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Abstract. Hereby, some geometric properties such as φ− Ricci symmetric, weakly
φ-Ricci symmetric and Ricci-Yamabe soliton as well as parallel 2-form of the para-
Kenmotsu manifolds admitting Qφ = φQ are discussed. This paper also deals with
Ricci-Yamabe soliton on para-Kenmotsu manifold admitting the curvature condition
R̃(ξ,X1).S = 0 and locally φ− Ricci symmetric para-Kenmotsu manifolds of dimension
three. Together with we have cited some examples of 3-dimensional φ− Ricci symmetric
and locally φ− Ricci symmetric para-Kenmotsu manifold.
Keywords: Ricci-Yamabe soliton, para-Kenmotsu manifold, Einstein manifold.

1. Introduction

Sato [23] established the idea of almost para contact manifolds based on the
analogy of almost contact manifolds. An almost paracontact manifold may be of
even dimension, whereas an almost contact manifold is invariably of odd dimension.
Takahashi [28] defined almost contact manifolds, in particular, Sasakian manifolds
equipped with an associated pseudo-Riemannian metric. Subsequently, as a natural
odd dimensional counterpart to para Hermitian structure, Kaneyuki and Williams
[12] proposed the notion of an almost paracontact pseudo-Riemannian structure. In
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[30], any almost paracontact structure is shown to yield a pseudo-Riemannian metric
with the signature (n + 1, n) by Zamkovoy. Many authors have researched almost
paracontact structure in recent years, especially since the appearance of [30]. The
curvature identity for different classes of almost paracontact geometry was obtained
in ([4],[30]). Welyczko [29] first proposed the idea of a para-Kenmotsu manifold.
The Kenmotsu manifold in paracontact geometry is analogous to this structure
[13]. Studies on para-Kenmotsu (also referred as p-Kenmotsu) and special para-
Kenmotsu (also referred as sp-Kenmotsu) manifolds have been done by Sinha and
Prasad [25], Blaga [2], Sai Prasad and Satyanarayana [22], Prakasha and Vikas [21]
and others ([20], [19], [14]).

Ricci-Yamabe flow of type (α, β) is an advanced class of geometric flows defined
by Güler and Crasmareanu (2019) [8] as a scalar combination of Ricci and Yamabe
flows and is defined as follows:

(1.1)
∂

∂t
g(t) + 2αS(g(t)) + βr(t)g(t) = 0, g(0) = g0

where α and β are some scalars.

If a solution to the Ricci-Yamabe flow depends solely on one scaling and diffeo-
morphism parameter group, it is referred to as a Ricci-Yamabe soliton. A manifold
M that is Riemannian (or semi-Riemannian) is considered to have a Ricci-Yamabe
soliton if

(1.2) £V g + 2αS + (2λ− βr)g = 0

where, α, β, λ ∈ R(the set of real numbers). It is noted that a Ricci-Yamabe soliton
of types (α, 0) and (0, β) are known as α−Ricci soliton and β−Yamabe soliton re-
spectively. Also, a Ricci-Yamabe soliton is called as shrinking, steady or expanding
if λ <,= or >, respectively. In short, a Ricci-Yamabe soliton is said to be a

