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A NOTE ON α-PARA KENMOTSUMANIFOLDS

Pradip Majhi

Abstract.The object of the present paper is to study 3-dimensionalα-ParaKenmotsuman-
ifolds. First we consider φ-projectively semi-symmetric 3-dimensional α-Para Kenmotsu
manifolds. We also study projectively semi-symmetric and projectively pseudosym-
metric 3-dimensional α-para Kenmotsu manifolds. Beside these 3-dimensional α-Para
Kenmotsu manifolds satisfying P.S = 0 is also considered.
Keywords: α-Para Kenmotsu manifolds, curvature tensor, Euclidian space, Riemannian
manifold, Ricci tensor.

1. Introduction

The projective curvature tensor is an important tensor from the differential geo-
metric point of view. Let M be a (2n + 1)-dimensional Riemannian manifold. If
there exists a one-to-one correspondence between each coordinate neighbourhood
of M and a domain in Euclidian space such that any geodesic of the Riemannian
manifold corresponds to a straight line in the Euclidean space, thenM is said to be
locally projectively flat. For n ≥ 1, M is locally projectively flat if and only if the
well known projective curvature tensor P vanishes. Here P is defined by [9]

P(X,Y)Z = R(X,Y)Z − 1
2n

[S(Y,Z)X − S(X,Z)Y],(1.1)

for all X, Y, Z ∈ T(M), where R is the curvature tensor and S is the Ricci tensor.
In fact M is projectively flat if and only if it is of constant curvature [16]. Thus the
projective curvature tensor is the measure of the failure of a Riemannian manifold
to be of constant curvature.
Let (M, �) be a Riemannian manifold and let ∇ be the Levi-Civita connection of
(M, �). A Riemannian manifold is called locally symmetric [3] if ∇R = 0, where R
is the Riemannian curvature tensor of (M, �). A Riemannian manifold M is called
semi-symmetric if
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R.R = 0(1.2)

holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semi-symmetric manifolds includes the set of locally symmetric
manifolds (∇R = 0) as a proper subset. Semi-symmetric Riemannian manifolds
were first studied by E. Cartan, A. Lichnerowich, R. S. Couty and N. S. Sinjukov.
A fundamental study on Riemannian semi-symmetric manifolds was made by Z.
I. Szabó [10], E. Boeckx et al [2] and O. Kowalski [6]. A Riemannian manifold M is
said to be Ricci-semi-symmetric if on M we have

R.S = 0,(1.3)

where S is the Ricci tensor.

The class of Ricci-semi-symmetricmanifolds includes the set of Ricci-symmetric
manifolds (∇S = 0) as a proper subset. Ricci-semi-symmetric manifolds were in-
vestigated by several authors.
The present paper is organized as follows:
After in brief introduction in Section 2, we discuss about some preliminaries that
will be used in the later sections. In section 3, we consider φ-projectively semi-
symmetric 3-dimensional α-Para Kenmotsu manifolds. Section 4 is devoted to
study projectively semi-symmetric 3-dimensional α-Para Kenmotsu manifolds. In
section 5, we consider projectively pseudosymmetric 3-dimensional α-para Ken-
motsu manifolds. Finally, 3-dimensional α-Para Kenmotsu manifolds satisfying
P.S = 0 is also considered.

2. Preliminaries

2.1. Almost Paracontact Metric Manifolds

A smooth manifoldM of dimension 2n+1 is called an almost paracontact manifold
([7],[8]) equipped with the structure (φ, ξ, η) where φ is a tensor field of type (1, 1),
a vector field ξ and a 1-form η satisfying

φ2 = I − η ⊗ ξ and η(ξ) = 1.(2.1)

From equation (2.1) it can easily deduced that

φξ = 0, η(φX) = 0 and rank(φ) = 2n.(2.2)

If an almost paracontact manifold admits a pseudo-Riemannian metric � satisfying

�(φX, φY) = −�(X,Y) + η(X)η(Y),(2.3)
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where signature of � is (n + 1, n) for any vector fields X,Y ∈ χ(M), (where χ(M)
is the set of all differential vector fields on M) then the manifold is called almost
paracontact metric manifold.
An almost paracontact structure is said to be a contact structure if �(X, φY) =
dη(X,Y) with the associated metric � [17]. For an almost paracontact metric
manifold, there always exists a special kind of local pseudo orthonormal φ ba-
sis {Xi, φXi, ξ}, Xi’s and ξ are space-like vector fields and φXi’s are time-like. Thus,
an almost paracontact metric manifold is an odd dimensional manifold.

