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1. Introduction

The idea of rough convergence of sequences was first introduced in a normed
linear space by H. X. Phu [16] in 2001 and then he further studied the same on an
infinite dimensional normed linear space [17]. The formal definition given by him
is as follows: if {xn} is a sequence in a normed linear space (X, ||.||) and r is a
non-negative real number, then {xn} is said to be r-convergent to x, denoted by

xn
r−→ x, if ∀ε > 0, ∃ N ∈ N : n ≥ N −→ ||xn − x|| < r + ε, or equivalently,

if limsupn→∞ ||xn − x|| < r. This is the idea of rough convergence with r as
roughness degree. For r = 0 we have the ordinary convergence. The main difference
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of ordinary and rough convergence is that if a sequence in a normed linear space
converges, then its limit is unique but for rough convergence with roughness degree
r > 0 the limit may be infinite. The set of all r-limits is denoted by LIMrxn. Phu
discussed about the idea of rough limit sets and also some basic properties of rough
limit sets such as boundedness, closedness and convexity etc. Also he introduced
the idea of rough Cauchy sequences. Later works on rough convergence in many
directions were carried out by many authors [1, 2, 4, 7, 11, 12, 13].

We intended to study the idea of rough convergence in a more generalized form.
So, it is required to discuss in brief the ideas of statistical convergence.

Statistical convergence is a generalization of the ordinary convergence. The
concept of statistical convergence was introduced by H. Fast [8] and H. Steinhaus
[18] in the year 1951. The idea of statistical convergence has been dependent on the
structure of subsets of the natural numbers by T. Salat [19] as follows: ifB ⊂ N, then
Bn will denote the set {k ∈ B : k ≤ n} and |Bn| stands for the cardinality of Bn.

The natural density of B is denoted by d(B) and defined by d(B) = limn→∞
|Bn|
n ,

if the limit exists. A real sequence {ξn} is said to be statistically convergent to
ξ if for every ε > 0 the set B(ε) = {k ∈ N : |ξn − ξ| ≥ ε} has natural density
zero. In this case, ξ is called the statistical limit of the sequence {ξn} and we write
st−LIMrξn = ξ. We have d(Bc) = 1−d(B), where Bc = N\B is the complement
of B. If B1 ⊂ B2, then d(B1) ≤ d(B2). Also, in [9, 10] and their references we can
find more results on statistical convergence.

In 1994, partial metric spaces were introduced by S. Mattews [14] as a general-
ization of metric spaces. In our present work we discuss the idea of rough statistical
convergence of sequences in partial metric spaces. We have given the idea of statis-
tical boundedness in a partial metric space. We have also defined the set of rough
statistical limit points and found out several properties of this set like boundedness
and closedness etc.

2. Preliminaries

Definition 2.1. [6] A partial metric on a nonempty set X is a function ρ : X ×
X −→ [0,∞) such that for all x, y, z ∈ X:
(p1) 0 ≤ ρ(x, x) ≤ ρ(x, y) (nonnegativity and small self-distances),
(p2) x = y ⇐⇒ ρ(x, x) = ρ(x, y) = ρ(y, y) (indistancy both implies equality),
(p3) ρ(x, y) = ρ(y, x) (symmetry),
(p4) ρ(x, y) ≤ ρ(x, z) + ρ(z, y)− ρ(z, z) (triangularity).
Then (X, ρ) is said to be a partial metric space, where X is a nonempty set and ρ
is a partial metric on X.

Properties and examples of partial metric spaces have been thoroughly discussed
in [6].

Definition 2.2. [6] In a partial metric space (X, ρ), for r > 0 and x ∈ X we define
the open and closed ball of radius r and center x respectively are as follows:



Rough Statistical Convergence of Sequences in a Partial Metric Space 211

Bρ
r (x) = {y ∈ X : ρ(x, y) < ρ(x, x) + r},

Bρ
r (x) = {y ∈ X : ρ(x, y) ≤ ρ(x, x) + r}.

Definition 2.3. [6] Let (X, ρ) be a partial metric space. A subset U of X is
said to be bounded in X if there exists a positive real number M such that sup
{ρ(x, y) : x, y ∈ U} < M .

Definition 2.4. [6] Let (X, ρ) be a partial metric space and {xn} be a sequence in
X. Then {xn} is said to converge to x ∈ X if and only if limn→∞ρ(xn, x) = ρ(x, x);
i.e. if for each ε > 0 there exists k ∈ N such that |ρ(xn, x) − ρ(x, x)| < ε for all
n ≥ k.