1. Ricci [9] soliton if α = 1, β = 0,

2. Yamabe soliton [10] if α = 0, β = 1,

3. Einstein soliton [3] if α = 1, β = −1.

Moreover, in [27], locally φ-symmetric Sasakian manifolds are a weaker form
of the local symmetry of such manifolds and were first proposed by T. Takahashi.
Further, U.C. De studied φ−symmetric Kenmotsu manifolds with several examples
in [7]. A class of contact metric manifolds known as the Kenmotsu manifold was
subsequently introduced by K. Kenmotsu [13] in 1971 but this manifold is not a
Sasakian manifold. The study of Kenmotsu manifolds has been done by a number
of researchers, including Pitis [17], Binh, Tamassy, De and Tarafdar [1], De and
Pathak [5], Özgür [16], Özgür and De [15] and many other geometricians [11]. The
concept of φ−Ricci symmetric Sasakian manifolds was recently presented by U.C.
De in [6] and he also got some noteworthy findings for this manifold.
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We are working with the Ricci-Yamabe soliton on para-Kenmotsu manifolds in
this paper as a result of the investigations mentioned above. The structure of the
current paper is as follows: In section 2, we begin by studying the para-Kenmotsu
manifold preliminary data. Following that, in section 3, we talk about φ−Ricci sym-
metric para-Kenmotsu manifolds. Moreover, we explore three-dimensional φ−Ricci
symmetric para-Kenmotsu manifolds in section 4. In section 5, we build examples
of para-Kenmotsu manifolds in three dimensions, supporting the findings from sec-
tions 3 and 4. After that section 6 and 7 deals with weakly φ-Ricci symmetric
and Ricci-Yamabe solitons on para-Kenmotsu manifold respectively. Furthermore,
Ricci-Yamabe solitons on para-Kenmotsu manifold satisfying R̃(ξ,X1).S = 0 and
parallel 2-form in the para-Kenmotsu manifolds is also covered in the paper’s last
two sections.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M̃2n+1 has an almost para contact
structure (φ, ξ, η, g) if it admits a tensor field φ of type (1, 1), a vector field ξ, a
1-form η and a semi-Riemannian metric tensor g satisfying the following conditions
{[30], [18]};

(2.1) φ2X1 = X1 − η(X1)ξ, η(ξ) = 1, φξ = η ◦ φ = 0

(2.2) g(φX1, φX2) = −g(X1,X2) + η(X1)η(X2), η(X1) = g(X1, ξ)

and

(2.3) dη(X1,X2) = g(X1, φX2),

for all vector fields X1,X2 on M̃2n+1.

An almost para contact metric manifold M̃2n+1(φ, ξ, η, g) is said to be para-

Kenmotsu manifold if the Levi-Civita connection ∇̃ of g satisfies

(2.4)
(
∇̃X1

φ
)
X2 = g(φX1,X2)ξ − η(X2)φX1

for all X1,X2 ∈ Γ(TM̃), where Γ(TM̃) denote the set of all differentiable vector

fields on M̃2n+1[16]. From equations 2.1 and 2.4, we have

(2.5) ∇̃X1
ξ = φ2X1 = X1 − η(X1)ξ.

In a para-Kenmotsu manifold M̃2n+1(φ, ξ, η, g), we have the following formulas:

(2.6) R̃(X1,X2)ξ = η(X1)X2 − η(X2)X1,

(2.7) R̃(ξ,X1)X2 = η(X2)X1 − g(X1,X2)ξ,
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(2.8) S(ξ,X1) = −2nη(X1), Qξ = −2nξ,

(2.9) (∇̃X1
η)X2 = g(X1,X2)− η(X1)η(X2)

for any vector fields X1,X2 ∈ Γ(TM̃), where R̃ and S denote the Riemannian

curvature tensor and Ricci tensor of M̃2n+1 respectively.

Also, since S(X1,X2) = g(QX1,X2), we have

S(φX1, φX2) = g(QφX1, φX2),

where Q is the Ricci operator.

Using the properties g(φX1, φX2) = −g(X1,X2) + η(X1)η(X2) and Qφ = φQ,
we obtain

(2.10) S(φX1, φX2) = −S(X1,X2)− 2nη(X1)η(X2).

3. φ−Ricci Symmetric Para-Kenmotsu Manifolds

Definition 3.1. A para-Kenmotsu manifold is said to be φ-symmetric if

φ2
((

∇̃X4R̃
)
(X1,X2)X3

)
= 0,

for arbitrary vector fields X1,X2,X3,X4.

If vector fields X1,X2,X3,X4 are orthogonal to ξ, then the manifold is said
to be locally φ-symmetric. This notion was introduced for Sasakian manifold by
Takahashi [27].

Definition 3.2. A para-Kenmotsu manifold M is said to be locally φ-Ricci sym-
metric, if

φ2(∇̃X1
Q)(X2) = 0

for any vector fields X1,X2 orthogonal to ξ.

Definition 3.3. [6] A para-Kenmotsu manifoldM is said to be φ-Ricci symmetric,
if the Ricci operator satisfies

φ2(∇̃X1
Q)(X2) = 0

for any vector fields X1,X2 on M and S(X1,X2) = g(QX1,X2).

