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Abstract. The purpose of this paper is to study the class of conformally flat p-power
(α, β)-metrics F = α(1 + β

α
)p, where p ̸= 0 is a constant. This metric is interesting,

because for p = −1, 1
2
, 1, 2 it reduces to the Matsumoto, square-root, Randers and

square metric, respectively. We prove that if a p-power (α, β)-metric has relatively
isotropic mean Landsberg curvature, then it is either a Riemannian metric or a locally
Minkowski metric.
Keywords: metrics, manifold, conformal geometry.

1. Introduction

Conformal geometry has many important and interesting applications in phys-
ical theories, which have led to increased attention and research. In general rel-
ativity, light-like geodesics remain invariant under the conformal relation between
pseudo-Riemannian metrics. The Weyl theorem states that the study of conformal
and projective properties of a Finsler metric characterizes the metric properties as
uniquely [13, 19].

Two Finsler metrics F and F̃ , defined on a differentiable manifold M , are said
to be conformally related if F = eκ(x)F̃ , where κ(x) is a scalar function on M and
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is referred to as the conformal factor. If F̃ is a locally Minkowski metric, we say
that F is a conformally flat metric.

S. Kikuchi found a Finsler connection that is conformally invariant and he ex-
pressed the conformal flatness of a Finsler metric in terms of this connection [12].
Based on Kikuchi’s idea, M. Matsumoto introduced a conformal invariant Finsler
connection for Finsler metrics that have a tensor satisfying in a certain condition,
weaker than Kikuchi’s condition, then the condition that a Finsler metric is confor-
mally flat stated by the terms of this connection [16].

Ichijyō and Hashiguchi proposed a condition that a Randers metric can be con-
formally flat [10]. Randers metrics are the simplest examples of (α, β)-metrics which
made an important class of Finsler metrics. They have wide-ranging applications
in physics, biology, etc (see [2]).

A Finsler metric that is represented as F = αϕ(s), s := β/α is called a (α, β)-
metric where α(x, y) :=

√
aij(x)yiyj is a Riemannian metric, β(x, y) := bi(x)y

i

is a 1-form and ϕ(s) is a C∞ function that satisfies a certain inequality [15]. The
one-form β can be considered as an external force like wind and current. Thus (α, β)-
metrics can express the geometry of a Riemannian space impacted by an external
force. These metrics have been extensively studied because they are computable and
the research on (α, β)-metrics have contributed significantly to the field of Finsler
geometry and have suggested several ideas for further studies.

L. Kang considered conformally flat Randers metrics of scalar flag curvature
and proved that they are projectively flat and also provided a complete classifica-
tion of such metrics [11]. Conformally flat (α, β)-metrics with isotropic S-curvature
are considered in [3]. It is shown that they are Riemannian or locally Minkowski
metric and also classified conformally flat weak Einstein (α, β)-metrics of polyno-
mial type. In [5] it is proved that every non-Riemannian conformally flat weakly
Landsberg (α, β)-metric must be a locally Minkowski metric. Chen et al. studied
conformally flat (α, β)-metrics with constant flag curvature. Their research showed
that these metrics are either locally Minkowski or Riemannian metrics [4]. Tayebi
and Razgordani studied conformally flat weak Einstein fourth root (α, β)-metrics
and proved that they are also either locally Minkowskian or Riemannian [23]. For
more references, refer to [1, 17, 21, 22]

The class of p-power (α, β)-metrics are of the form

F = α
(
1 +

β

α

)p

,

where p ̸= 0 is a constant. For p = 1, F is a Randers metric. The Randers metrics
were introduced by G. Randers, when he was studying general relativity [18]. Later
on, R. S. Ingarden applied this metric to the theory of the electron microscope
[2]. If p = −1 then F = α2/(β + α) is a Matsumoto metric. This metric was
introduced by M. Matsumoto and is also called the slope metric. As a geometrical
motivation for the Matsumoto metric, suppose that a person is walking with the
constant speed v on a surface S that has the angle θ with respect to sea level and
under the gravitational field g. We can embedded S in the Euclidean space E3 using
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the parametrization

(x, y) 7−→ (x, y, f(x, y)),

where f(x, y) is a smooth function. By use of Okubo’s method [2], we obtain the
Matsumoto metric

F (x, y, ẋ, ẏ) =
α2

vα− g
2β
,

where

α :=
√

(1 + f2x)ẋ
2 + 2fxfyẋẏ + (1 + f2y )ẏ

2,

β := fxẋ+ fy ẏ.