Definition 2.5. [15] Let (X, ρ) be a partial metric space. Then the sequence {xn}
is said to be statistically convergent to x if for every ε > 0,

d(n ∈ N : |ρ(xn, x)− ρ(x, x)| ≥ ε) = 0.

Definition 2.6. [15] Let (X, ρ) be a partial metric space. Then the sequence {xn}
is called statistically Cauchy if for every ε > 0 there is a positive integer m and
l ≥ 0 such that

d(n ∈ N : |ρ(xn, xm)− l| ≥ ε) = 0.

Definition 2.7. [5] Let (X, ρ) be a partial metric space. A sequence {xn} in X is
said to be rough convergent (or r-convergent) to x of roughness degree r for some
non-negative real number r if for every ε > 0 there exists a natural number k such
that |ρ(xn, x)− ρ(x, x)| < r + ε holds for all n ≥ k.

3. Rough statistical convergence in partial metric spaces

Definition 3.1. A sequence {xn} in a partial metric space (X, ρ) is said to be
rough statistically convergent (or in short r-statistically convergent or r − st con-
vergent) to x of roughness degree r for some non-negative real number r if for every
ε > 0,

d({n ∈ N : |ρ(xn, x)− ρ(x, x)| ≥ r + ε}) = 0.

We denote it by the notation xn
r−st−→ x in (X, ρ). When r = 0, then the rough

statistical convergence becomes the statistical convergence in any partial metric
space (X, ρ). Let a sequence {xn} be rough statistically convergent to x, then x is
said to be a rough statistical limit point of {xn}. And the set of all rough statistical
limit points of a sequence {xn} is said to be the r − st limit set. We will denote it

by st− LIMrxn. Hence st− LIMrxn =
{
x ∈ X : xn

r−st−→ x
}
.
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Theorem 3.1. Every rough convergent sequence in a partial metric space (X, ρ)
is rough statistically convergent in (X, ρ).

Proof. Let {xn} be a sequence in (X, ρ) and rough convergent to x. Then for an
arbitrary ε > 0, there exists k ∈ N such that |ρ(xn, x) − ρ(x, x)| < r + ε, ∀n ≥ k.
Now, the set A = {n ∈ N : |ρ(xn, x) − ρ(x, x)| ≥ r + ε} ⊂ {1, 2, 3, ...(k − 1)} is a
finite set. So, d(A) = 0. Hence {xn} is rough statistically convergent in (X, ρ).

Remark 3.1. The converse of the above theorem may not be true i.e. rough statistically
convergent sequence may not be rough convergent in (X, ρ).

Example 3.1. Let X = R+ and ρ : X ×X −→ R+ be given by ρ(x, y) = max{x, y} for
all x, y ∈ X. Then (X, ρ) is a partial metric space. Let us took a sequence {xn} which is
defined by

xn =


k, if n = k2 ,

2, if n ̸= k2 and n is even,

0, if n ̸= k2 and n is odd.

Let ε > 0 be given.
Then A1 = {n ∈ N : |ρ(xn, 0)− ρ(0, 0)| ≥ 1 + ε} ⊂ {12, 22, 32, 42, 52.....} = P (say).
Similarly, the sets A2 = {n ∈ N : |ρ(xn, 1) − ρ(1, 1)| ≥ 1 + ε} ⊂ P and A3 = {n ∈ N :
|ρ(xn, 2)− ρ(2, 2)| ≥ 1 + ε} ⊂ P .
Since d(P ) = 0, so d(A1) = d(A2) = d(A3) = 0.
So, {xn} is rough statistical convergent to 0,1 and 2 of roughness degree 1.
Again, for any k such that 1 < k < 2, the set Ak = {n ∈ N : |ρ(xn, k)− ρ(k, k)| ≥ 1+ ε} ⊂
{12, 22, 32, .....} = P .
If k > 2, then the set Ak ⊂ P . So, the statistical rough limit set of roughness degree 1 is
{0} ∪ {k ∈ R+ : k ≥ 1} i.e. st− LIMrxn = {0} ∪ [1,∞). But

|ρ(xn, 2)− ρ(2, 2)| =


|ρ(k, 2)− ρ(2, 2)| = |k − 2|, if n = k2,

|ρ(2, 2)− ρ(2, 2)| = 0, if n ̸= k2 and n is even,

|ρ(0, 2)− ρ(2, 2)| = 0, if n ̸= k2 and n is odd.

