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1. Introduction

In 1982, R. S. Hamilton [13] introduced the notion of Ricci flow to find a canoni-
cal metric on a smooth manifold. The Ricci flow is an evolution equation for metrics
on a Riemannian manifold defined as follows:

∂

∂t
g = −2S,(1.1)

where S denotes the Ricci tensor. Ricci solitons are special solutions of the Ricci
flow equation (1.1) of the form g = σ(t)ψ∗

t g with the initial condition g(0) = g,
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where ψt are diffeomorphisms of M and σ(t) is the scaling function. A Ricci soliton
is a generalization of an Einstein metric. We recall the notion of Ricci soliton
according to [3]. On the manifold M , a Ricci soliton is a triple (g, V, λ) with g, a
Riemannian metric, V a vector field, called the potential vector field and λ a real
scalar such that

£V g + 2S + 2λg = 0,(1.2)

where £ is the Lie derivative. Metrics satisfying (1.2) are interesting and useful in
physics and are often referred as quasi-Einstein ([4],[5]). Compact Ricci solitons are
the fixed points of the Ricci flow ∂

∂tg = −2S projected from the space of metrics
onto its quotient modulo diffeomorphisms and scalings, and often arise blow-up lim-
its for the Ricci flow on compact manifolds. Theoretical physicists have also been
looking into the equation of Ricci soliton in relation with string theory. The initial
contribution in this direction is due to Friedan [10] who discusses some aspects of it.
Recently, the notion of almost Ricci soliton have introduced [21] by Piagoli, Riogoli,
Rimoldi and Setti.

The Ricci soliton is said to be shrinking, steady and expanding according as λ is
negative, zero and positive respectively. Ricci solitons have been studied by several
authors such as ([6], [7], [11], [14], [15], [16], [25], [24]) and many others.

In [9], during 2003-2004, Fischer developed the notion of conformal Ricci flow
which is a generalization of the classical Ricci flow. The conformal Ricci flow on a
2n+1-dimensional smooth closed connected oriented manifold M is defined by the
following equation:

∂g

∂t
+ 2(S +

g

2n+ 1
) = −pg(1.3)

and r(g) = −1, where p is a scalar non-dynamical field which depends on time, r(g)
is the scalar curvature of the manifold.

In 2015, Basu and Bhattacharyya [1] introduced the concept of conformal Ricci
soliton by the equation

£V g + 2S = [2λ− (p+
2

2n+ 1
)]g,(1.4)

where λ is constant. Conformal Ricci soliton is the generalization of Ricci soliton.

Pigola et al. first introduced [21] the notion of almost Ricci soliton in 2010.
In 2014, Sharma has also studied [22] the almost Ricci soliton and has also done
some gloriuos research works. Recently, in 2018, Ghosh and Patra also have studied
[12] the almost Ricci solitons on contact geometry. In Riemannian manifold (M, g),
almost Ricci soliton is defiend by the equation

£V g + 2S = 2λg,(1.5)
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where λ is a smooth function onM . The almost Ricci soliton is said to be shrinking,
steady or expanding according as λ is positive, zero or negative.

Recently in [8], Dutta, Basu and Bhattacharyya have introduced the notion of
almost conformal Ricci soliton by

£V g + 2S = [2λ− (p+
2

2n+ 1
)]g,(1.6)

where λ is a smooth function on M . The almost conformal Ricci soliton is said to
be shrinking, steady or expanding according as λ is positive, zero or negative.

In the present paper, after introduction, we study Lorentzian para-Sasakian
manifolds which is stated as LP-Sasakian manifolds afterwards. In section 3, we
characterize almost conformal Ricci solitons on LP-Sasakian manifolds and we prove
several important results.

2. LP-Sasakian manifolds

In 1989, Matsumoto [18] introduced the notion of LP-Sasakian manifolds or in short
LP -Sasakian manifolds. An example of a five dimensional LP-Sasakian manifold
was given by Matsumoto, Mihai and Rosaca [19].

