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COEFFICIENT ESTIMATE OF BI-BAZILEVIC̆ FUNCTIONS OF SAKAGUCHI
TYPE BASED ON SRIVASTAVA-ATTIYA OPERATOR

C. Selvaraj1,O. S. Babu2, and G. Murugusundaramoorthy3

Abstract. In this paper, we introduce and investigate a new subclass of the function class
Σ of bi-univalent functions defined in the open unit disk, which are associated with
the Hurwitz-Lerch zeta function, satisfying subordinate conditions. Furthermore, we
find estimates on the Taylor-Maclaurin coefficients |a2| and |a3| for functions in this new
subclass. Several (known or new) consequences of the results are also pointed out.

1. Introduction, Definitions and Preliminaries

LetA denote the class of functions of the form:

(1.1) f (z) = z +
∞∑

n=2

anzn,

which are analytic in the open unit disk

� = {z : z ∈ C and |z| < 1}.
Further, by Swe shall denote the class of all functions inAwhich are univalent in
�. Some of the important and well-investigated subclasses of the univalent function
class S include (for example) the class S∗(α) of starlike functions of order α in �
and the class K (α) of convex functions of order α in �.

The convolution or Hadamard product of two functions f , h ∈ A is denoted by
f ∗ h and is defined as

(1.2) ( f ∗ h)(z) = z +
∞∑

n=2

anbnzn,

where f (z) is given by (1.1) and h(z) = z +
∞∑

n=2
bnzn.
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We recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) defined by (see [27])

(1.3) Φ(z, s, a) :=
∞∑

k=0

zk

(k + a)s (a ∈ C \ {0,−1,−2, . . .}; s ∈ C,R(s) > 1 and |z| < 1).

Several interesting properties and characteristics of the Hurwitz-Lerch zeta func-
tion Φ(z, s, a) can be found in the recent investigations by Choi and Srivastava
[6],Mustafa et al[17], Lin and Srivastava [14], Lin et al [15] and references stated
therein .

For the class A, Srivastava and Attiya [26] (see also Raducanu and Srivastava
[21] and Prajapat and Goyal [20]) introduced and investigated the following linear
operator:

J b
μ : A −→ A

defined in terms of the Hadamard product (or convolution) by

(1.4) J b
μ f (z) = (Gb

μ ∗ f )(z) (z ∈ �; b ∈ C \ {0,−1,−2, . . .}; μ ∈ C; f ∈ A),

where, for convenience.

(1.5) Gb
μ(z) = (1 + b)μ[Φ(z, μ, b) − b−μ].

It is easy to observe from (given earlier by [20], [21]) (1.1), (1.4) and (1.5) that

(1.6) J b
μ f (z) = z +

∞∑
k=2

Θkakzk,

where

(1.7) Θk =

∣∣∣∣∣∣
(
1 + b
k + b

)μ∣∣∣∣∣∣
and (throughout this paper unless otherwise mentioned ) the parameters μ, b are
considered as μ ∈ C and b ∈ C \ {0,−1,−2, . . .}.

We note that

• For μ = 1 and b = ν (ν > −1), generalized Libera-Bernardi integral operator
[22]

Jν1 f (z) =
1 + ν

zν

z∫
0

tν−1 f (t)dt

= z +
∞∑

k=2

(
ν + 1
k + ν

)
akzk = Lν f (z).
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• For μ = σ (σ > 0) and b = 1, Jung-Kim-Srivastava integral operator [11]

J1
σ f (z) =

2σ

zΓ(σ)

z∫
0

(
log

(z
t

))σ−1
f (t)dt

= z +
∞∑

k=2

( z
k + 1

)σ
akzk = Iσ f (z)

closely related to some multiplier transformations studied by Flett [8].
It is well known that every function f ∈ S has an inverse f−1, defined by

f−1( f (z)) = z (z ∈ �)

and
f ( f−1(w)) = w

(
|w| < r0( f ); r0( f ) �

1
4

)
,

where

(1.8) �(w) = f −1(w) = w − a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + · · · .

A function f ∈ A is said to be bi-univalent in � if both f (z) and f−1(z) are
univalent in �. Let Σ denote the class of bi-univalent functions in � given by (1.1).

