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Abstract. In the current paper, we have studied almost Schouten solitons and gradient
Schouten solitons on an N(κ)-contact metric manifold of dimension (2n+ 1). Besides,
we have shown that the almost Schouten soliton does not exist on N(κ)-contact metric
manifold for κ < 1. In addidtion, it has been proved that the manifold complying with
the gradient Schouten solitons is locally isometric to a Lie group. Moreover, we have
determined that a 3-dimensional N(κ)-contact metric manifold admitting a gradient
Schouten soliton is either flat or of constant scalar curvature. Finally, an example has
been constructed to verify the outcomes.
Keywords: Schouten solitons, metric manifolds, Ricci solitons.

1. Introduction

Ricci solitons are self-similar solutions of the Ricci flow and often appear as
singular versions of the solutions. A Schouten soliton is a generalized Ricci soliton
which is defined by

LV g + 2St + 2bg = 0,(1.1)

where St is the Schouten tensor given by,

St =
1

(n− 2)

[
S − r

2(n− 1)
g
]
,(1.2)
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b ∈ R, L denotes Lie-derivative, S indicates the Ricci tensor, r denotes the scalar
curvature and V denotes the potential vector field. The Einsein soliton is a familier
example of Schouten soliton. Borges [5] constructed an example of a Schouten
soliton on a Reimannian manifold. If b is a smooth function on the manifold,
instead of a real number, then the notion of Schouten soliton is generalized to the
notion of almost Schouten soliton.

By the concept of Catino and Mazzieri [6] generally a Riemannian manifold
(Mn, g) is called a gradient Schouten soliton if for f ∈ C∞(M) , a potential function
and b ∈ R

St +∇2f =
[ r

2(n− 1)
+ b

]
g,(1.3)

holds, where ∇2f is the Hessian of f and r is the scalar curvature.

According to Catino and Mazzieri[6] a Riemannian manifold is a gradient ρ-
Einstein solitons for ρ ∈ R− {0} if

S +∇2f = (ρr + b)g,(1.4)

where S is the Ricci tensor and f ∈ C∞(M).
As a consequence Schouten soliton is a ρ-Einstein soliton for ρ= 1

2(n−1) .

Catino and Mazzieri [6] also studied compact gradient Schouten solitons. Ac-
cording to them every compact gradient soliton is trivial. Moreover, they showed
that a complete gradient steady Schouten soliton is trivial and Ricci flat. Pina and
Menezes [11] analyzed the complete gradient Schouten solitons. They demonstrated
that if a gradient Schouten soliton is both complete and conformal to a Euclidean
metric and rotationally symmetric, then it is isomorphic to R×Sn−1. Borges [5] also
proved that a complete gradient Schouten soliton becomes a gradient Ricci soliton
if the scalar curvature r vanishes.

In a Riemannian manifold M of dimension (2n+ 1) the κ-nulity distribution is
defined as

N(κ) : p → Np(κ) = [X ∈ Tp(M) : R(Y,Z)X

= κ{ g(Y,X)Z − g(Z,X)Y } ],(1.5)

for all Y,Z ∈ Tp(M), κ is a real number and Tp(M) is the Lie algebra of all vector
fields at p.

Let ζ be a characteristic vector field belong to the κ -nulity distribution. There-
fore

R(Y,Z)ζ = κ[η(Z)Y − η(Y )Z].(1.6)

A contact metric manifold satisfying the above is known as N(κ)-contact metric
manifold of dimension (2n + 1). When κ = 1, the manifold becomes a Sasakian
manifold. N(κ)-contact metric manifolds have been studied by various authors such
as Blair, Koufogiorgos and Papantoniou [2], Blair [1], Kar, Majhi and De [9], Mandal
[10], and De, Yildiz and Ghosh [7].
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In this paper we are encouraged to study some theorems and properties of almost
Schouten solitons and gradient Schouten solitons on N(κ)-contact metric manifolds.

We have organized the paper as follows: After the introduction the preliminaries
are given in Section-2. After that in Section-3 we have showed that there is no almost
Schouten soliton in N(κ)-contact metric manifold with κ < 1. When the soliton
vector field is pointwise collinear with the potential vector field, the almost Schouten
soliton becomes Schouten soliton and also an N(κ)-contact metric manifold does not
admit a gradient Schouten soliton. In Section-4 we have studied the 3-dimensional
N(κ)-contact metric manifold with gradient Schouten solitons. Finally in Section-5
an example has been given to examine the outcomes.