So, when n = k2, there does not exist any positive integer n0 such that the condition
|ρ(xn, 2)− ρ(2, 2)| < r + ε for all n ≥ n0 holds, since |k − 2| −→ ∞ as k2 −→ ∞.
Hence {xn} is not rough convergent to 2 of any roughness degree r > 0. Similarly, it can be
shown that {xn} is not rough convergent to 0 or any number in [1,∞) i.e. LIMrxn = ϕ.

Definition 3.2. [5] The diameter of a set B in a partial metric space (X, ρ) is
defined by

diam(B) = sup {ρ(x, y) : x, y ∈ B}.

Theorem 3.2. Let (X, ρ) be a partial metric space and a be a positive real number
such that ρ(x, x) = a for all x in X. Then for a sequence {xn}, we have diam(st−
LIMrxn) ≤ (2r + 2a).
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Proof. Let diam(st − LIMrxn) > 2r + 2a. Then there exist elements y, z ∈ st −
LIMrxn such that ρ(y, z) > 2r + 2a. Let us take ε ∈ (0, ρ(y,z)

2 − r − a). Since
y, z ∈ st − LIMrxn, we have d(M1) = 0 and d(M2) = 0, where M1 = {n ∈ N :
|ρ(xn, y)− ρ(y, y)| ≥ r + ε} and M2 = {n ∈ N : |ρ(xn, z)− ρ(z, z)| ≥ r + ε}. Using
the property of natural density, we get d(M c

1 ∩M c
2 ) = 1. So, for all n ∈ M c

1 ∩M c
2 ,

we have

ρ(y, z) ≤ ρ(y, xn) + ρ(xn, z)− ρ(xn, xn)

= {ρ(xn, y)− ρ(y, y)}+ {ρ(xn, z)− ρ(z, z)} − ρ(xn, xn) + ρ(y, y) + ρ(z, z)

< 2(r + ε)− a+ a+ a

= 2r + 2ε+ a

< 2r + ρ(y, z)− 2r − 2a+ a

= ρ(y, z)− a, which is a contradiction.

Hence we must have diam(st− LIMrxn) ≤ 2r + 2a.

Theorem 3.3. If a sequence {xn} statistically converges to x in a partial metric

space (X, ρ), then {y ∈ Bρ
r (x) : ρ(x, x) = ρ(y, y)} ⊆ st− LIMrxn.

Proof. Let ε > 0 and a sequence {xn} statistically converges to x in a partial
metric space (X, ρ). Then d(A) = 0, where A = {n ∈ N : |ρ(xn, x)− ρ(x, x)| ≥ ε}.
Let y ∈ Bρ

r (x) such that ρ(x, x) = ρ(y, y). Then ρ(x, y) ≤ ρ(x, x) + r such that
ρ(x, x) = ρ(y, y). For n ∈ Ac,

ρ(xn, y) ≤ ρ(xn, x) + ρ(x, y)− ρ(x, x)

≤ {ρ(xn, x)− ρ(x, x)}+ ρ(x, y)

< ϵ+ {ρ(x, x) + r}
= ρ(x, x) + (r + ϵ)

Therefore,

ρ(xn, y)− ρ(y, y) < ρ(x, x)− ρ(y, y) + (r + ϵ)

= (r + ϵ), since ρ(x, x) = ρ(y, y).

So, by (p1) axiom, |ρ(xn, y) − ρ(y, y)| = ρ(xn, y) − ρ(y, y) < (r + ϵ), for every
n ∈ Ac. So, {n ∈ N : |ρ(xn, y) − ρ(y, y)| ≥ r + ε} ⊂ A and hence d({n ∈ N :
|ρ(xn, y)− ρ(y, y)| ≥ r + ε}) = 0. So, y ∈ st− LIMrxn.

Theorem 3.4. Let {xn} be a r-statistical convergent sequence in (X, ρ) and {yn}
be a convergent sequence in st − LIMrxn converging to y. Then y must belong to
st− LIMrxn.