Definition 3.4. [6] A para-Kenmotsu manifold M is said to be Einstein manifold
if its Ricci tensor S is of the form

S(X1,X2) = αg(X1,X2),

where α is a constant and X1,X2 are any vector fields on M .
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Theorem 3.1. A (2n+ 1)-dimensional φ-Ricci symmetric para-Kenmotsu mani-
fold is an Einstein manifold.

Proof. Let us consider that the manifold is φ-Ricci symmetric. Then we have the
following condition:

φ2(∇̃X1
Q)(X2) = 0.

Using equation 2.1 in the above equation, we have

(3.1) (∇̃X1Q)(X2)− η((∇̃X1Q)X2)ξ = 0.

From above equation 3.1, it follows that

(3.2) g((∇̃X1
Q)(X2),X3)− η((∇̃X1

Q)(X2))η(X3) = 0

which on simplifying gives

g
(
∇̃X1

(QX2),X3

)
− S

(
∇̃X1

X2,X3

)
− η

((
∇̃X1

Q
)
X2

)
η(X3) = 0.

Replacing X2 by ξ in above equation, we get

(3.3) g
(
∇̃X1

(Qξ),X3

)
− S(∇̃X1

ξ,X3)− η((∇̃X1
Q)ξ)η(X3) = 0.

By using equations 2.5 and 2.7 in above equation 3.3, we obtain
(3.4)

2n[g(X1,X3)− η(X1)η(X3)] + S(X1,X3)− η(X1)S(ξ,X3) + η((∇̃X1
Q)ξ)η(X3) = 0,

which further implies

(3.5) 2ng(X1,X3) + S(X1,X3) + η((∇̃X1Q)ξ)η(X3) = 0

by using equation 2.8.

Now, replacing X1 by φX1 and X3 by φX3 in equation 3.5, we have

(3.6) S(φX1, φX3) = −2ng(φX1, φX3).

In account of equations 2.2 and 2.10, 3.6 becomes

(3.7) S(X1,X3) = −2ng(X1,X3)

which implies that the manifold is an Einstein manifold.

Moreover, in the view of definitions 3.1 and 3.3, we can observe that a φ-
symmetric para-Kenmotsu manifold is also φ-Ricci symmetric, hence we have the
following corollary:

Corollary 3.1. A (2n+ 1)-dimensional φ-symmetric para-Kenmotsu manifold is
an Einstein manifold.
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Theorem 3.2. If a (2n+ 1)-dimensional para-Kenmotsu manifold is an Einstein
manifold, then it is φ-Ricci symmetric.

Proof. Let us suppose that the manifold is an Einstein manifold. Then

S(X1,X2) = αg(X1,X2),

where S(X1,X2) = g(QX1,X2) and α is a constant. Hence QX1 = αX1. Thus, we
have

φ2
((

∇̃X2Q
)
(X1)

)
= 0.

This completes the proof.

In account of Theorem 3.1 and Theorem 3.2, we have

Theorem 3.3. A (2n+1)-dimensional para-Kenmotsu manifold is φ-Ricci sym-
metric if and only if it is an Einstein manifold.

4. Three-dimensional φ-Ricci symmetric para-Kenmotsu manifolds

Theorem 4.1. If the scalar curvature r of a 3-dimensional para-Kenmotsu man-
ifold is equal to -6, then the manifold is φ-Ricci symmetric.

Proof. It is known that for any 3-dimensional pseudo Riemannian manifold, we have
the following well known expression:

R̃(X1,X2)X3 = g(X2,X3)QX1 − g(X1,X3)QX2 + S(X2,X3)X1

− S(X1,X3)X2 −
r

2
{g(X2,X3)X1 − g(X1,X3)X2}.

(4.1)

Setting X2 = X3 = ξ in above relation and making use of equations 2.6 and 2.8,
we obtain

(4.2) QX1 = (1 +
r

2
)X1 − (

r + 6

2
)η(X1)ξ

which is equivalent to

(4.3) S(X1,X2) = g(QX1,X2) = (1 +
r

2
)g(X1,X2)− (

r + 6

2
)η(X1)η(X2).