2. Preliminaries

Let us assume M as a (2n+ 1) dimensional smooth manifold equipped with an
almost contact metric structure (Φ, ζ, η), where Φ, ζ, η are a (1, 1) tensor field, a
vector field and a 1-form on M respectively, satisfying

Φ2(Y ) = −Y + η(Y )ζ, η(ζ) = 1, Φζ = 0.(2.1)

Introducing a Riemannian metric g inM2n+1 we get the consequences as follows:

g(Y, ζ) = η(Y ), η(ΦY ) = 0,(2.2)

g(ΦY,ΦZ) = g(Y,Z)− η(Y )η(Z),(2.3)

g(ΦY,Z) = −g(Y,ΦZ),(2.4)

(∇Y η)(Z) = g(∇Y ζ, Z),(2.5)

for every vector fields Y,Z ∈ χ(M). The manifold M2n+1 equiped with the al-
most contact metric structure is known as an almost contact metric manifold when
it is differentiable and is called contact metric manifold when the contact metric
structure (Φ, ζ, η, g) satisfies

g(Y,ΦZ) = dη(Y,Z),(2.6)

for every Y , Z ∈ χ(M). In the contact metric manifold M2n+1 we assume a
symmetric (1, 1)-tensor field h which is defined by

h =
1

2
LζΦ,(2.7)

where L is the Lie differentiation operator in the direction of ζ, with the following
relations

hζ = 0, tr(h) = 0, tr(hΦ) = 0, hΦ = −Φh,(2.8)

∇Y ζ = −ΦY − ΦhY, h2 = (κ− 1)Φ2.(2.9)
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In an N(κ)-contact metric manifold M2n+1 for any vector fields Y, Z ∈ χ(M),
we have the consequences as follows

(∇Y η)(Z) = g(Y + hY,ΦZ),(2.10)

(∇Y h)(Z) = [(1− κ)g(Y,ΦZ) + g(Y, hΦZ)]ζ

+ η(Z)[h(ΦY +ΦhY )],(2.11)

(∇Y Φ)(Z) = g(Y + hY, Z)ζ − η(Z)(Y + hY ).(2.12)

Let us assume R and S as the Riemannian curvature and Ricci tensor and if r is
the scalar curvature of the N(κ)-contact metric manifold M of dimension (2n+ 1)
respectively, then for every vector fields Y, Z ∈ χ(M) the following conditions are
hold:

R(Y,Z)ζ = κ[η(Z)Y − η(Y )Z],(2.13)

R(ζ, Y )Z = κ[g(Y, Z)ζ − η(Z)Y ],(2.14)

S(Y,Z) = 2(n− 1)[g(Y,Z) + g(hY, Z)]

+ [2nκ− 2(n− 1)]η(Y )η(Z),(2.15)

S(Y, ζ) = 2nκη(Y ),(2.16)

r = 2n(2n− 2 + κ),(2.17)

3. Schouten solitons and gradient Schouten solitons

Theorem 3.1. There is no almost Schouten soliton on an N(κ)-contact metric
manifold with κ < 1.

Proof. From the equations (1.1) and (1.2), we have

(LV g)(Y,Z) +
2

2n− 1
S(Y,Z) +

[
2b− r

2n(2n− 1)

]
g(Y,Z) = 0,(3.1)

which implies

g(∇Y V,Z) + g(∇ZV, Y ) +
2

2n− 1
S(Y, Z)

+
[
2b− r

2n(2n− 1)

]
g(Y,Z) = 0.(3.2)

If we put V= ζ, then the above equation becomes

−2g(ΦhY, Z) +
2

2n− 1
S(Y,Z) +

[
2b− r

2n(2n− 1)

]
g(Y,Z) = 0.(3.3)



Almost Schouten Solitons on N(κ)-Contact Metric Manifolds 143

Setting ζ in the place of Y , Z in (3.3), we get

r = 8n2κ+ 4bn(2n− 1).(3.4)

Contracting Y and Z in (3.2) and using (2.17), we infer

divV +
2n+ κ− 2

2n− 1
+ (2n+ 1)b =

(2n+ 1)r

4n(2n− 1)
.(3.5)

Using (3.4) in the above equation, we obtain

divV − 2(n− 1) + κ− 2nκ(2n+ 1)

2n− 1
= 0.(3.6)

Integrating (3.6) and using divergence theorem, we conclude∫
M

2(n− 1) + κ− 2nκ(2n+ 1)

2n− 1
dM = 0,(3.7)

where dM stands for M ’s volume. Since κ < 1 then the equation(3.7) does not
hold. Hence the proof.