In order to obtain the usual form of the Matsumoto metric, we set v = − g
2 and in

this case, we have F = α2

α+β . For more details see [20].

Also, in the case of p = 1
2 , F =

√
α(α+ β) that is called square-root (α, β)-

metric. In [24] p-power (α, β)-metrics of Einstein-reversible type have been consid-
ered and the local structure of a two-dimensional square-root metric is determined.
Thus, the class of p-power (α, β)-metrics deserve more attention.

For a Finsler metric F , we have the basic tensors, fundamental tensor gy and
Cartan torsion C. By taking horizontal covariant derivative of Cartan torsion along
the geodesics we obtain the tensor field L that is called Landsberg curvature. The
trace of C and L are called the mean Cartan torsion I and the mean Landsberg
curvature J, respectively. A Finsler metric F is called relatively isotropic mean
Landsberg curvature if there exists a scalar function c = c(x) on M such that

J+ cF I = 0.(1.1)

As to find an explicit example of conformally flat Finsler metric, this paper is de-
voted to the study of the conformally flat p-power (α, β)-metric, that has relatively
isotropic mean Landsberg curvature. The main result is the following.

Theorem 1.1. Let F = α
(
1 + β

α

)p
be the conformally flat (α, β)-metric on a

differentiable manifold M of dimension n ⩾ 3, where p ̸= 0 is a real constant.
Suppose that F has relatively isotropic mean Landsberg curvature. Then F reduces
to a Riemannian metric or a locally Minkowski metric.

As the consequences of Theorem 1.1, we have the following conclusions, that retrieve
other researcher’s results.

Corollary 1.1. Let F = α+β be the conformally flat Randers metric on a differ-
entiable manifold M of the dimension n ≥ 3. Suppose that F has relatively isotropic
mean Landsberg curvature. Then F is a Riemannian metric or a locally Minkowski
metric.
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It would be noted that, for F = α+β, it is proved in [6] that every Randers metric
is of isotropic mean Landsberg curvature if and only if it is of isotropic S-curvature.
On the other hand every conformally flat Randers metric with isotropic S-curvature
is either a locally Minkowski or a Riemannian metric [11]. Thus, using these results,
we have additional proof for Corollary 1.1.

Corollary 1.2. Let F =
√
α(α+ β) be the conformally flat square-root (α, β)-

metric on a differentiable manifold M of the dimension n ≥ 3. Suppose that F has
relatively isotropic mean Landsberg curvature. Then F is a Riemannian metric or
a locally Minkowski metric.

In [17] the conformally flat square-root (α, β)-metrics of relatively isotropic mean
Landsberg curvature is studied and Corollary 1.2 is proved.

Corollary 1.3. Let F = α2

α+β be the conformally flat Matsumoto metric on a
differentiable manifold M of the dimension n ≥ 3. Suppose that F has relatively
isotropic mean Landsberg curvature. Then F is a Riemannian metric or a locally
Minkowski metric.

2. Preliminaries

Let F = F (x, y) be a Finsler metric on an n-dimensional differentiable manifold
M and TM0 :=

⋃
x∈M TxM −{0} the slit tangent bundle. The fundamental tensor

(gy) = (gij(x, y)) of F is a quadratic form on TxM that is defined

gij(x, y) :=
1

2
[F 2]yiyj (x, y).

A curve x = xi(t) on Finsler space (M,F ) is called geodesic if satisfies in the
following system of ODEs:

d2xi

dt2
+Gi(x,

dx

dt
) = 0,

where Gi = Gi(x, y) are called the geodesic coefficients of F and defined by

Gi =
1

4
gil

{
[F 2]xmylym − [F 2]xl

}
.

In Finsler geometry, there are some geometric quantities that are vanishing for
Riemannian metrics and are called non-Riemannian quantities. The Cartan torsion
C is a symmetric trilinear form C := Cijkdx

i ⊗ dxj ⊗ dxk on TM0 that is defined
as follow

Cijk :=
1

4
[F 2]yiyjyk =

1

2

∂gij
∂yk

.

One can see that F is a Riemannian metric if and only if C = 0. Thus it is a
non-Riemannian quantity.
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The mean Cartan torsion of F is the tensor field I := Iidx
i, that is defined by

Ii := gjkCijk.