An analytic function f is subordinate to an analytic function �, written f (z) ≺
�(z), provided there is an analytic function w defined on � with w(0) = 0 and
|w(z)| < 1 satisfying f (z) = �(w(z)).Ma and Minda [16] unified various subclasses
of starlike and convex functions for which either of the quantity z f ′(z)

f (z) or 1 + z f ′′(z)
f ′(z)

is subordinate to a more general superordinate function. For this purpose, they
considered an analytic function φ with positive real part in the unit disk �, φ(0) =
1, φ′(0) > 0, and φ maps � onto a region starlike with respect to 1 and symmetric
with respect to the real axis. The class of Ma-Minda starlike functions consists
of functions f ∈ A satisfying the subordination z f ′(z)

f (z) ≺ φ(z). Similarly, the class
of Ma-Minda convex functions of functions f ∈ A satisfying the subordination
1 + z f ′′(z)

f ′(z) ≺ φ(z).

A function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type
if both f and f−1 are respectively Ma-Minda starlike or convex. These classes are
denoted respectively by S∗Σ(φ) and KΣ(φ). In the sequel, it is assumed that φ is an
analytic function with positive real part in the unit disk �, satisfying

φ(0) = 1 and φ′(0) > 0,

and φ(�) is symmetric with respect to the real axis. Such a function has a series
expansion of the form

(1.9) φ(z) = 1 + B1z + B2z2 + B3z3 + · · · , (B1 > 0).
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Recently there has been triggering interest to study bi-univalent function class
Σ and obtained non-sharp coefficient estimates on the first two coefficients |a2| and
|a3| of (1.1). But the coefficient problem for each of the following Taylor-Maclaurin
coefficients:

|an| (n ∈N \ {1, 2, 3}; N := {1, 2, 3, · · · }
is still an open problem (see [3, 4, 5, 12, 18, 29]). Many researchers (see [2, 9, 13, 28,
30, 31]) have recently introduced and investigated several interesting subclasses of
the bi-univalent function class Σ and they have found non-sharp estimates on the
first two Taylor-Maclaurin coefficients |a2| and |a3|.

Several authors have discussed various subfamilies of Bazilevic̆ functions of
type λ from various perspective. They discussed it from the perspective of con-
vexity, inclusion theorem, radii of starlikeness and convexity boundary rotational
problem, subordination just to mention few. The most amazing thing is that, it is
difficult to see any of these authors discussing the coefficient inequalities, and coef-
ficient bounds of these subfamilies of Bazilevic̆ function most especially when the
parameter λ is greater than 1 (λ ∈ R ). Motivated by the earlier work of Sakaguchi
[23] on the class of starlike functions with respect to symmetric points denoted by
Ss consisting of functions f ∈ A satisfy the condition Re

(
z f ′(z)

f (z)− f (−z)

)
> 0, (z ∈ U)and

using the techniques of Deniz [7] in the present paper, we introduce new families
of Sakaguchi-type Bazilevic̆ functions of complex order [10] of the function class
Σ, involving Hurwitz-Lerch zeta function, and find estimates on the coefficients
|a2| and |a3| for functions in the new subclasses of function class Σ. Several related
classes are also considered, and connection to earlier known results are made.

Definition 1.1. A function f ∈ Σ given by (1.1) is said to be in the classSμ,b
Σ,t(γ, λ, φ)

if the following conditions are satisfied:

(1.10) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) −J b

μ f (tz)]1−λ − 1

⎞⎟⎟⎟⎟⎠ ≺ φ(z)

and

(1.11) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ − 1

⎞⎟⎟⎟⎟⎠ ≺ φ(w),

where |t| ≤ 1 (t � 1), γ ∈ C \ {0};λ ≥ 0; z,w ∈ � and the function � is given by (1.8).

For the sake of brevity throughout this paper we let

|t| ≤ 1, (t � 1)

and
γ ∈ C \ {0};λ ≥ 0; z,w ∈ �

unless otherwise stated.
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Example 1.1. If we set φ(z) = 1+Az
1+Bz , (−1 ≤ B < A ≤ 1), then the class Sμ,bΣ,t (γ, λ, φ) ≡

Sμ,bΣ,t(γ, λ,A,B) which is defined as f ∈ Σ,

1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) − J b

μ f (tz)]1−λ − 1

⎞⎟⎟⎟⎟⎠ ≺ 1 +Az
1 + Bz

and

1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ − 1

⎞⎟⎟⎟⎟⎠ ≺ 1 + Aw
1 + Bw

.

