) = −6β2, S̃(ς2, ς2) = −6β2, S̃(ς3, ς3) = −4β2.(6.13)

Along with S̃(ςj , ςk) = 0; ∀ j, k(j ̸= k) = 1, 2, 3.

The scalar curvature r̃ admitting the GTWC ∇̃ can also be calculated by using
(6.13) as under:

r̃ =
3∑

i=1

g(ςi, ςi)S̃(ςi, ςi)

= −6β2 − 6β2 − 4β2

= −16β2.(6.14)

Using (6.11) in (3.22) and taking n = 1, we have

r̃ = 0.(6.15)

From (6.15), it is clear that the theorems 5.2 and 5.3 are verified by this example.
In a 3-dimensional β-Kenmotsu manifold M3, the projective curvature tensor ad-
mitting the GTWC ∇̃ is given as

P̃(E1, E2)E3 = R̃(E1, E2)E3 −
1

2
[S̃(E2, E3)E1 − S̃(E1, E3)E2].(6.16)

Replacing E3 by ς3 in (6.16), we have

P̃(E1, E2)ς3 = R̃(E1, E2)ς3 −
1

2
[S̃(E2, ς3)E1 − S̃(E1, ς3)E2].(6.17)
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Let E1 and E2 are any two vector fields as under:

E1 = E1
1 ς1 + E2

1 ς2 + E3
1 ς3, E2 = E1

2 ς1 + E2
2 ς2 + E3

2 ς3,(6.18)

where E1
1 , E2

1 , E3
1 , E1

2 , E2
2 , and E3

2 are scalars. Using (6.18) in (6.17), we have

P̃(E1, E2)ς3 = 0.(6.19)

Hence, the manifold M3 is ζ-projectively flat in a β-Kenmotsu manifold admitting
the GTWC ∇̃ which verifies theorem 3.5.
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