Taking the covariant differentiation of equation 4.2 with respect to X4, we get

(∇̃X4
Q)X1 +Q(∇̃X4

X1) =

(
1

2

)
dr(X4)X1 + (

r + 2

2
)(∇̃X4

X1)− [

(
1

2

)
dr(X4)η(X1)ξ

+ (
r + 6

2
)X4{η(X1)}ξ + (

r + 6

2
)η(X1)∇̃X4

ξ]
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which gives(
∇̃X4

Q
)
X1 =

(
1

2

)
dr(X4)X1 −

(
1

2

)
dr(X4)η(X1)ξ

−
(
r + 6

2

)
g(X1,−φX4)ξ −

(
r + 6

2

)
η(X1)

(
∇̃X4ξ

)
.

Now, applying φ2 on both sides of above equation and using equation 2.1, we
have
(4.4)

φ2
((

∇̃X4
Q
)
(X1)

)
=

(
1

2

)[
dr(X4)(−X1 + η(X1)ξ)− (r + 6)η(X1)φ

2
(
∇̃X4

ξ
)]

.

This completes the proof of the theorem.

Theorem 4.2. A 3-dimensional para-Kenmotsu manifold is locally φ-Ricci sym-
metric if and only if the scalar curvature r is constant.

Proof. Taking X1 orthogonal to ξ in equation 4.4, we obtain

(4.5) φ2
((

∇̃X4
Q
)
(X1)

)
= −1

2
dr(X4)X1.

Hence, the proof follows from above equation and theorem 4.1.

5. Examples

In this section, we give examples of three-dimensional φ-Ricci symmetric as well as
locally φ-Ricci symmetric para-Kenmotsu manifold which verifies theorem 4.1 and
4.2 as well as theorem 3.3.

Example 5.1. We consider three-dimensional manifoldM =
{
(x, y, z) ∈ R3, z ̸= 0

}
with

the cartesian coordinates (x, y, z) and the vector fields:

ϵ1 = φϵ2, ϵ2 = φϵ1, φϵ3 = 0,

where

ϵ1 =
∂

∂x
, ϵ2 =

∂

∂y
, ϵ3 = x

∂

∂x
+ y

∂

∂y
+

∂

∂z

are linearly independent vectors at each point of the manifold. The 1-form η = dz defines
an almost para contact structure on M with characteristic vector field ξ = ϵ3 = x ∂

∂x
+

y ∂
∂y

+ ∂
∂z

. Let g be a pseudo-Riemannian metric defined by: g = dx2−dy2+(1−x2+y2)dz2.
Using Koszul’s formula,

2g(∇̃X1X2,X3) =X1(g(X2,X3)) + X2(g(X3,X1))−X3(g(X1,X2))− g(X1, [X2,X3])+

g(X2, [X3,X1]) + g(X3, [X1,X2])
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we have the followings:

∇̃ϵ1ϵ1 = −ϵ3, ∇̃ϵ1ϵ2 = 0, ∇̃ϵ1ϵ3 = ϵ1,

∇̃ϵ2ϵ1 = 0, ∇̃ϵ2ϵ2 = ϵ3, ∇̃ϵ2ϵ3 = ϵ2,

∇̃ϵ3ϵ1 = 0, ∇̃ϵ3ϵ2 = 0, ∇̃ϵ3ϵ3 = 0.

It is not hard to verify that the conditions 2.4 and 2.5 for para-Kenmotsu manifold are
satisfied. Hence, the manifold under consideration is a para-Kenmotsu manifold. Now,
the components of the curvature tensor are given by:

R̃ (ϵ1, ϵ2) ϵ1 = ϵ2, R̃ (ϵ1, ϵ2) ϵ2 = ϵ1, R̃ (ϵ1, ϵ2) ϵ3 = 0,

R̃ (ϵ1, ϵ3) ϵ1 = ϵ3, R̃ (ϵ1, ϵ3) ϵ2 = 0, R̃ (ϵ1, ϵ3) ϵ3 = −ϵ1,

R̃ (ϵ2, ϵ3) ϵ1 = 0, R̃ (ϵ2, ϵ3) ϵ2 = −ϵ3, R̃ (ϵ2, ϵ3) ϵ3 = −ϵ2,

which further gives

R̃(X1,X2)X3 = −[g(X2,X3)X1 − g(X1,X3)X2].

Now, since

S(X1,X2) =

3∑
α=1

λαg(R̃(ϵα,X1)X2, ϵα),

where λα = g(ϵα, ϵα) and α = 1, 2, 3.
Thus, the components of Ricci tensor are given by:

S (ϵ1, ϵ1) = −2, S (ϵ2, ϵ2) = 2, S (ϵ3, ϵ3) = −2.