Example 1.2. If we set φ(z) = 1+(1−2α)z
1−z ,( 0 ≤ α < 1) then the class Sμ,b

Σ,t(γ, λ, φ) ≡ Sμ,b
Σ,t (γ, λ, α)

which is defined as f ∈ Σ,

Re

⎡⎢⎢⎢⎢⎣1 + 1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) − J b

μ f (tz)]1−λ − 1

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ > α

and

Re

⎡⎢⎢⎢⎢⎣1 + 1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ − 1

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ > α.

On specializing the parameters λ one can state the various new subclasses of Σ
as illustrated in the following examples.

Example 1.3. For λ = 0 and a function f ∈ Σ, given by (1.1), is said to be in the class
Sμ,bΣ,t(γ, φ) if the following conditions are satisfied:

(1.12) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z](J b
μ f (z))′

J b
μ f (z) −J b

μ f (tz)

⎞⎟⎟⎟⎟⎠ ≺ φ(z)

and

(1.13) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w](J b
μ�(w))′

J b
μ�(w) − J b

μ�(tw)

⎞⎟⎟⎟⎟⎠ ≺ φ(w)

where γ ∈ C \ {0}; z,w ∈ � and the function � is given by(1.8).

Example 1.4. For λ = 1 and a function f ∈ Σ, given by (1.1) is said to be in the class
Hμ,bΣ (γ, φ) if the following conditions are satisfied:

(1.14) 1 +
1
γ

(
J b
μ f (z))′ − 1

)
≺ φ(z)

and

(1.15) 1 +
1
γ

(
(J b
μ�(w))′ − 1

)
≺ φ(w),

where γ ∈ C \ {0}; z,w ∈ � and the function � is given by (1.8).
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It is of interest to note that forγ = 1 the classSμ,b
Σ,t(γ, λ, φ) reduces to the following

new subclass Bμ,b
Σ,t(λ, φ).

Definition 1.2. A function f ∈ Σ given by (1.1) is said to be in the class Bμ,b
Σ,t(λ, φ)

if the following conditions are satisfied:

(1.16)

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) −J b

μ f (tz)]1−λ

⎞⎟⎟⎟⎟⎠ ≺ φ(z)

and

(1.17)

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ

⎞⎟⎟⎟⎟⎠ ≺ φ(w),

where λ ≥ 0; z,w ∈ � and the function � is given by (1.8).

For γ = 1 and particular values of λ, we have the following subclasses as
illustrated below.

Example 1.5. For λ = 0 and a function f ∈ Σ, given by (1.1) is said to be in the class
Bμ,bΣ,t (0, φ) ≡ S∗,μ,bΣ,t (φ) if the following conditions are satisfied:

(1.18)

⎛⎜⎜⎜⎜⎝ [(1 − t)z](J b
μ f (z))′

J b
μ f (z) −J b

μ f (tz)

⎞⎟⎟⎟⎟⎠ ≺ φ(z)

and

(1.19)

⎛⎜⎜⎜⎜⎝ [(1 − t)w](J b
μ�(w))′

J b
μ�(w) − J b

μ�(tw)

⎞⎟⎟⎟⎟⎠ ≺ φ(w),

where z,w ∈ � and the function � is given by (1.8).

Example 1.6. For λ = 1 and a function f ∈ Σ, given by (1.1) is said to be in the class
Bμ,bΣ,t (1, φ) ≡ Hμ,bΣ (φ) if the following conditions are satisfied:

(1.20) (J b
μ f (z))′ ≺ φ(z)

and

(1.21) (J b
μ�(w))′ ≺ φ(w)

where z,w ∈ � and the function � is given by(1.8).

In the following section we find estimates on the coefficients |a2| and |a3| for
functions in the above-defined subclasses Sμ,b

Σ,t(γ, λ, φ) of the function class Σ.
In order to derive our main results, we shall need the following lemma:

Lemma 1.1. (see [19]). If p ∈ P, then |pk| ≤ 2 for each k, where P is the family of all
functions p analytic in � for which R

(
p(z)

)
> 0, where p(z) = 1 + p1z + p2z2 + · · · for

z ∈ �.
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2. Coefficient Bounds for the Function Class Sμ,b
Σ,t(γ, λ, φ)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions in
the class Sμ,b

Σ,t(γ, λ, φ).

