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Ser. Math. Inform. Vol. 31, No 2 (2016), 373–382

SOME GENERALIZED TRIPLE SEQUENCE SPACES DEFINED

BY MODULUS FUNCTION

Shyamal Debnath and Bimal Chandra Das

Abstract. In this paper we introduce some newly defined triple sequence spaces by
combining the modulus function and non-negative six dimensional matrix of the form
A = (al,m,n,p,q,r) and we study some of their topological properties. We also obtain
and prove some inclusion relations.

1. Introduction

A triple sequence (real or complex) is a function from N×N×N to R(C), where
N, R and C denote a set of natural numbers, real numbers and complex numbers, re-
spectively. In 2007, Sahiner et. al. [2] introduced the concept of triple sequences and
established their statistical convergence. Subsequently, Dutta et. al. [3] generalized
this concept by using the Orlicz function. Later on, Savas and Esi [5] introduced
statistical convergence of triple sequences on probabilistic normed spaces. Recently,
Debnath et. al. [13], Debnath and Das [14] generalized these concepts by using the
difference operator.

In 1986 Maddox [10] introduced the strongly Cesaro summable with respect to
a modulus function for the class of sequence. It was further investigated by Connor
[11] in 1989 as an extended work for strong A-summability, considering A = (an,k)
is a non-negative regular matrix. Pringsheim gave the definition of the conver-
gence for double sequences in 1900. Since then, this concept has been studied by
many authors and rapid development was made on this subject. In 2011, Savas
and Patterson [6] introduced the definition for double sequence spaces defined by
modulus function and considering the non-negative four- dimensional matrix as
A = (am,n,k,l). In this paper, we have extended this concept for triple sequence
spaces using the non-negative six-dimensional matrix A = (al,m,n,p,q,r) defined by
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modulus function and taking w3, the set of all triple sequence of complex numbers.

Definition 1.1. [2]: A triple sequence (xlmn) is said to be convergent to L, in
Pringsheim’s sense if for every ǫ > 0, there exists N(ǫ) ∈ N such that |xlmn−L| < ǫ
, whenever l ≥ N,m ≥ N,n ≥ N and we write liml,m,n→∞xlmn = L.

Definition 1.2. [2]: A triple sequence (xlmn) is said to be bounded if there exists
M > 0 such that |xlmn| < M for all l,m, n ∈ N .

Note: A triple sequence convergent in Pringsheim’s sense may not be bounded
[15].

Definition 1.3. [10]: A function f : [0,∞) → [0,∞) is called a modulus function

if it satisfies the following four conditions:

1. f(x) = 0 if and only if x = 0,

2. f(x+ y) ≤ f(x) + f(y) for all x ≥ 0 and y ≥ 0,

3. f is increasing,

4. f is increasing,

5. f is continuous from the right at 0.

Definition 1.4. Let A = (al,m,n,p,q,r) denote the six-dimensional summability
method that maps the complex triple sequence x into the triple sequence Ax. Then
the lmnth term to Ax will be (Ax)l,m,n =

∑∞
p=1

∑∞
q=1

∑∞
r=1

al,m,n,p,q,rxp,q,r

Definition 1.5. Let f be a modulus function and A=(al,m,n,p,q,r) be a non nega-
tive six- dimensional matrix of real entries with supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r<
∞
Then

c3
0
(A, f) = {x ∈ w3 : P − liml,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r|) = 0}

c3(A, f) = {x ∈ w3 : P − liml,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r −L|) = 0, for
some L}

l3∞(A, f) = {x ∈ w3 : supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r|) < ∞}

If f(x) = x then the sequence spaces become:

c3
0
(A) = {x ∈ w3 : P − liml,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r | = 0}

c3(A) = {x ∈ w3 : P − liml,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r −L|=0, for some
L}
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l3∞(A) = {x ∈ w3 : supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r | < ∞}