Let M be an n-dimensional differential manifold endowed with a (1, 1) tensor
field φ, a vector field ξ, a 1-form η and a Lorentzian metric g of type (0, 2) such
that for each point p ∈ M , the tensor gp: TpM × TpM → R is a non-degenerate
inner product of signature (−,+,+, ...,+), where TpM denotes the tangent space
of M at p and R is the real number space which satisfies

φ2(X) = X + η(X)ξ, η(ξ) = −1,(2.1)

g(X, ξ) = η(X), g(φX,φY ) = g(X,Y ) + η(X)η(Y ),(2.2)

for all vector fields X,Y . Then, such a structure (φ, ξ, η, g) is termed as Lorentzian
almost paracontact structure and the manifold with the structure (φ, ξ, η, g) is called
a Lorentzian almost paracontact manifold. In the Lorentzian almost paracontact
manifold M , the following relations hold [18]:

φξ = 0, η(φX) = 0,(2.3)

Φ(X,Y ) = Φ(Y,X),(2.4)

where Φ(X,Y ) = g(X,φY ). A Lorentzian almost paracontact manifoldM equipped
with the structure (φ, ξ, η, g) is called an LP-Sasakian manifold if

(∇Xφ)Y = g(φX,φY )ξ + η(Y )φ2X,(2.5)
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where∇ denotes the operator of covariant differentiation with respect to the Lorentzian
metric g. In an LP-Sasakian manifold M with the structure (φ, ξ, η, g) it is easily
seen that

∇Xξ = φX,(2.6)

(∇Xη) (Y ) = g(φX, Y ) = (∇Y η) (X),(2.7)

R(ξ,X)Y = g(X,Y )ξ − η(Y )X,(2.8)

R(X,Y )ξ = η(Y )X − η(X)Y,(2.9)

S(X, ξ) = (n− 1)η(X),(2.10)

for all vector fields X,Y onM . LP-Sasakian manifolds have been studied by several
authors such as ([2], [17], [20], [23]) and many others.

Definition 2.1. ([12]) A vector field V on a contact manifold is said to be an
infinitesimal contact vector field if it preserve the contact form η, that is

£V η = ψη,(2.11)

for some smooth function ψ on M . When ψ = 0 on M , the vector field V is called
a strict infinitesimal contact vector field.

3. Almost conformal Ricci solitons on LP-Sasakian manifolds

This section is devoted to study almost conformal Ricci solitons on LP-Sasakian
manifolds with the potential vector field V is an infinitesimal contact vector field.
Then we obtain

(£V dη)(X,Y ) = £V dη(X,Y )− dη(£VX,Y )− dη(X,£V Y )

= £V g(X,ϕY )− g(£VX,ϕY )− g(X,ϕ£V Y )

= £V g(X,ϕY )− g(£VX,ϕY )− g(X,£V ϕY − (£V ϕ)Y )

= £V g(X,ϕY )− g(£VX,ϕY )− g(X,£V ϕY ) + g(X, (£V ϕ)Y )

= (£V g)(X,ϕY ) + g(X, (£V ϕ)Y ),(3.1)

for any vector fields X and Y on M .
Then using (1.6) in (3.1) we get

(£V dη)(X,Y ) = −2S(X,ϕY ) + [2λ− (p+
2

2n+ 1
)]g(X,ϕY )

+g(X, (£V ϕ)Y ),(3.2)
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for any smooth vector fields X and Y on M .
As V is an infinitesimal contact vector field, from (2.11) we have

£V dη = d£V η = (dψ) ∧ η + ψ(dη),(3.3)

from which it follows that

(£V dη)(X,Y ) =
1

2
{dψ(X)η(Y )− dψ(Y )η(X)}+ ψg(X,ϕY ).(3.4)

for any vector fields X and Y on M .
In view of (3.2) and (3.4) we infer

−2S(X,ϕY ) + [2λ− (p+
2

2n+ 1
)]g(X,ϕY ) + g(X, (£V ϕ)Y )

=
1

2
{dψ(X)η(Y )− dψ(Y )η(X)}+ ψg(X,ϕY ),(3.5)

and hence we get

2(£V ϕ)Y = 4QϕY + 2[ψ − 2λ+ (p+
2

2n+ 1
)]ϕY

+η(Y )Dψ − dψ(Y )ξ,(3.6)

for any vector field Y on M .
Substituting Y = ξ in (3.6) yields

2(£V ϕ)ξ = Dψ − (ξψ)ξ.(3.7)

The equation (1.6) can be exhibited as

g(∇XV, Y ) + g(X,∇Y V ) + 2S(X,Y ) = [2λ− (p+
2

2n+ 1
)]g(X,Y ),(3.8)

for any vector fields X and Y on M . Tracing the above equation gives

2divV = −2r + (2n+ 1)[2λ− (p+
2

2n+ 1
)].(3.9)

Let Ω be the volume form of M , that is,

Ω = η ∧ (dη)n ̸= 0.(3.10)

Taking Lie derivative of the foregoing equation along the vector field V and using
(2.11) and (3.3) yields we have

£V Ω = ψΩ+ n[(η ∧ η)(dη)n−1dψ + ψη ∧ (dη)n]

= ψΩ+ nψΩ

= (n+ 1)ψΩ.(3.11)