2.2. Normal Almost Paracontact Metric Manifolds

An almost paracontact metric manifold is said to be normal if the induced almost
paracomplex structure J on the product manifold M2n+1 ×R defined by

J(X, f
d
dt
) = (φX + fξ, η(X)

d
dt
)(2.4)

is integrable where X is tangent to M, t is the coordinate of R and f is a smooth
function on M2n+1 ×R. The condition for being normal is equivalent to vanishing
of the (1, 2)-type torsion tensor Nφ defined byNφ = [φ, φ]− 2dη⊗ ξ, where [φ, φ] is
the Nijenhuis torsion of φ.

Proposition 2.1. [14] For a 3-dimensional almost paracontact metric manifold M, the
following conditions are mutually equivalent

(a) M is normal,

(b) there exist differential functions α, β on M such that

(∇Xφ)Y = β{�(X,Y)ξ− η(Y)X} + α{�(φX,Y)ξ − η(Y)φX},

(c) there exist differential functions α, β on M such that

∇Xξ = α{X − η(X)ξ} + βφX,
where ∇ is the Levi-Civita connection of the pseudo-Riemannian metric � and α, β
are given by

2α = Trace{X→ ∇Xξ}, 2β = Trace{X→ φ∇Xξ}.

Definition 2.1. A 3-dimensional normal almost paracontact metric manifold M is
said to be

1. paracosymplectic if α = β = 0 [4],

2. α-para Kenmotsu if α is a non-zero constant and β = 0 [13], in particular para
Kenmotsu if α = 1 [1],
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3. quasi-para Sasakian if and only if α = 0 and β � 0 [5],

4. β-para Sasakian if and only if α = 0 and β is a non-zero constant, in particular
para Sasakian if β = −1 [17].

In a 3-dimensional α-para Kenmotsu manifold, the following results hold [11]:

R(X,Y)Z = (
r
2
+ 2α2)[�(Y,Z)X − �(X,Z)Y]

−( r
2
+ 3α2)[�(Y,Z)η(X) − �(X,Z)η(Y)]ξ

+(
r
2
+ 3α2)[η(X)Y − η(Y)X]η(Z),(2.5)

where r is the scalar curvature of the manifold and �, pseudo-metric.

S(X,Y) = (
r
2
+ α2)�(X,Y) − (

r
2
+ 3α2)η(X)η(Y).(2.6)

S(X, ξ) = −2α2η(X),(2.7)

R(X,Y)ξ = −α2{η(Y)X − η(X)Y},(2.8)

(∇Xη)Y = α{�(X,Y) − η(X)η(Y)},(2.9)

(∇Xφ)Y = α{�(φX,Y)ξ − η(Y)φX},(2.10)

∇Xξ = α{X − η(X)ξ},(2.11)

for all vector fields X,Y,Z and W ∈ χ(M).
Now, we state two Theorems which will be used in the next sections.

Theorem 2.1. [15] A 3-dimension Riemannian manifold is Einstein if and only if it is
manifold of constant curvature.

Theorem 2.2. [15] A Riemannian manifold is projectively flat if and only if the manifold
is of constant curvature.

3. φ-projectively semisymmetric 3-dimensional α-para Kenmotsu manifolds

Let M be a 3-dimensional α-para Kenmotsu manifold. Therefore P(X,Y).φ = 0
turns into

(P(X,Y).φ)Z = P(X,Y)φZ − φP(X,Y)Z = 0,(3.1)

for any vector fields X, Y and Z.
Now, in view of (1.1), (2.5) we have

P(X,Y)φZ = (
r
2
+ 2α2){�(Y, φZ)X − �(X, φZ)Y}

−( r
2
+ 3α2){�(Y, φZ)η(X) − �(X, φZ)η(Y)}ξ

−1
2
{( r
2
+ α2)�(Y, φZ)X − (

r
2
+ α2)�(X, φZ)Y}.(3.2)
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Similarly, we obtain