Hence, we have constant scalar curvature as follows:

r = S (ϵ1, ϵ1)− S (ϵ2, ϵ2) + S (ϵ3, ϵ3) = −6.

Since, the scalar curvature and Ricci tensor of the manifold under consideration is given
by r = −6 and S(X1,X2) = −2g(X1,X2) respectively, where QX1 = −2X1 which further

implies that φ2
((

∇̃X4Q
)
(X1)

)
= 0. This leads us to the conclusion that M is φ-Ricci

symmetric, which proves theorem 4.1. Additionally, it is simple to validate the conclusion
of theorem 4.2. In addition to this, M is an Einstein manifold due to the fact that
S(X1,X2) = −2g(X1,X2) which validates the theorem 3.3 .

Example 5.2. Consider, a three-dimensional manifold M3 =
{
(x, y, z) ∈ R3, z ̸= 0

}
,

where (x, y, z) are the standard coordinates in R3 and the vector fields are given as:

δ1 = ez
∂

∂x
, δ2 = ez

∂

∂y
, δ3 = − ∂

∂z

are linearly independent vectors at each point of the manifold.

Now, we define
δ1 = φδ2, δ2 = φδ1, φδ3 = 0,

ξ = − ∂

∂z
, η = −dz,
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g(δ1, δ1) = 1, g(δ2, δ2) = −1, g(δ3, δ3) = 1

and
g(δα, δβ) = 0, if α ̸= β α, β = 1, 2, 3.

Then it follows that

η(δ1) = 0, η(δ2) = 0, η(δ3) = 1.

Let ∇̃ be the Levi-Civita connection with respect to metric g, then we obtain the followings:

[δ1, δ2] = 0, [δ1, δ3] = δ1, [δ2, δ3] = δ2.

Now, in view of Koszul’s formula

2g(∇̃X1X2,X3) =X1(g(X2,X3)) + X2(g(X3,X1))−X3(g(X1,X2))− g(X1, [X2,X3])+

g(X2, [X3,X1]) + g(X3, [X1,X2])

we can deduce the following relations:

∇̃δ1δ1 = −δ3, ∇̃δ1δ2 = 0, ∇̃δ1δ3 = δ1,

∇̃δ2δ1 = 0, ∇̃δ2δ2 = δ3, ∇̃δ2δ3 = δ2,

∇̃δ3δ1 = 0, ∇̃δ3δ2 = 0, ∇̃δ3δ3 = 0.

With the help of above results, we can see that manifold satisfies

∇̃X1ξ = X1 − η(X1)ξ,

for δ3 = ξ. Hence, the manifold M3(φ, ξ, η, g) is a para-Kenmotsu manifold of dimension
three.

Now, in view of definition of curvature tensor which is given as follows:

R̃(X1,X2)X3 = ∇̃X1∇̃X2X3 − ∇̃X2∇̃X1X3 − ∇̃[X1,X2]X3,

we can easily verify the following observations:

R̃ (δ1, δ2) δ1 = δ2, R̃ (δ1, δ2) δ2 = δ1, R̃ (δ1, δ2) δ3 = 0,

R̃ (δ1, δ3) δ1 = δ3, R̃ (δ1, δ3) δ2 = 0, R̃ (δ1, δ3) δ3 = −δ1,

R̃ (δ2, δ3) δ1 = 0, R̃ (δ2, δ3) δ2 = −δ3, R̃ (δ2, δ3) δ3 = −δ2,

which further gives

R̃(X1,X2)X3 = −[g(X2,X3)X1 − g(X1,X3)X2].

From the definition of Ricci tensor in 3-dimensional manifold,

S(X1,X2) =

3∑
α=1

λαg(R̃(δα,X1)X2, δα),

where λα = g(δα, δα) and α = 1, 2, 3.
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Thus, using the components of curvature tensor, we obtain the following results:

S (δ1, δ1) = −2, S (δ2, δ2) = 2, S (δ3, δ3) = −2.

Hence, we have scalar curvature r of manifold as follows:

r = S (δ1, δ1)− S (δ2, δ2) + S (δ3, δ3) = −6.