766 P. Majhi and D. Kar

Applying the formula [12] £V Ω = (divV)Ω on (3.11) we get

(divV )Ω = (n+ 1)ψΩ,(3.12)

and hence

divV = (n+ 1)ψ.(3.13)

With help of (3.9), from (3.13) it follows that

r = −(n+ 1)ψ +
2n+ 1

2
[λ− (p+

2

2n+ 1
)].(3.14)

The equation (1.6) can be expressed as

(£V g)(X,Y ) + 2S(X,Y ) = [2λ− (p+
2

2n+ 1
)]g(X,Y ).(3.15)

Putting X = Y = ξ in (3.15) we infer

g(£V ξ, ξ) = λ− n− (p− 1 +
2

2n+ 1
).(3.16)

Replacing Y by ξ and using (2.10) and (2.11) we find

g(£V ξ,X) = [ψ + 2(n− 1)− 2λ+ (p+
2

2n+ 1
)]η(X),(3.17)

from which it follows that

£V ξ = [ψ + 2(n− 1)− 2λ+ (p+
2

2n+ 1
)]ξ.(3.18)

Operating ϕ on the last equation we find that

ϕ(£V ξ) = 0.(3.19)

With the help of (3.19), from (3.7) we have

Dψ = (ξψ)ξ,(3.20)

which implies that

dψ = (ξψ)η.(3.21)

Taking exterior derivative of (3.21) we get

d(ξψ) ∧ η + (ξψ)dη = 0.(3.22)

Taking wedge product of the above with η we deduce that

dψ(ξ) = 0.(3.23)



Almost Conformal Ricci Solitons on LP-Sasakian Manifolds 767

Making use of (3.23) in (3.21) we get

dψ = 0,(3.24)

from which it follows that ψ is constant.
From the hypothesis ψ is constant, so integrating (3.13) and applying divergence
theorem [12] we obtain

ψ = 0,(3.25)

which implies that V is a stictly infinitesimal contact vector field. Hence we can
state the following:

Theorem 3.1. If an LP-Sasakian manifold admits almost conformal Ricci soli-
tons with the potential vector field V is an infinitesimal contact vector field, then V
becomes a strictly infinitesimal contact vector field.

Using (3.18) in (3.16) and then using (3.25) we infer

λ = n− 1.(3.26)

Therefore, we are in a position to state the following:

Theorem 3.2. An LP-Sasakian manifold admitting almost conformal Ricci soli-
tons with the potential vector field is an infinitesimal contact vector field are shrink-
ing, steady or expanding according as the dimension of the manifolds is greater than
3 or equal to 3 or less than 3.

Also from (3.26) it is clear that λ is constant and consequently the almost conformal
Ricci soliton becomes conformal Ricci soliton and hence we have the following:

Theorem 3.3. An LP-Sasakian manifold admitting an almost conformal Ricci
soliton with the potential vector field is an infinitesimal contact vector field reduces
to a conformal Ricci soliton.

Using (3.25) in (3.6) we get

(£V ϕ)Y = 2QϕY + δϕY,(3.27)

where δ = p+ 2
2n+1 − 2λ.

Also, using (3.25) in (2.11) we get

(£V η) = 0.(3.28)
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Now,

(£V ϕ)Y = £V ϕY − ϕ(£V Y ).(3.29)

Substituting Y = ϕY in the preceding equation we deduce that

(£V ϕ)ϕY = £V Y − ϕ(£V ϕY ).(3.30)

Operating ϕ on (3.29) we have

ϕ(£V ϕ)Y = ϕ(£V ϕY )−£V Y − η(£V Y )ξ.(3.31)

Adding the equations (3.30) and (3.31) we obtain

ϕ(£V ϕ)Y + (£V ϕ)ϕY = −η(£V Y )ξ.(3.32)

Let us assume that Qϕ = ϕQ. With the help of the assumption, first term of (2.1)
and (3.27), from (3.32) we find that

S(X,Y ) = −δg(X,Y )− (δ + n− 1)η(X)η(Y )− η(£V Y )η(X),(3.33)

where δ = p+ 2
2n+1 − 2λ.

Putting X = ϕ2X and Y = ϕ2Y in the last equation and the using the second term
of (2.2), second term of (2.3) and (2.10) we have

S(X,Y ) = −δg(X,Y )− (δ + n− 1)η(X)η(Y ),(3.34)

where δ = p+ 2
2n+1 − 2λ and we can can state the following:

Theorem 3.4. If an LP-Sasakian manifold admits almost conformal Ricci soli-
tons with the potential vector field V is an infinitesimal contact vector field and
the Ricci operator commutes with the structure tensor ϕ, then M is an η-Einstein
manifold.
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