Theorem 3.2. If an N(κ)-contact metric manifold admits an almost Schouten
soliton whose soliton vector field is pointwise colinear with ζ, then it becomes a
Schouten soliton and the soliton is shrinking whenever n > 1.

Proof. If we set V = fζ, f is a smooth function, then the equation (3.2) implies

(Y f)η(Z) + (Zf)η(Y ) − 2fg(ΦhY,Z) +
2

2n− 1
S(Y, Z)

+
[
2b− r

2n(2n− 1)

]
g(Y, Z) = 0.(3.8)

Putting Y = ΦY and Z = ΦZ in the above expression and using (2.9) and (2.15),
we get

−2fg(hΦY, Z) −
[
2b+

8n(n− 1)− r

2n(2n− 1)

](
η(Y )η(Z)− g(Y, Z)

)
− 4(n− 1)

2n− 1
g(hY,Z) = 0.(3.9)

Contracting equation (3.9) and with help of (2.8) and (2.17), we infer

b =
κ

2(2n− 1)
− 2n− 2

2n− 1
,(3.10)

which shows that b is constant. Also as κ < 1, the value of b is negative only when
n > 1 which implies that the soliton is shrinking whenever n > 1.
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Theorem 3.3. An N(κ)-contact metric manifold with a gradient Schouten soliton
is either locally isomorphic to a Lie group Gq equipped with the almost contact metric
structure, where q =

√
−κ or, the manifold does not admit a gradient Schouten

soliton.

Proof. From the equation (1.3), we have

QY + (2n− 1)∇Y Df =
[r
2
+ (2n− 1)b

]
Y.(3.11)

Differentiating (3.11) with respect to Z, we get

∇Z(QY ) + (2n− 1)∇Z∇Y Df

= (2n− 1)(Zb)Y +
[
r
2 + (2n− 1)b

]
∇ZY.(3.12)

Interchanging Y and Z, we have

∇Y (QZ) + (2n− 1)∇Y ∇ZDf

= (2n− 1)(Y b)Z +
[
r
2 + (2n− 1)

]
∇Y Z.(3.13)

Again from (3.11), we infer

Q[Y,Z] + (2n− 1)∇[Y,Z]Df =
[r
2
+ (2n− 1)b

]
[Y, Z].(3.14)

Using the above three equations, we find

R(Y,Z)Df =
1

2n− 1

[
(∇ZQ)Y − (∇Y Q)Z +

1

2
{ (Y r)Z − (Zr)Y }

]
.(3.15)

From (2.15), we have

QY = 2(n− 1)(Y + hY ) + [2nκ− 2(n− 1)]η(Y )ζ.(3.16)

Differentiating (3.16) with respect to Z, one obtains

(∇ZQ)Y = −[2nκ− 2(n− 1)]
(
g(Y,ΦZ)ζ + g(Y,ΦhZ)ζ

+ η(Y )(ϕZ +ΦhZ)
)
.(3.17)

Putting the above values in (3.15) and using (2.17), we infer

R(Y,Z)Df =
1

2n− 1

[
4κg(ΦY, Z)ζ + 2nκ(η(Z)ΦhY − η(Y )ΦhZ)

− 2κ(η(Z)ΦY − η(Y )ΦZ)
]
.(3.18)

After contracting Y above euqation implies

S(Z,Df) = 0.(3.19)
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Substituting Df instead of Y in (2.15) and using the above equation, we infer

2(n− 1)[g(Z,Df) + g(Z, hDf)] + {2nκ− 2(n− 1)}η(Df)η(Z) = 0.(3.20)

Replacing Z by ζ in the foregoing equation, we get

2nκ(ζf) = 0.(3.21)

Therefore, either κ = 0 or ζf = 0. When ζf = 0, (3.20) implies

g(Z,Df) = 0,(3.22)

which infers (Zf) = 0 for any Z ∈ χ(M), that is f is a constant.