Since, the scalar curvature and Ricci tensor of the manifold under consideration is given
by r = −6 and S(X1,X2) = −2g(X1,X2) respectively, where QX1 = −2X1. Thus, we
can conclude that M3 is φ-Ricci symmetric, which verifies the theorem 4.1. Also one can
easily verify the theorems 3.3 and 4.2.

6. Weakly φ-Ricci Symmetric Para Kenmotsu Manifolds

Definition 6.1. A para-Kenmotsu manifold M of 2n + 1-dimension with almost
para contact structure (φ, ξ, η, g) is said to be weakly φ-Ricci symmetric if the Ricci
operator satisfies the following condition:

(6.1) φ2((∇X1Q)X2) = A(X1)φ
2(Q(X2)) + B(X2)φ

2(Q(X1)) + S(X2,X1)φ
2(ρ).

where, X1,X2 are any vector fields on M . A,B,D are 1-form and ρ is a vector field
associated with 1-form D by relation g(ρ,X ) = D(X ).

Definition 6.2. A para-Kenmotsu manifold M is said to be η-Einstein if its Ricci
tensor S of type (0, 2) is of the form

(6.2) S = ςg + εη ⊗ η

where ς, ε are smooth functions on M .

If the one-forms A = B = ρ = 0, then above relation 6.1 reduces to the concept
of φ-Ricci symmetric which is given by the following:

(6.3) φ2((∇X1
Q)X2) = 0.

Initially, this concept was introduced by S.S. Shukla and M.K. Shukla [24]. Now,
consider weakly φ- Ricci symmetric para-Kenmotsu manifold M(φ, ξ, η, g) and in
the account of equations 2.1 and 6.1, we obtain

(∇X1
Q)(X2)− η((∇X1

Q)(X2))ξ = A(X1)[QX2 − η(QX2)ξ]

+ B(X2)[QX1 − η(QX1)ξ] + S(X2,X1)[ρ− η(ρ)ξ]

(6.4)

which further gives

∇X1(Q(X2))− g((∇X1Q)(X2), ξ)ξ = A(X1)QX2 −A(X1)η(QX2)ξ + B(X2)QX1

− B(X2)η(QX1)ξ + S(X2,X1)ρ− S(X2,X1)η(ρ)ξ.

(6.5)
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Now, taking inner product w.r.t. X3 in above relation, we obtain

g(∇X1
(Q(X2)),X3)− g((∇X1

Q)(X2), ξ)g(ξ,X3)

= A(X1)g(QX2,X3)−A(X1)η(QX2)g(ξ,X3)

+ B(X2)g(QX1,X3)− B(X2)η(QX1)g(ξ,X3)

+ S(X2,X1)g(ρ,X3)− S(X2,X1)η(ρ)g(ξ,X3)

and X2 = ξ in above equation, we get

g(∇X1
(Qξ),X3)− g((∇X1

Q)ξ, ξ)η(X3) = A(X1)g(Qξ,X3)−A(X1)g(Qξ, ξ)η(X3)

+ B(ξ)g(QX1,X3)− B(ξ)g(QX1, ξ)η(X3)

+ S(ξ,X1)g(ρ,X3)− S(ξ,X1)g(ρ, ξ)η(X3).

(6.6)

Now, in the account of equations 2.5, 2.8 and 6.6, we have

−S(X1,X3) = 2ng(X1,X3) + B(ξ)S(X1,X3) + 2nη(X1)η(X3)B(ξ)
− 2nη(X1)D(X3) + 2nη(X1)η(X3)D(ξ)

(6.7)

Replacing X1 by φX1 and X3 by φX3 in 6.7, we obtain

(6.8) [1 + B(ξ)]S(φX1, φX3) = −2ng(φX1, φX3).

By virtue of equations 2.2 and 2.10, we get

(6.9) S(X1,X3) = ςg(X1,X3) + εη(X1)η(X3)

where,

ς =
−2n

1 + B(ξ)
and ε =

−2nB(ξ)
1 + B(ξ)

provided 1 + B(ξ) ̸= 0. Therefore, we can state the following theorem:

Theorem 6.1. A weakly φ-Ricci symmetric para-Kenmotsu manifold is an η-
Einstein manifold.