φ(P(X,Y)Z) = φ[R(X,Y)φZ − 1
2
{S(Y,Z)X − S(X,Z)Y}].(3.3)

By virtue of (3.2) and (3.3), we get from (3.1)

φ[R(X,Y)φZ − 1
2
{S(Y,Z)X − S(X,Z)Y}]

= (
r
2
+ 2α2){�(Y, φZ)X − �(X, φZ)Y}

−( r
2
+ 3α2){�(Y, φZ)η(X)− �(X, φZ)η(Y)}ξ

−1
2
{( r
2
+ α2)�(Y, φZ)X − (

r
2
+ α2)�(X, φZ)Y}.(3.4)

Putting X = ξ in (3.4) we have

φ[R(ξ,Y)φZ − 1
2
{S(Y,Z)ξ − S(ξ,Z)Y}]

= (
r
2
+ 2α2){�(Y, φZ)ξ} − (

r
2
+ 3α2){�(Y, φZ)}ξ

−1
2
{( r
2
+ α2)�(Y, φZ)ξ}.(3.5)

Using (2.7), (2.8) in (3.5) yields

(
r
2
+ 2α2){�(Y, φZ)ξ} − (

r
2
+ 3α2){�(Y, φZ)}ξ

−1
2
{( r
2
+ α2)�(Y, φZ)ξ} = 0,(3.6)

which implies

1
2
(
r
2
+ 3α2)�(Y, φZ)ξ = 0,(3.7)

Since �(Y, φZ) � 0, in (3.7) taking inner product with ξwe have

r = −6α2.(3.8)

Substituting (3.8) in (2.6) we obtain

S(X,Y) = −2α2�(X,Y).(3.9)

Therefore the manifold is an Einstein manifold.
It is known [15] that a 3-dimension Riemannian manifold is Einstein if and only if
it is manifold of constant curvature. Again a Riemannian manifold is projectively
flat if and only if the manifold is of constant curvature.
By the above discussion we have the following:
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Theorem 3.1. In a 3-dimensionalα-para Kenmotsu manifoldM, the following conditions
are equivalent:

(a) φ-projectively semi-symmetric,

(b) the scalar curvature r = −6α2,
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

4. projectively semi-symmetric 3-dimensional α-para Kenmotsu manifolds

In view of (1.1), the projective curvature tensor is given by

P(X,Y)Z = R(X,Y)Z − 1
2n

[S(Y,Z)X − S(X,Z)Y].(4.1)

Now from the above equation with the help of (2.5), (2.6) we have

P(U,V)ξ = 0,(4.2)

for any vector fields U, V. We suppose that a 3-dimensional α-para Kenmotsu
manifold is projectively semi-symmetric, that is,

(R(X,Y).P)(U,V) = 0.(4.3)

This implies

R(X,Y)P(U,V)W − P(R(X,Y)U,V)W − P(U,R(X,Y)V)W
− P(U,V)R(X,Y)W = 0.(4.4)

Using Y = U =W = ξ in (4.4) we have

R(X, ξ)P(ξ,V)ξ − P(R(X, ξ)ξ,V)ξ − P(ξ,R(X, ξ)V)ξ
− P(ξ,V)R(X, ξ)ξ = 0.(4.5)

Therefore from (4.2) and (4.5) we get

−P(ξ,V)R(X, ξ)ξ = 0.(4.6)

In view of (2.5), (2.6), (2.8) we obtain from (4.6)

−α2P(ξ,V)X = 0.(4.7)

Since α � 0, the above equation implies

P(ξ,V)X = 0.(4.8)



A Note on α-Para Kenmotsu Manifolds 233

Therefore

R(ξ,V)X − 1
2
[S(V,X)ξ− S(ξ,X)V] = 0.(4.9)

Applying (2.5), (2.6), (2.8) in (4.9) we get

1
2
(
r
2
+ 3α2)�(φX, φV) = 0.(4.10)

Since �(φX, φV) � 0, we have

r = −6α2.(4.11)

Substituting (4.11) in (2.6) we obtain

S(X,Y) = −2α2�(X,Y).(4.12)

Thus the manifold is an Einstein manifold.
In view of Theorems 2.1 and 2.2 we have the following:

Theorem 4.1. In a 3-dimensionalα-para Kenmotsu manifoldM, the following conditions
are equivalent:

(a) projectively semi-symmetric,

(b) the scalar curvature r = −6α2,
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.