The spaces in Definition 1.5 converted to some well-known sequence spaces by
specifying A and f . For example, if we consider A = (C, 1, 1) the sequence spaces
c3
0
(f), c3(f) and l3∞(f) will be of the following form:

c3
0
(f) = {x ∈ w3 : P − liml,m,n1/lmn

∑l−1,m−1,n−1

p=0,q=0,r=0
f(|xp,q,r |) = 0}

c3(f)= {x ∈ w3 : P − liml,m,n1/lmn
∑l−1,m−1,n−1

p=0,q=0,r=0
f(|xp,q,r − L|)=0, for some

L}

l3∞(f) = {x ∈ w3 : supl,m,n1/lmn
∑l−1,m−1,n−1

p=0,q=0,r=0
f(|xp,q,r |) < ∞}

Now as a final illustration, if we consider A = (C, 1, 1) and f(x) = x, we get the
following spaces

c3
0
= {x ∈ w3 : P − liml,m,n1/lmn

∑l−1,m−1,n−1

p=0,q=0,r=0
|xp,q,r | = 0}

c3 = {x ∈ w3 : P − liml,m,n1/lmn
∑l−1,m−1,n−1

p=0,q=0,r=0
|xp,q,r − L| = 0, for some L}

l3∞ = {x ∈ w3 : supl,m,n1/lmn
∑l−1,m−1,n−1

p=0,q=0,r=0
|xp,q,r | < ∞}.

2. Main Results

In this section, we shall establish the main properties of the sequence spaces in
Definition 1.5

Theorem 2.1. The sequence spaces c3
0
(A, f), c3(A, f) and l3∞(A, f) all are linear

over the complex field C.

Proof. It is obvious.

Theorem 2.2. If A = (al,m,n,p,q,r) is a non-negative six dimensional matrix of

real entries with supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ , and let f be a modulus

function then

1. c3(A, f) ⊂ l3∞(A, f)

2. c3
0
(A, f)⊂ l3∞(A, f)

Proof. Here we shall establish the inclusion (1) only.

Let x ∈ c3(A, f). Now using the conditions (2) and (3) of the modulus function
(Definition 1.3) we get the following:

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r |)
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≤
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,rf(|xp,q,r − L|) + f(|L|)

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r

There exists an integer M1 such that |L| ≤ M1. We obtain

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r |)

≤
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,rf(|xp,q,r − L|) +M1f(1)

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r

As we consider x ∈ c3(A, f) and supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ we are
conclude that

x ∈ l3∞(A, f)

This completes the proof.

Theorem 2.3. If A = (al,m,n,p,q,r) is a non-negative six dimensional matrix of

real entries with supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ , and let f be a modulus

function then the following inclusion holds

1. c3(A) ⊂ c3(A, f)

2. c3
0
(A)⊂ c3

0
(A, f)

3. l3∞(A) ⊂ l3∞(A, f).

Proof. Here the inclusions (1) and (2) can be easily proved. Thus we will only
establish the inclusion (3).

Let x ∈ l3∞(A) such that supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ . Let ǫ > 0 and
choose δ with 0 < δ < 1 such that f(t) < ǫ for 0 ≤ t ≤ δ. Now we consider the
following equality

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r |)

=
∞,∞,∞∑

p=0,q=0,r=0|xp,q,r |≤δ

al,m,n,p,q,rf(|xp,q,r |)+
∞,∞,∞∑

p=0,q=0,r=0|xp,q,r|>δ

al,m,n,p,q,rf(|xp,q,r|)

From the properties of the modulus function we have the following:

∑∞,∞,∞
p=0,q=0,r=0|xp,q,r |≤δ

al,m,n,p,q,rf(|xp,q,r|) ≤ ǫ
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,r (2.1)

For |xp,q,r | > δ and the fact that
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|xp,q,r | < |xp,q,r|/δ < [1 + {|xp,q,r|/δ}]

Where [t] denoted the integer part of t and from the conditions (2) and (3) of
the modulus function we can write

f(|xp,q,r |) < (1 + [|xp,q,r |/δ])f(1) ≤ 2f(1){|xp,q,r|/δ}

Now

∞,∞,∞∑

p=0,q=0,r=0|xp,q,r |>δ

al,m,n,p,q,rf(|xp,q,r |) ≤ 2f(1)/δ
∞,∞,∞∑

p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r|

The last inequality and equation (2.1) gives us the following results

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r|)

≤ ǫ
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,r + 2f(1)/δ

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r|

Since supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ and x ∈ l3∞(A)

we find that x ∈ l3∞(A, f).