7. Ricci Yamabe Solitons on Para-Kenmotsu Manifolds

Assume that the Para-Kenmotsu manifold admits a Ricci-Yamabe soliton (g, ξ, λ, α, β).
Then from equation 1.2 following relation holds:

(7.1) (£ξg)(X1,X2) + 2αS(X1,X2) + (2λ− βr)g(X1,X2) = 0

Since,
(£ξg)(X1,X2) = g(X2,∇X1

ξ) + g(X1,∇X2
ξ),

so with the help of equation 2.5, we obtain the following

(7.2) (£ξg)(X1,X2) = 2[g(X1,X2)− η(X1)η(X2)].
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In the account of above equations 7.1 and 7.2, we get

S(X1,X2) =
1

2α
[g(X1,X2)(−2− 2λ+ βr) + 2η(X1)η(X2)]

= [
−2− 2λ+ βr

2α
]g(X1,X2) +

1

α
η(X1)η(X2)

= ςg(X1,X2) + εη(X1)η(X2)

(7.3)

where, ς = −2−2λ+βr
2α and ε = 1

α
which results the following theorem:

Theorem 7.1. Let M̃2n+1 be a para-Kenmotsu manifold with almost para contact
structure (φ, ξ, η, g) and it admits a Ricci-Yamabe soliton then the manifold is η-
Einstein manifold.

8. Ricci Yamabe Solitons on Para-Kenmotsu Manifolds satisfying
R̃(ξ,X1).S = 0

Let M̃2n+1 be a para-Kenmotsu manifold admitting Ricci-Yamabe soliton satisfies
the condition R̃(ξ,X1).S = 0. Then we have

S(R̃(ξ,X1)X2,X3) + S(X2, R̃(ξ,X1)X3) = 0.

With help of equation 2.7, above equation yields the following:

S(η(X2)X1 − g(X1,X2)ξ,X3) + S(X2, η(X3)X1 − g(X1,X3)ξ) = 0

=⇒ η(X2)S(X1,X3)− g(X1,X2)S(ξ,X3) + S(X2,X1)η(X3)− g(X1,X3)S(X2, ξ) = 0.

(8.1)

Now, putting X3 = ξ, we obtain

(8.2) η(X2)S(X1, ξ)− g(X1,X2)S(ξ, ξ) + S(X2,X1)η(ξ)− g(X1, ξ)S(X2, ξ) = 0.

Since, equation 7.3 gives S(X1, ξ) = 1
α (

βr
2 − λ)η(X1). Hence, using equations 2.8

and 7.3 in equation 8.2, one can easily get

(8.3) S(X1,X2) =
1

α
(
βr

2
− λ)g(X1,X2).

Therefore, we can state an important result as follows:

Theorem 8.1. Let M̃2n+1 be a para-Kenmotsu manifold with almost para contact
structure (φ, ξ, η, g) and it admits Ricci-Yamabe soliton satisfying R̃(ξ,X1).S = 0,
then the manifold is Einstein manifold.

Corollary 8.1. Let M̃2n+1 be a para-Kenmotsu manifold with almost para contact
structure (φ, ξ, η, g). If M̃2n+1 satisfies the curvature condition R̃(ξ,X1).S = 0, then
the manifold is φ-Ricci symmetric.
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9. Parallel 2-form in the Para-Kenmotsu manifolds

Definition 9.1. A tensor α of second order is said to be a second order parallel
tensor if ∇̃α = 0, where ∇̃ denotes the operator of covariant differentiation with
respect to the metric g [26].

Theorem 9.1. On a para-Kenmotsu manifold M , there is no non-zero parallel
2-form.

Proof. We assume α to be a (0, 2) type skew symmetric tensor. By definition, it is

parallel, if ∇̃α = 0. This provides the relation given below

(9.1) α(R̃(X4,X1)X2,X3) + α(X2, R̃(X4,X1)X3) = 0

for all vector fields X1,X2,X3,X4 on M . Putting X4 = X2 = ξ in the equation, we
obtain

α(R̃(ξ,X1)ξ,X3) + α(ξ, R̃(ξ,X1)X3) = 0.

Using the equations 2.6 and 2.7, we obtain

(9.2) α(X1,X3) = η(X1)α(ξ,X3)− η(X3)α(ξ,X1)− g(X1,X3)α(ξ, ξ).

Since, α is (0, 2) skew-symmetric tensor, which implies that α(ξ, ξ) = 0, therefore
equation 9.2 reduces to

(9.3) α(X1,X3) = η(X1)α(ξ,X3)− η(X3)α(ξ,X1).