Theorem 3.4. If an N(κ)-contact metric manifold admits an almost Schouten
soliton whose soliton vector field is pointwise colinear with ζ, then the scalar cur-
vature r = −4n(2n+ 1)b.

Proof. We set V = fζ in (3.2), we have

(Y f)η(Z) + (Zf)η(Y )− 2fg(ΦhY,Z) +
2

2n− 1
S(Y, Z)

+
[
2b− r

2n(2n− 1)

]
g(Y,Z) = 0.(3.23)

Replacing Z, Y by ΦZ, ζ respectively in (3.23), we get

g(Df,ΦZ) = 0.(3.24)

Putting ΦZ instead of Z in the foregoing equation, we obtain

Df = (ζf)ζ.(3.25)

Differentiating V = fζ and using (2.9), we have

g(∇Y V,Z) = η(Y )η(Z)(ζf)− f [g(ΦY,Z) + g(ΦhY,Z)].(3.26)

Contracting the above equation, we infer

divV = (ζf).(3.27)

Integrating (3.27), we have ∫
M

(ζf)dM =

∫
divV = 0,(3.28)

where dM indicates M ’s volume. Hence we have

(ζf) = 0.(3.29)
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Thus the previous equation (3.25) implies Df = 0 which concludes that f is a
constant. Now (3.23) gives

−2fg(ΦhY, Z) +
2

2n− 1
S(Y,Z) +

[
2b− r

2n(2n− 1)

]
g(Y,Z) = 0.(3.30)

After contraction, one infers

r = −4n(2n+ 1)b.(3.31)

Hence the proof.

4. Gradient Schouten Solitons in three-Dimensional N(κ)-Contact
Metric Manifolds

A contact metric manifold for which ζ is Killing, is called K-contact manifold
from the concept of Blair, Koufogiorgos and Sharma[3]. A 3-dimensional contact
metric manifold is a sasakian manifold if

R(Y, Z)ζ = η(Z)Y − η(Y )Z.(4.1)

It can be easily stated that a 3-dimensional contact metric manifold is Sasakian if
and only if h = 0 where h is the (1, 1)-type tensor according to Blair and Sharma[4].
Several authors have studied about 3-dimensional N(κ)-contact metric Manifolds
such as [3, 8, 9, 12, 13].

In a 3-dimensional Riemannian manifold the curvature tensor R is given by

R(Y,Z)W = S(Z,W )Y − S(Y,W )Z + g(Z,W )QY − g(Y,W )QZ

− r

2
[g(Z,W )Y − g(Y,W )Z],(4.2)

for any vector fields Y , Z, W ∈ χ(M). Then it is proven by the authors that in a
3-dimensional N(κ)-contact metric manifold M2n+1 the following relations hold:

QY =
(r
2
− κ

)
Y +

(
3κ− r

2

)
η(Y )ζ,(4.3)

R(Y,Z)W =
(r
2
− 2κ

)[
g(Z,W )Y − g(Y,W )Z

]
+

(
3κ− r

2

)[
g(Z,W )η(Y )ζ − g(Y,W )η(Z)ζ

+ η(Z)η(W )Y − η(Y )η(W )Z
]
,(4.4)

where Q is the Ricci operator.

Theorem 4.1. A 3-dimensional N(κ)-contact metric manifold admitting a gradi-
ent Schouten soliton is either flat or the scalar curvature is constant.
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Proof. From (1.3), we have

QY + (2n− 1)∇Y Df =
[r
2
− (2n− 1)b

]
Y,(4.5)

which implies the following

R(Y, Z)Df = (∇ZQ)Y − (∇Y Q)Z +
1

2

[
(Y r)Z − (Zr)Y

]
.(4.6)

As the scalar curvature r is constant, from (2.17) and (4.6), we conclude

R(Y, Z)Df = (∇ZQ)Y − (∇Y Q)Z.(4.7)

For 3-dimensional N(κ)-contact metric manifold,

QY =
(r
2
− κ

)
Y +

(
3κ− r

2

)
η(Y )ζ.(4.8)

Differentiating the above equation, we infer

(∇ZQ)Y = −
(
3κ− r

2

)[
g(Y,ΦZ)ζ + g(Y,ΦhZ)ζ + η(Y )ΦZ + η(Y )ΦhZ

]
+

(Y r)

2

[
Y − η(Y ζ)

]
.(4.9)