This completes the proof.

Theorem 2.4. If A = (al,m,n,p,q,r) is a non-negative six dimensional matrix of

real entries with supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ , and let f be a modulus

function and β = limt→∞f(t)/t > 0 then c3(A) = c3(A, f).

Proof. Let β > 0. By definition of β we have f(t) ≥ βt for all t ≥ 0 and since
β > 0 we have t ≤ {1/β}f(t) for all t ≥ 0.

Now from x ∈ c3(A, f) we can write the following inequality

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r|xp,q,r−L| ≤ {1/β}
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,rf(|xp,q,r−L|)

whence x ∈ c3(A). In our previous theorem we have shown that c3(A) ⊂
c3(A, f).

Hence the proof of the theorem is complete.

Theorem 2.5. If A = (al,m,n,p,q,r) has only positive entries and B = (bl,m,n,p,q,r)
is a non-negative six dimensional matrix such that {bl,m,n,p,q,r/al,m,n,p,q,r} is bounded
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then l3∞(A, f) ⊂ l3∞(B, f).

Proof. The proof is easy, so omitted.

Theorem 2.6. If A = (al,m,n,p,q,r) is a non-negative six dimensional matrix of

real entries with

supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r < ∞ ,

and let f be a modulus function then c3
0
(A, f) and c3(A, f) are complete linear

topological spaces with the paranorm

g(x) = supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r|) ,

Proof. The space c3
0
(A, f) is a complete linear topological space which is clear

from the above statements. Let us consider c3(A, f). From Theorem 2.2 for each
x ∈ c3(A, f), g(x) exists. Clearly g(θ) = 0, g(−x) = g(x) and g(x+y) ≤ g(x)+g(y).
We shall show now that the scalar multiplication is continuous. First, we observe
the following:

g(λx) = supl,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|λxp,q,r |) ≤ (1 + [|λ|])g(x) ,

where [|λ|] denotes the integer part of |λ|. In addition, observe that x and λ → 0
implies g(λx) → 0. For fixed λ, if x approaches 0 then g(λx) approaches 0. We
have to show that for fixed x, λ approaching 0 implies g(λx) approaching 0. Let
x ∈ c3(A, f), so this implies that

P − liml,m,n

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r − L|) = 0 ,

Let ǫ > 0 and choose N such that

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r −L|) < ǫ/4 (2.2)

for l,m, n > N . Also for each (l,m, n) with 1 ≤ l,m, n ≤ N , since

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|xp,q,r − L|) < ∞

There exists an integer Ml,m,n such that

∑
p,q,r>Ml,m,n

al,m,n,p,q,rf(|xp,q,r − L|) < ǫ/4
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Let M = max1≤l,m,n≤N{Ml,m,n}

We have for each (l,m, n) with 1 ≤ l,m, n ≤ N ,

∑
p,q,r>M al,m,n,p,q,rf(|xp,q,r − L|) < ǫ/4

From the equation (2.2) for l,m, n > N we obtain the following

∑
p,q,r>M al,m,n,p,q,rf(|xp,q,r − L|) < ǫ/4

Thus M is an integer which is independent of (l,m, n) such that

∑
p,q,r>M al,m,n,p,q,rf(|xp,q,r−L|) < ǫ/4 (2.3)

Further for |λ| < 1 and for all (l,m, n)

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|λxp,q,r |)

=
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,rf(|λxp,q,r − λL + λL|)

≤
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,rf(|λxp,q,r−λL|)+

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|λL|) (2.4)

≤
∑

p,q,r>M al,m,n,p,q,rf(|λxp,q,r − λL|) +
∑

p,q,r≤M al,m,n,p,q,rf(|λxp,q,r − λL|)

+
∑

p,q≥M,r<M al,m,n,p,q,rf(|λxp,q,r−λL|)+
∑

p,q<M,r≥M al,m,n,p,q,rf(|λxp,q,r−
λL|)

+
∑

p,r≥M,q<M al,m,n,p,q,rf(|λxp,q,r−λL|)+
∑

p,r<M,q≥M al,m,n,p,q,rf(|λxp,q,r−
λL|)