Theorem 2.1. Let the function f (z) given by (1.1) be in the class Sμ,b
Σ,t(γ, λ, φ). Then

|a2|
� |γ|B1

√
2B1√

{γB2
1Λ(λ,t)[(λ−2)(1+t)+4]−2(B2−B1)[Λ(λ,t)+2]2}Θ2

2+2γB2
1{(λ−1)(1+t+t2 )+3}Θ3 |

(2.1)

and

(2.2) |a3| ≤ |γB1|
[(λ − 1)(1 + t + t2) + 3]Θ3

+

( |γB1|
[Λ(λ, t) + 2]Θ2

)2

.

were Λ(λ, t) = (λ − 1)(1+ t).

Proof. Let f ∈ Sμ,b
Σ,t(γ, λ, φ) and � = f −1. Then there are analytic functions u, v : � −→

�with u(0) = 0 = v(0), satisfying

(2.3) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) −J b

μ f (tz)]1−λ − 1

⎞⎟⎟⎟⎟⎠ = φ(u(z))

and

(2.4) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ − 1

⎞⎟⎟⎟⎟⎠ = φ(v(w)).

Define the functions p(z) and q(z) by

p(z) :=
1 + u(z)
1 − u(z)

= 1 + p1z + p2z2 + · · ·

and

q(z) :=
1 + v(z)
1 − v(z)

= 1 + q1z + q2z2 + · · ·
or, equivalently,

(2.5) u(z) :=
p(z) − 1
p(z) + 1

=
1
2

⎡⎢⎢⎢⎢⎣p1z +

⎛⎜⎜⎜⎜⎝p2 −
p2

1

2

⎞⎟⎟⎟⎟⎠ z2 + · · ·
⎤⎥⎥⎥⎥⎦

and

(2.6) v(z) :=
q(z) − 1
q(z) + 1

=
1
2

⎡⎢⎢⎢⎢⎣q1z +

⎛⎜⎜⎜⎜⎝q2 −
q2

1

2

⎞⎟⎟⎟⎟⎠ z2 + · · ·
⎤⎥⎥⎥⎥⎦ .
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Then p(z) and q(z) are analytic in � with p(0) = 1 = q(0). Since u, v : � → �, the
functions p(z) and q(z) have a positive real part in �, and |pi| ≤ 2 and |qi| ≤ 2. Using
(2.5) and (2.6) in (2.3) and (2.4) respectively, we have

(2.7) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)z]1−λ(J b
μ f (z))′

[J b
μ f (z) −J b

μ f (tz)]1−λ − 1

⎞⎟⎟⎟⎟⎠ = ϕ
⎛⎜⎜⎜⎜⎝1
2

⎡⎢⎢⎢⎢⎣p1z +

⎛⎜⎜⎜⎜⎝p2 −
p2

1

2

⎞⎟⎟⎟⎟⎠ z2 + · · ·
⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

and

(2.8) 1 +
1
γ

⎛⎜⎜⎜⎜⎝ [(1 − t)w]1−λ(J b
μ�(w))′

[J b
μ�(w) −J b

μ�(tw)]1−λ − 1

⎞⎟⎟⎟⎟⎠ = ϕ
⎛⎜⎜⎜⎜⎝1
2

⎡⎢⎢⎢⎢⎣q1w +

⎛⎜⎜⎜⎜⎝q2 −
q2

1

2

⎞⎟⎟⎟⎟⎠w2 + · · ·
⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ .

In light of (1.1), (1.8), (1.9), from (2.7) and (2.8), it is evident that

1 + 1
γ {(λ − 1)(1+ t) + 2}Θ2a2z + 1

γ {[(λ − 1)(1+ t + t2) + 3]Θ3a3

+ 1
2 (λ − 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2

2a2
2}z2 + · · ·

= 1 + 1
2 B1p1z + [ 1

2 B1(p2 − p2
1

2 ) + 1
4 B2p2

1]z
2 + · · ·

and

1 − 1
γ {(λ − 1)(1 + t) + 2}Θ2a2w + 1

γ { 12 (λ − 1)(1 + t)[(λ− 2)(1 + t) + 4]Θ2
2a

2
2

+[(λ− 1)(1 + t + t2) + 3](2a2
2 − a3)Θ3}w2 + · · ·

= 1 + 1
2 B1q1w + [ 1

2 B1(q2 − q2
1
2 ) + 1

4 B2q2
1]w2 + · · ·

which yield the following relations :

{(λ − 1)(1 + t) + 2}Θ2a2 =
γ

2
B1p1(2.9)

[
{(λ − 1)(1 + t + t2) + 3}Θ3a3 +

1
2

(λ − 1)(1 + t){(λ − 2)(1 + t) + 4}Θ2
2a

2
2

]
=
γ

2
B1(p2 −

p2
1

2
) +
γ

4
B2p2

1

(2.10)

−{(λ − 1)(1 + t) + 2}Θ2a2 =
γ

2
B1q1(2.11)

and

(2.12)

[1
2

(λ − 1)(1 + t){(λ − 2)(1 + t) + 4}Θ2
2a2

2 + [(λ − 1)(1 + t + t2) + 3](2a2
2 − a3)Θ3

]

=
γ

2
B1(q2 −

q2
1

2
) +
γ

4
B2q2

1.

From (2.9) and (2.11) , it follows that

(2.13) p1 = −q1
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and

(2.14) 8[(λ − 1)(1 + t) + 2]2Θ2
2a

2
2 = γ

2B2
1(p

2
1 + q2

1).

By taking Λ(λ, t) = (λ − 1)(1 + t) for the sake of brevity, adding (2.10) and(2.12), we obtain
[
Λ(λ, t){(λ − 2)(1 + t) + 4}Θ2

2 + 2{(λ − 1)(1 + t + t2) + 3}Θ3

]
a2

2

=
γB1

2 (p2 + q2) +
γ
4 (B2 − B1)(p2

1 + q2
1).(2.15)

Using(2.14 ) in (2.15), we get
(2.16)

a2
2=

γ2B3
1(p2 + q2)

2γB2
1

[
Λ(λ, t){(λ − 2)(1 + t) + 4}Θ2

2 + 2{(λ − 1)(1 + t + t2) + 3}Θ3

]
−4(B2−B1)[Λ(λ, t)+2]2Θ2

2

.

Applying Lemma 1.1 to the coefficients p2 and q2,we immediately have

|a2|2 ≤
2|γ|2B3

1

|γB2
1

[
Λ(λ, t){(λ−2)(1+t) + 4}Θ2

2 + 2{(λ − 1)(1 + t + t2)+3}Θ3

]
− 2(B2−B1)[Λ(λ, t)+2]2Θ2

2|
which gives the bound on |a2| as asserted in (2.1).

Next, in order to find the bound on |a3|, by subtracting (2.12) from (2.10), we get
(2.17)

2[(λ−1)(1+t+t2)+3]Θ3a3−2[(λ−1)(1+t+t2)+3]Θ3a2
2 =
γB1

2

[
(p2 − q2) − 1

2
(p2

1 − q2
1)
]
+
γB2

4
(p2

1−q2
1).

Using (2.13) and(2.14) in(2.17), we get

a3 =
γB1(p2 − q2)

4[(λ − 1)(1 + t + t2) + 3]Θ3
+

γ2B2
1(p

2
1 + q2

1)

8[(λ − 1)(1 + t) + 2]2Θ2
2

.

Applying Lemma 1.1 once again to the coefficients p1, q1, p2 and q2, we readily get (2.2).
This completes the proof of Theorem 2.1.

Putting λ = 0 in Theorem 2.1, we have the following corollary.

Corollary 2.1. Let the function f (z) given by (1.1) be in the class Sμ,b
Σ,t(γ, φ). Then

(2.18) |a2| � |γ|B1
√

B1√
|γB2

1

[
(2 − t − t2)Θ3 − (1 − t2)Θ2

2

]
− (B2 − B1)(1 − t)2Θ2

2|
and

(2.19) |a3| ≤ |γB1|
(2 − t − t2)Θ3

+

( |γB1|
(1 − t)Θ2

)2

.
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Putting λ = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let the function f (z) given by (1.1) be in the classHμ,b
Σ

(γ, φ). Then

(2.20) |a2| � |γ|B1
√

B1√
|3γB2

1Θ3 − 4(B2 − B1)Θ2
2|

and

(2.21) |a3| � |γ|B1

3Θ3
+

( |γ|B1

2Θ2

)2

.