Now, let A be (1, 1) tensor field, which is metrically equivalent to α i.e. α(X1,X2) =
g(AX1,X2), then the equation 9.3 becomes

g(AX1,X3) = η(X1)g(Aξ,X3)− η(X3)g(Aξ,X1)

which implies that

(9.4) AX1 = η(X1)Aξ − g(Aξ,X1)ξ.

Since, α is parallel, hence A is also parallel and applying ∇̃X1
ξ = φ2X1 = X1 −

η(X1)ξ, it follows

∇̃X1
(Aξ) =

(
∇̃X1

A
)
ξ +A

(
∇̃X1

ξ
)
= A(X1 − η(X1)ξ)

or

∇̃X1(Aξ) = AX1 − η(X1)Aξ.

With the help of the equation 9.4, the above equation reduces to

∇̃X1(Aξ) = −g(Aξ,X1)ξ.
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Taking inner product of the above equation with respect to Aξ, we have

g
(
∇̃X1

(Aξ), Aξ
)
= −g(Aξ,X1)g(Aξ, ξ).

Since g(Aξ, ξ) = α(ξ, ξ) = 0, the above equation reduces to

g
(
∇̃X1

(Aξ), Aξ
)
= 0,

for any tangent vector X1 and consequently ∥Aξ∥ = constant on M .
From the above equation, we have

g
((

∇̃X1A
)
ξ +A

(
∇̃X1ξ

)
, Aξ

)
= 0.

As we know that A is parallel, thus the first term in the above equation vanishes
and we have the following equation

g
(
A
(
∇̃X1

ξ
)
, Aξ

)
= 0.

The above equation implies that

(9.5) α
(
∇̃X1ξ, Aξ

)
= 0.

Since α(X1,X2) = −α(X2,X1), hence equation 9.5 reduces to

−α
(
Aξ, ∇̃X1

ξ
)
= 0.

which further implies

−g
(
A2ξ, ∇̃X1

ξ
)
= 0.

Using relation ∇̃X1
ξ = X1 − η(X1)ξ in the above equation, we get

g
(
X1 − η(X1)ξ, A

2ξ
)
= 0

or
g
(
X1, A

2ξ
)
− η(X1)g

(
ξ, A2ξ

)
= 0

or
g
(
X1, A

2ξ
)
= g

(
ξ, A2ξ

)
g(ξ,X1).

which further on simplification gives

(9.6) A2ξ = −g(Aξ,Aξ)ξ = −∥Aξ∥2ξ.

Differentiating above equation covariantly with respect to X1, we obtain

∇̃X1

(
A2ξ

)
=

(
∇̃X1A

2
)
ξ +A2

(
∇̃X1ξ

)
,
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or
∇̃X1

(
A2ξ

)
= A2X1 − η(X1)A

2ξ.

In the account of equation 9.6, foregoing equation becomes

−∇̃X1

(
∥Aξ∥2ξ

)
= A2X1 + η(X1)∥Aξ∥2ξ,

or
−∥Aξ∥2∇̃X1ξ = A2X1 + η(X1)∥Aξ∥2ξ,

or
−∥Aξ∥2X1 + η(X1)∥Aξ∥2ξ = A2X1 + η(X1)∥Aξ∥2ξ,

or

(9.7) A2X1 = −∥Aξ∥2X1.

If ∥Aξ∥ ≠ 0, then from the above equation, we have

−
(

A

∥Aξ∥

)2

X1 = X1.

Consider F = A
∥Aξ∥ , then we have

F 2X1 = −X1.

Therefore F is an almost complex structure on M , then the fundamental 2-form is
given by

g(FX1,X2) = g

(
AX1

∥Aξ∥
,X2

)
=

1

∥Aξ∥
g(AX1,X2).

With the help of α(X1,X2) = g(AX1,X2), we obtain

α(X1,X2) = g(AX1,X2) = ∥Aξ∥g(FX1,X2).

But,
α(X1,X3) = η(X1)α(ξ,X3)− η(X3)α(ξ,X1)

which shows that α is degenerate which implies that α = 0 for all tangent vectors
X1 on M . Thus,

∥Aξ∥ = 0

which is a contradiction. Hence, this completes the proof of the theorem.
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