+
∑

q,r≥M,p<M al,m,n,p,q,rf(|λxp,q,r−λL|)+
∑

q,r<M,p≥M al,m,n,p,q,rf(|λxp,q,r−
λL|)

+f(|λL|)
∑∞,∞,∞

p=0,q=0,r=0
al,m,n,p,q,r

For each (l,m, n) and by the continuity of modulus functions as λ → ∞ implies

∑
p,q,r≤M al,m,n,p,q,rf(|λxp,q,r − λL|) + f(|λL|)

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,r → 0

Using Pringshiem sense. We choose δ < 1 such that |λ| < δ implies
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∑

p,q,r≤M

al,m,n,p,q,rf(|λxp,q,r − λL|) + f(|λL|)
∞,∞,∞∑

p=0,q=0,r=0

al,m,n,p,q,r < ǫ/4 (2.5)

In a similar way, we can conclude that

∑
p,q≥M,r<M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.6)

∑
p,q<M,r≥M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.7)

∑
p,r≥M,q<M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.8)

∑
p,r<M,q≥M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.9)

∑
q,r≥M,p<M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.10)

∑
q,r<M,p≥M al,m,n,p,q,rf(|λxp,q,r−λL|) < ǫ/4 (2.11)

It follows from (2.3) through (2.11) that

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|λxp,q,r |) < ǫ for all (l,m, n)

Thus g(λx) approaches 0 as λ approaches 0. Therefore c3
0
(A, f) is a paranormed

linear topological space. Now we have to show that c3
0
(A, f) is complete with re-

spect to its paranorm topologies. Let (xs
p,q,r) be a Cauchy sequence in c3

0
(A, f).

Then we can write g(xs − xt) → 0 as s, t → ∞ for all (l,m, n)

∑∞,∞,∞
p=0,q=0,r=0

al,m,n,p,q,rf(|x
s
p,q,r−xt

p,q,r|) → 0 (2.12)

Since A = (al,m,n,p,q,r) is non-negative, we conclude that f(|x
s
p,q,r − xt

p,q,r|) → 0
as s, t → ∞, for each fixed p, q, r and by continuity of modulus function, (xs

p,q,r) is a
Cauchy sequence in C for each fixed p, q, r. Since C is complete as s → ∞ we have
xs
p,q,r → xp,q,r for each (p, q, r). Now from (2.12) we get for for each fixed ǫ > 0,

there exists a natural number N such that

∑∞,∞,∞
p,q,r=0,s,t>N al,m,n,p,q,rf(|x

s
p,q,r−xt

p,q,r|) < ǫ (2.13)

For all (l,m, n), Since for any fixed natural number M we have from (2.13)

∑∞,∞,∞
p,q,r≤M,s,t>N al,m,n,p,q,rf(|x

s
p,q,r − xt

p,q,r |) < ǫ
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From the above inequality and supposing t → ∞, for all (l,m, n), we obtain

∑∞,∞,∞
p,q,r≤M,s>N al,m,n,p,q,rf(|x

s
p,q,r − xp,q,r|) < ǫ

Since M is arbitrary, letting M → ∞, we get (xs) being a sequence in

∑∞,∞,∞
p=o,q=0,r=0

al,m,n,p,q,rf(|x
s
p,q,r − xp,q,r|) < ǫ

for all (l,m, n). Thus g(xs − x) → 0 as s → ∞. Also for c3(A, f), we have by
definition of c3(A, f) for each s that there exists Ls with

∑∞,∞,∞
p=o,q=0,r=0

al,m,n,p,q,rf(|x
s
p,q,r − Ls|) → 0

As (l,m, n) → ∞ and supl,m,n

∑∞,∞,∞
p=o,q=0,r=0

al,m,n,p,q,r < ∞ from the condition

(2) of modulus function, we have f(|Ls − Lt|) → 0 as s, t → ∞ and thus Ls con-
verges to L. Hence

∑∞,∞,∞
p=o,q=0,r=0

al,m,n,p,q,rf(|xp,q,r − L|) → 0

As (l,m, n) → ∞ , thus x ∈ c3(A, f) and this completes the proof.
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