Furthermore, one can see that

Ii =
∂

∂yi

[
ln

√
det(gjk)

]
The horizontal covariant derivative of Cartan torsion along the geodesics defines

the tensor field L := Lijkdx
i ⊗ dxj ⊗ dxk on the slit tangent bundle TM0, that is

called the Landsberg curvature of F . Thus Lijk := Cijk;my
m, where ”; ” denoted

the horizontal covariant derivative with respect to the Berwald connection of F .
Also, the Landsberg curvature can be expressed as the following

Lijk = −1

2
FFym [Gm]yiyjyk .(2.1)

A Finsler metric F is called the Landsberg metric if L = 0.

The mean Landsberg curvature J := Jidx
i is a non-Riemannian quantity that

is obtained by horizontal covariant derivative of the mean Cartan torsion I along
the geodesics of F . Thus

Ji := Ii;my
m.(2.2)

Also, the mean Landsberg curvature J can be obtained as following

Ji := gjkLijk.

A Finsler metric F is called weak Landsberg metric if J = 0.

A Finsler metric F is called of relatively isotropic mean Landsberg curvature if
J/I, the relative growth rate of the mean Cartan torsion along geodesics of F is
isotropic, i.e. there exists a scalar function c = c(x) on M such that

J+ cF I = 0.

A Finsler metric F is an (α, β)-metric if F = αϕ(s), s := β/α, where α =√
aij(x)yiyj is a Riemannian metric, β = bi(x)y

i is a 1-form with ||βx|| < b0,
x ∈M and ϕ(s) is a positive C∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ
′
(s) + (b2 − s2)ϕ

′′
(s) > 0, |s| ≤ b < b0.(2.3)

In this case, the metric F = αϕ(s) is a positive definite Finsler metric [9]. The
fundamental tensor F = αϕ(s) is given by

gij = ρaij + ρ0bibj + ρ1(biαi + bjαi) + ρ2αiαj ,

where αi := α−1aijy
j , and

ρ := ϕ(ϕ− sϕ′), ρ0 := ϕϕ′′ + ϕ′ϕ′,

ρ1 := −s(ϕϕ′′ + ϕ′ϕ′) + ϕϕ′, ρ2 := s{s(ϕϕ′′ + ϕ′ϕ′)− ϕϕ′}.
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Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i)

where bi|j denote the coefficients of the covariant derivative of β with respect to α.
Let’s denote

rij := aimrmj , r00 := rijy
iyj , ri := bmrmi,

r0 := riy
i, ri0 := rimy

m, sij := aimsmj ,

si0 := simy
m, si := bmsmi, s0 := siy

i,

The geodesic coefficients Gi of an (α, β)-metric F = αϕ(s) are given by

Gi = Gi
α + αQsi0 + {−2Qαs0 + r00}

{
Ψbi +Θα−1yi

}
,(2.4)

where Gi
α are the geodesic coefficients of α and

Q :=
ϕ′

ϕ− sϕ′
,

Θ :=
ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ[ϕ− sϕ′ + (b2 − s2)ϕ′′]
,

Ψ :=
ϕ′′

2[ϕ− sϕ′ + (b2 − s2)ϕ′′]
.

For more details, see [9].

3. Proof of Theorem 1.1

In this section, we focus on a class of (α, β)-metrics, that contain Randers metric,
square metric, square-root metric, Matsumoto metric, etc. This class of metrics is
called p-power (α, β)-metrics and is of the form

F = α(1 + s)p, s := β/α,

where p ̸= 0 is a real constant. For more details see [24].

We consider p-power (α, β)-metric with relatively isotropic mean Landsberg cur-
vature and prove Theorem 1.1. In [8], the mean Cartan torsion of an (α, β)-metric
is computed.

Lemma 3.1. ([8])For an (α, β)-metric F = αϕ(s), s = β/α, the mean Cartan
torsion is given by

Ii = − 1

2F

Φ

∆
(ϕ− sϕ′)hi,(3.1)
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where

∆ := 1 + sQ+ (b2 − s2)Q′,

Φ := −(n∆+ 1 + sQ)(Q− sQ′)− (b2 − s2)(1 + sQ)Q′′,

Ψ1 :=
√
b2 − s2∆

1
2

[√
b2 − s2Φ

∆
3
2

]′

,

hj := bj − α−1syj .