After using this valuein (4.7), we see

(2n− 1)R(Y, Z)Df =
(
3κ− r

2

)[
2g(Z,ΦY )ζ + η(Y )∇Zζ − η(Z)∇Y ζ

]
+

1

2

[
η(Z)(Y r)− η(Y )(Zr)

]
.(4.10)

Taking inner product and using (2.13), we infer

−κ
[
η(Z)(Y f) −η(Y )(Zf)

]
=

(
r − 6κ

)
g(ΦZ, Y )

+ 1
2

[
η(Z)(Y r)− η(Y )(Zr)

]
.(4.11)

Replacing Y , Z by ΦY , ΦZ, respectively, in (4.11), we get

r = 6κ,(4.12)

which shows r is constant. Putting this value of r in (4.11), we have

κ
[
η(Y )(Zf)− η(Z)(Y f)

]
= 0,(4.13)

which implies either κ = 0 or (Zf) = (ζf)η(Z).

If κ ̸= 0, then we have
df = (ζf)η.(4.14)
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Considering exterior derivative of the forgoing equation and then taking wedge
product with η, one obtains (ζf) = 0. Applying this data in the last equation, we
see that (Zf) = 0, that is f is a constant.

If κ = 0, then we infer,
R(Y, Z)ζ = 0.(4.15)

Therefore, the manifold is flat.

Hence the proof.

5. Example

Let us assume the 3-dimensional manifold M = {x, y, z ∈ R3 : z ̸= 0} where
(x, y, z) being the standard co-ordinates in R3, whose basis vector fields are choosen
such that they satisfy the following:

[ϵ1, ϵ2] = 3ϵ3, [ϵ1, ϵ3] = ϵ2, [ϵ2, ϵ3] = 2ϵ1.

Let the metric tensor g be defined by

g(ϵ1, ϵ1) = g(ϵ2, ϵ2) = g(ϵ3, ϵ3) = 1,

g(ϵ1, ϵ2) = g(ϵ2, ϵ3) = g(ϵ3, ϵ1) = 0.

The 1-form η and the (1, 1) tensor field ϕ are, respectively, defined by η(X) =
g(X, ϵ1) for every vector field X on the manifold and

ϕϵ1 = 0, ϕϵ2 = ϵ3, ϕϵ3 = −ϵ2.

Then we find that
η(ϵ1) = 1, ϕ2X = −X + η(X)ϵ1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for every vector fields X, Y on the manifold. Thus (ϕ, ϵ1, η, g) defines an almost
contact structure.

By Koszul’s formula, one can find

∇ϵ1ϵ1 = 0, ∇ϵ2ϵ2 = 0, ∇ϵ3ϵ3 = 0,

∇ϵ1ϵ2 = 0, ∇ϵ2ϵ1 = −3ϵ3, ∇ϵ1ϵ3 = 0,

∇ϵ2ϵ3 = 3ϵ1, ∇ϵ3ϵ1 = −ϵ2, ∇ϵ3ϵ2 = ϵ1.

From the above expressions, we see that hϵ1 = 0, hϵ2 = 2ϵ2 and hϵ3 = −2ϵ3.

The components of the curvature tensor are given by

R(ϵ1, ϵ2)ϵ2 = −3ϵ1, R(ϵ2, ϵ1)ϵ1 = −3ϵ2, R(ϵ1, ϵ3)ϵ3 = −3ϵ1,

R(ϵ2, ϵ3)ϵ3 = 3ϵ2, R(ϵ3, ϵ1)ϵ1 = −3ϵ3, R(ϵ3, ϵ2)ϵ2 = 3ϵ3,
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R(ϵ1, ϵ2)ϵ3 = 0, R(ϵ2, ϵ3)ϵ1 = 0, R(ϵ1, ϵ3)ϵ2 = 0.

Thus the given manifold is an N(κ)-contact metric manifold with κ = −3 . The
non-zero components of the Ricci tensor are

S(ϵ1, ϵ1) = −6, S(ϵ2, ϵ2) = 0, S(ϵ3, ϵ3) = 0.

Let r be the scalar curvature, then from the above

r = S(ϵ1, ϵ1) + S(ϵ2, ϵ2) + S(ϵ3, ϵ3) = −6.

Suppose that f = 2x and b = 3, then equation (4.5) satisfied. Therefore the N(−3)-
contact metric manidold defines a gradient Schouten soliton and hence Theorem 3.3
is satisfied.
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