5. Projectively pseudosymmetric 3-dimensional α-para Kenmotsu manifolds

A Riemannian manifold is said to be projectively pseudosymmetric [12] if at
every point of the manifold the following relation holds

(R(X,Y).R)(U,V)W = LR((X ∧ Y).R)(U,V)W),(5.1)

for any vector fields X, Y, U, V,W; where LR is some function ofM. The endomor-
phism X ∧ Y is defined by

(X ∧ Y)Z = �(Y,Z)X − �(X,Z)Y.(5.2)

A Riemannian manifold is said to be projectively pseudosymmetric if it satisfies
the condition

(R(X,Y).P)(U,V)W = LP((X ∧ Y).P)(U,V)W),(5.3)
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where LP(� α2) is some function on M.
Let us suppose that 3-dimensional α-para Kenmotsu manifold M satisfies the con-
dition

(R(X,Y).P)(U,V)W = LP((X ∧ Y).P)(U,V)W).(5.4)

Putting Y =W = U = ξ (5.4) we have

(R(X, ξ).P)(ξ,V)ξ = LP((X ∧ ξ).P)(ξ,V)ξ),(5.5)

Now

LP((X ∧ ξ).P)(ξ,V)ξ) = LP[(X ∧ ξ)P(ξ,V)ξ− P((X ∧ ξ)ξ,V)ξ
−P(ξ, (X ∧ ξ)V)ξ − P(ξ,V)(X∧ ξ)ξ].(5.6)

Using (4.2) in (5.6), we get

LP((X ∧ ξ).P)(ξ,V)ξ) = −LP{P(ξ,V)(X∧ ξ)ξ}
= −LP{P(ξ,V)(X − η(X)ξ)}
= −LPP(ξ,V)X.(5.7)

In view of (4.7), (5.7) we have from (5.5)

−α2P(ξ,V)X = −LPP(ξ,V)X.(5.8)

Therefore

(LP − α2)P(ξ,V)X = 0.(5.9)

By assumption LP � α2 and hence

P(ξ,V)X = 0,(5.10)

The above equation same as (4.8), hence it follows that

r = −6α2.(5.11)

Substituting (5.11) in (2.6) we obtain

S(X,Y) = −2α2�(X,Y).(5.12)

Thus the manifold is an Einstein manifold.
In view of Theorems 2.1 and 2.2 we can state the following:

Theorem 5.1. In a 3-dimensionalα-para Kenmotsu manifoldM, the following conditions
are equivalent:

(a) Projectively pseudosymmetric,

(b) the scalar curvature r = −6α2,
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.
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6. 3-dimensional α-Para Kenmotsu manifolds satisfying P.S = 0

In this section we study 3-dimensional α-Para Kenmotsu manifolds satisfying
P.S = 0. Therefore we have

(P(X,Y) · S)(U,V) = 0.(6.1)

This implies
S(P(X,Y)U,V)+ S(U,P(X,Y)V) = 0.(6.2)

Putting U = ξ in (6.2) we have

S(P(X,Y)ξ,V)+ S(ξ,P(X,Y)V) = 0.(6.3)

Using (4.2) in (6.3), we get

S(ξ,P(X,Y)V) = 0.(6.4)

Therefore from (2.7) and (6.4) we obtain

−2α2�(P(X,Y)V, ξ) = 0.(6.5)

This implies

�(R(X,Y)V, ξ) − 1
2
[S(Y,Z)η(X) − S(X,Z)η(Y)] = 0.(6.6)

Using (2.5) in (6.6) we have

η(Y){α2�(X,V) − 1
2
S(X,V)} = η(X){α2�(Y,V)+

1
2
S(Y,V)}.(6.7)

Putting Y = ξ in (6.7), we get

S(X,V) = 2α2�(X,V).(6.8)

Thus the manifold is an Einstein manifold.
In view of Theorems 2.1 and 2.2 we have the following:

Theorem 6.1. In a 3-dimensionalα-para Kenmotsu manifoldM, the following conditions
are equivalent:

(a) P.S=0,

(b) the scalar curvature r = −6α2,
(c) the manifold M is of constant curvature,

(d) M is an Einstein manifold.
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