It is well known that, by Deicke’s theorem, F is a Riemannian metric if and only if
I = 0. Thus from (3.1) we have

Lemma 3.2. An (α, β)-metric F = αϕ(s), s := β/α is a Riemannian metric if
and only if Φ = 0.

From (2.2) and (3.1), one can see that the mean Landsberg curvature of an (α, β)-
metric F = αϕ(s), s = β/α, is given by

Jj =
1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj

+α
[
− α2Q′s0hj + αQ(α2sj − yjs0) + α2∆sj0

+α2(rj0 − 2αQsj)− (r00 − 2αQs0)yj

]Φ
∆

}
,(3.2)

where yj := aijy
i. For more details see [8, 14]. From (3.1) and (3.2), we obtain

Jj + c(x)FIj = − 1

2α4∆

{
2α3

b2 − s2

[Φ
∆

+ (n+ 1)(Q− sQ′)
]
(s0 + r0)hj

+
α2

b2 − s2

[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hj + α

[
− α2Q′s0hj

+αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj

]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hj

}
.(3.3)

Since we study conformally flat (α, β)-metrics, we need the following Lemma.

Lemma 3.3. ([2]) Let F = αϕ(s), s = β/α, be an (α, β)-metric. Then F is locally
Minkowski metric if and only if α is flat and β is parallel with respect to α.
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Now, let F = αϕ(s), s = β/α, be a conformally flat Finsler metric, it means that,
there exists a Minkowski metric F̃ such that F̃ = eκ(x)F , where κ(x) is a scalar
function on the manifold. Since F = αϕ(β/α), we deduce F̃ = α̃ϕ(β̃/α̃) is an
(α, β)-metric, where

α̃ = eκ(x)α, β̃ = eκ(x)β.(3.4)

From (3.4), we have

ãij = e2κ(x)aij , b̃i = eκ(x)bi.

The Christoffel symbols Γi
jk of α and the Christoffel symbols Γ̃i

jk of α̃ are related
by

Γ̃i
jk = Γi

jk + δijκk + δikκj − κiajk,

where κi :=
∂κ
∂xi and κi := aijκj [7]. Thus, we obtain

b̃i∥j =
∂b̃i
∂xj

− b̃sΓ̃
i
jk = eκ(bi|j − bjκi + brκ

raij).(3.5)

where b̃i∥j denote the coefficients of the covariant derivative of β̃ with respect to α̃.

Since F̃ is a Minkowski metric, from Lemma 3.3, we have b̃i∥j = 0. Thus

bi|j = bjκi − brκ
raij .(3.6)

From (3.6), we conclude

rij =
1

2
(κibj + κjbi)− brκ

raij , rj = −1

2
(brκr)bj +

1

2
κjb

2,(3.7)

ri0 =
1

2
[κiβ + (κry

r)bi]− κrb
ryi, sij =

1

2
(κibj − κjbi),(3.8)

sj =
1

2
(brκr)bj − κjb

2, si0 =
1

2
[κiβ − (κry

r)bi].(3.9)

Further, we have

r00 = (κry
r)β − (κrb

r)α2,(3.10)

r0 =
1

2
(κry

r)b2 − 1

2
(κrb

r)β,(3.11)

s0 =
1

2
(κrb

r)β − 1

2
(κry

r)b2.(3.12)

From (3.11) and (3.12), we see that a conformally flat (α, β)-metric satisfyies r0 +
s0 = 0 which means that the 1-form β has constant length with respect to α.

In order to simplify the computations, we take an orthonormal basis at any point
x with respect to α such that α =

√∑n
i=1(y

i)2 and β = by1, where b := ∥βx∥α.
Then, we take the following coordinate transformation

ψ : (s, uA) −→ (yi),
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in TxM , that is

y1 =
s√

b2 − s2
ᾱ, yA = uA, 2 ≤ A ≤ n,(3.13)

where ᾱ =
√∑n

i=2(u
A)2. In this case, we have

α =
b√

b2 − s2
ᾱ, β =

bs√
b2 − s2

ᾱ.(3.14)

Then, by (3.6)-(3.14) one can obtain

r00 = −bκ1ᾱ2 +
bsκ̄0ᾱ√
b2 − s2

, r0 = −s0 =
1

2
b2κ̄0,(3.15)

rA0 =
1

2

κAbsᾱ√
b2 − s2

− (bκ1)uA, r10 =
1

2
bκ̄0,(3.16)

sA = −1

2
κAb

2, s1 = 0,(3.17)

sA0 =
1

2

κAbsᾱ√
b2 − s2

, s10 = −1

2
bκ̄0,(3.18)

hA = −
√
b2 − s2suA

bᾱ
, h1 = b− s2

b
.(3.19)

where κ̄0 := κAu
A.