If J b
μ is the identity map, from Corollary 2.1 and 2.2, we get the following

corollaries.

Corollary 2.3. Let the function f (z) given by (1.1) be in the class S∗Σ,t(γ, φ). Then

(2.22) |a2| � |γ|B1
√

B1√
|(1 − t)[γB2

1 − (1 − t)(B2 − B1)]|

and

(2.23) |a3| � |γ|B1

(2 − t − t2)
+

( |γ|B1

1 − t

)2

.

Remark 2.1. If Jb
μ is the identity map and γ = 1, in Corollary 2.4 our result coincides with

the result given in [25].

Corollary 2.4. Let the function f (z) given by (1.1) be in the classHΣ(γ, φ). Then

(2.24) |a2| � |γ|B1
√

B1√
|3γB2

1 − 4(B2 − B1)|

and

(2.25) |a3| � |γ|B1

3
+

( |γ|B1

2

)2

.

Remark 2.2. If Jb
μ is the identity map and γ = 1, t = 0 Theorem 2.1 reduces to Theorem 2.8

of Deniz [7].
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Concluding Remarks:

(i) By setting φ(z) = 1+Az
1+Bz ,−1 ≤ B < A ≤ 1,we have

B1 = (A − B) and (B2 − B1) = (B − A)(B + 1)

(ii) By setting φ(z) = 1+(1−2β)z
1−z , 0 ≤ β < 1,we have

B1 = B2 = 2(1 − β).
Hence,we can deduce interesting results analogous to Theorem 2.1. Further, appro-
priately specializing the parameter μ and b various other interesting consequences
of our general results involving Libera-Bernardi integral operator [22] andJung-
Kim-Srivastava integral operator [11] (which are asserted by Theorems 2.1 and
Corollaries above) can be derived easily. The details involved may be left as an
exercise for the interested reader.

Acknowledgement We record our sincere thanks to the referee for his insightful
suggestions to improve the results.
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Babeş-Bolyai Math.31 (2) (1986), 70–77.

6. J. Choi andH.M. Srivastava, Certain families of sries associated with the Hurwitz-Lerch
Zeta function , Appl. Math. Comput., 170 (2005), 399–409.

7. E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions ,
Journal of Classical Analysis2(1) (2013), 49–60.

8. T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities,
J. Math. Anal. Appl., 38 (1972), 746–765.

9. T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math.
J. 22 (4) (2012), 15–26.

10. K. I. Noor, On Bazilevic̆ functions of complex order, Nihonkai Math. J., 3 (1992),
115–124.

11. I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions
associated with certain one-parameter families of integral operators, J. Math. Anal. Appl.,
176 (1993), 138–147.



116 C. Selvaraj, O. S. Babu and G. Murugusundaramoorthy

12. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc.
18 (1967), 63–68.

13. X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math.
Forum 7 (2012), 1495–1504.

14. S.-D. Lin andH. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and
associated fractional derivative and other integral representations, Appl. Math. Comput.,
154 (2004), 725–733.

15. S.-D. Lin, H.M.Srivastava and P.-Y. Wang, Some espansion formulas for a class of
generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct., 17 (2006),
817–827.

16. W.C. Ma, D. Minda, A unified treatment of some special classes of functions, in: Proceed-
ings of the Conference on Complex Analysis, Tianjin, 1992, 157 - 169, Conf. Proc. Lecture
Notes Anal. 1. Int. Press, Cambridge, MA, 1994.

17. N.M.Mustafa andM.Darus, Some properties of a subclass of analytic functions defined
by a generalized Srivastava-Attiya operator, Facta Universitatis (NIS)Ser. Math. Inform.
Vol.27 No 3 ,(2012),309–320 .

18. E. Netanyahu, The minimal distance of the image boundary from the origin and the
second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal. 32 (1969),
100–112.

19. C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

20. J.K. Prajapat and S. P. Goyal, Applications of Srivastava-Attiya operator to the classes
of strongly starlike and strongly convex functions, J. Math. Inequal., 3 (2009), 129–137.
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