Now, we can prove Theorem 1.1.

Proof of Theorem 1.1: Since b̃i∥j = 0, we have that b̃ is a real constant. If b̃ = 0,

then F = ek(x)α̃ is a Riemannian metric. Now, let F is not Riemannian. Suppose
that F is a conformally flat (α, β)-metric with relatively isotropic mean Landsberg
curvature. By (3.3) and r0 + s0 = 0, we obtain

α2

b2 − s2
{
Ψ1 + s

Φ

∆

}
(r00 − 2αQs0)hj + α

{
− α2Q′s0hj

+αQ(α2sj − yjs0) + α2∆sj0 + α2(rj0 − 2αQsj)

−(r00 − 2αQs0)yj
}Φ

∆
− c(x)α4Φ(ϕ− sϕ′)hj = 0.(3.20)

Putting j = 1 in (3.20), we have

α2

b2 − s2

{
Ψ1 + s

Φ

∆

}
(r00 − 2αQs0)h1 + α

{
− α2Q′s0h1

+αQ(α2s1 − y1s0) + α2∆s10 + α2(r10 − 2αQs1)

−(r00 − 2αQs0)y1
}Φ

∆
− c(x)α4Φ(ϕ− sϕ′)h1 = 0.(3.21)

Substituting (3.14)-(3.19) into (3.21) and then multiplying the resulting equation
with −2∆(b2 − s2)3/2 we have

b2ᾱ3

{
2
√
b2 − s2∆

[
bc(x)Φ(ϕ− sϕ′) + Ψ1σ1

]
ᾱ− κ̄0

[
b2ΦQ′(b2 − s2)
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+Φb2(sQ+ 1)−∆Φb2 − 2Ψ1∆(b2Q+ s)
]}

= 0.(3.22)

From (3.22), we get

∆
[
bc(x)Φ(ϕ− sϕ′) + Ψ1κ1

]
= 0,(3.23)

κ̄0
[
b2ΦQ′(b2 − s2) + Φb2(sQ+ 1)−∆Φb2 − 2Ψ1∆(b2Q+ s)

]
= 0.(3.24)

Since ∆ = Q′(b2 − s2) + sQ+ 1, one can see that (3.24) simplify as follow

(b2Ψ1∆Q+Ψ1∆s)κ̄0 = 0.

This means that

Ψ1∆(b2Q+ s)κ̄0 = 0.(3.25)

Now let j = A in (3.20), thus we have

α2

b2 − s2
[
Ψ1 + s

Φ

∆

]
(r00 − 2αQs0)hA + α

[
− α2Q′s0hA +

αQ(α2sA − yAs0) + α2∆sA0 + α2(rA0 − 2αQsA)

−(r00 − 2αQs0)yA
]Φ
∆

+ c(x)α4Φ(ϕ− sϕ′)hA = 0.(3.26)

Putting (3.14)-(3.19) into (3.26) and using the same method as used in the case of
j = 1 and from ∆ = Q′(b2 − s2) + sQ+ 1, we get

(s∆+ s+ b2Q)b2ΦκAᾱ
2 −

[
(s∆+ s+ b2Q)b2Φ

+2s(b2Q+ s)Ψ1∆
]
κ̄0uA = 0,(3.27)

s
√
b2 − s2[Φbc(x)(ϕ− sϕ′) + Ψ1κ1]∆uA = 0.(3.28)

One can easily see that (3.28) is equivalent to (3.23). Also, multiplying (3.27) with
uA implies that

s(b2Q+ s)Ψ1∆κ̄0ᾱ
2 = 0.(3.29)

It is obvious that (3.29) is equivalent to (3.25). Anyway, we showed that a confor-
mally flat (α, β)-metric with relatively isotropic mean Landsberg curvature satisfiy
(3.23) and (3.25).

If b2Q+ s = 0, then we obtain ϕ = k
√
b2 − s2, where k is a constant. This is a

contradiction with the assumption that ϕ = (1 + s)p. Thus b2Q + s ̸= 0 and then
from (3.25) we conclude that Ψ1 = 0 or κA = 0.

If Ψ1 = 0, then using (3.23) we obtain that Φ = 0, and from Lemma 3.2, we see
that F is a Riemannian metric.

If Ψ1 ̸= 0, then κA = 0. In this case , we prove that κ1 = 0.
Simplifying (3.23) and multiplying it by ∆2, we get{

[(b2 − s2)Φ′ − sΦ]∆− 3

2
(b2 − s2)Φ∆′

}
κ1 − bc(x)∆2Φ(ϕ− sϕ′) = 0.(3.30)
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Let A1 := (p − 1)s − 1 and A2 := (1 − p2)s2 + (2 − p)s + p(p − 1)b2 + 1. Putting
ϕ(s) = (1 + s)p into (3.30) and multiplying by A4

1A
2
2 and using Maple program, we

obtain

A1A
2
2Ec(x)bp(1 + s)p−1 +M7s

7 + . . .+M0 = 0,(3.31)

where

E := 2n(p+ 1)(p− 1)2s3 + (p− 1)
[
(p− 5)n− 3

]
s2

−
{
2
(
np3 − (2n+ 1)p2 + (n+ 2)p− 1

)
b2 + (n+ 1)(3p− 4)

}
s

+
[
(n+ 2)p2 − (n+ 4)p+ 2

]
b2 + (1 + n),(3.32)

and Mi, (0 ≤ i ≤ 7) are polynomials independent from s. Specially

M7 := 3(n− 1)p(p+ 1)(p− 1)4κ1.(3.33)

Now, we consider the following cases.

Case(I): If p ≥ 2, is a positive integer constant. Then (3.31) can be rewritten as

M′
7+ps

7+p +M′
6+ps

6+p + . . .+M′
0 = 0.(3.34)

where M′
7+p := 2nbp(p + 1)3(p − 1)5c(x). Thus c(x) = 0 and therefore (3.34) is

reduced to

M7s
7 + . . .+M0 = 0.(3.35)

From (3.35) and (3.33) we obtain that κ1 = 0.

Case(II): If p = 1, then F = α + β is a Randers metric. In this case (3.31) is
reduced to

(κ1 − 2bc(x))s2 + 2(κ1 − 2bc(x))s+ b(κ1b− 2c(x)) = 0.(3.36)

From (3.36) it follows that c(x) = κ1 = 0.

Case (III): If p is a positive non-integer constant. Then, from (3.31) and (3.32),
we hvave that c(x) = Mi = 0, (0 ≤ i ≤ 7). Thus from (3.33), it follows that κ1 = 0.

Case (IV): If p = −1. In this case F = α2

α+β , is a Matsumoto metric. Putting

ϕ(s) = 1
1+s in (3.30) and multiplying by A4

1A
2
2(1 + s)2, we get

18(2n+ 1)κ1s
8 +D7s

6 + . . .+D0 = 0.

Thus κ1 = 0.

Case (V): If p ≤ −2 is a negative integer constant. In this case, Eq. (3.31) can
be rewritten as follows.

N8−ps
8−p +N7−ps

7−p + . . .+N1s+N0 = 0,(3.37)
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where N8−p = 3(n− 1)p(p+ 1)(p− 1)4κ1. Thus κ1 = 0.

Case (VI): If p is a negative non-integer constant. In this case, (3.31) is reduced
to

A1A
2
2Ec(x)bp+ (1 + s)1−p[M7s

7 + . . .+M0] = 0.(3.38)

From (3.33), and (3.38) we have κ1 = c(x) = 0.

Therefore, in any case κ1 = κA = 0, which means that κ is a constant. Thus F
is a locally Minkowski metric. This completes the proof. 2

It would be noted that, in the Case (I), ϕ(s) = (1+ s)p is a polynomials of s. In
[5] it is proved that every (α, β)-metric F = αϕ(s) with relatively isotropic mean
Landsberg curvature, where ϕ(s) is a polynomial of s, is either a Riemannian or a
locally Minkowski metric.

4. Conclusion

In this paper, we considered conformally flat p-power (α, β)-metrics. We proved
that every conformally flat p-power (α, β)-metrics with relatively isotropic mean
Landsberg curvature is a Riemannian or a locally Minkowski metric. Therefore,
this class of (α, β)-metrics are classified. The readers are encouraged to consider
the class of conformally flat p-power (α, β)-metrics with other Riemannian or non-
Riemannian quantities, such as weakly isotropic scalar flag curvature, weak Einstein
metric, etc.
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