Proof. If st−LIMrxn = ϕ, then there is nothing to prove. So, we can assume that
st−LIMrxn ̸= ϕ. Let {yn} be a sequence in st−LIMrxn such that {yn}−→y. Let
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ε > 0 be given. Since {yn}−→y, there exists n ε
2
∈ N such that |ρ(yn, y)−ρ(y, y)| < ε

2
for all n ≥ n ε

2
. Now, choose an n0 ∈ N such that n0 > n ε

2
. Then we can write

|ρ(yn0 , y)−ρ(y, y)| < ε
2 . On the other hand, because {yn} ⊂ st−LIMrxn, we have

yn0
∈ st− LIMrxn and

(3.1) d({n ∈ N : |ρ(xn, yn0
)− ρ(yn0

, yn0
)| ≥ r +

ε

2
}) = 0

Now, we show
(3.2)

{n ∈ N : |ρ(xn, y)− ρ(y, y)| < r + ε} ⊇ {n ∈ N : |ρ(xn, yn0)− ρ(yn0 , yn0)| < r +
ε

2
}

Let k ∈ {n ∈ N : |ρ(xn, yn0
)− ρ(yn0

, yn0
)| < r + ε

2}.
Then we have |ρ(xk, yn0

)− ρ(yn0
, yn0

)| < r + ε
2 and hence

ρ(xk, y)− ρ(y, y) ≤ ρ(xk, yn0) + ρ(yn0 , y)− ρ(yn0 , yn0)− ρ(y, y)

≤ |ρ(xk, yn0)− ρ(yn0 , yn0) + ρ(yn0 , y)− ρ(y, y)|
≤ |ρ(xk, yn0)− ρ(yn0 , yn0)|+ |ρ(yn0 , y)− ρ(y, y)|

< (r +
ε

2
) +

ε

2
= r + ε

So, by (p1) axiom, |ρ(xk, y)− ρ(y, y)| < r + ε. Therefore, k ∈ {n ∈ N : |ρ(xn, y)−
ρ(y, y)| < r + ε}, which proves (3.2). From (3.1), we can say that the set on the
right-hand side of (3.2) has a natural density of 1 and so, the natural density of the
set on the left-hand side of (3.2) is equal to 1. Hence d({n ∈ N : |ρ(xn, y)−ρ(y, y)| ≥
r + ε}) = 0. This proves that y ∈ st− LIMrxn.

Corollary 3.1. Let {xn} be a r-statistical convergent sequence in a partial metric
space (X, ρ). Then st− LIMrxn is a closed set for any degree of roughness r ≥ 0.

Proof. Since the partial metric space (X, ρ) is first countable [5], the result follows
directly from Theorem 3.4.

Definition 3.3. [3] A sequence {xn} in a partial metric space (X, ρ) is said to be
statistically bounded if for any fixed u ∈ X there exists a positive real number M
such that

d({n ∈ N : ρ(xn, u) ≥ M}) = 0.

Remark 3.2. In [15], the definition of boundedness of a sequence in a partial metric
space is given as follows:
{xn} is bounded if there exists M > 0 such that ρ(xn, xm) ≤ M , ∀ n,m ∈ N.
This definition is equivalent to Definition 3.3.
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Theorem 3.5. Let (X, ρ) be a partial metric space and a be a positive real number
such that ρ(x, x) = a, ∀x ∈ X. Then a sequence {xn} is statistically bounded
in (X, ρ) if and only if there exists a non-negative real number r such that st −
LIMrxn ̸= ϕ.

Proof. Let u ∈ X be a fixed element in X. Since the sequence {xn} is statistically
bounded, there exists a positive real number M such that d({n ∈ N : ρ(xn, u) ≥
M}) = 0. Let ε > 0 be arbitrary and r = M + a. Now, we show that

(3.3) {n ∈ N : |ρ(xn, u)− ρ(u, u) < r + ε} ⊃ {n ∈ N : ρ(xn, u) < M}

Let i ∈ {n ∈ N : ρ(xn, u) < M}. Then ρ(xi, u) < M . Now, ρ(xi, u) − ρ(u, u) ≤
|ρ(xi, u) − ρ(u, u)| ≤ |ρ(xi, u)| + |ρ(u, u)| < M + a = r < r + ε. So, i ∈ {n ∈ N :
|ρ(xn, u)−ρ(u, u)| < r+ε}. So, (3.3) holds and hence {n ∈ N : |ρ(xn, u)−ρ(u, u) ≥
r+ ε} ⊂ {n ∈ N : ρ(xn, u) ≥ M}. This implies that d({n ∈ N : |ρ(xn, u)− ρ(u, u) ≥
r + ε}) = 0. Therefore, u ∈ st− LIMrxn i.e. st− LIMrxn ̸= ϕ.

Conversely, suppose that st − LIMrxn ̸= ϕ. So, let u be a r-limit of {xn}.
Therefore, for ε > 0, d({n ∈ N : |ρ(xn, u)− ρ(u, u) ≥ r+ ε}) = 0. Let K = {n ∈ N :
|ρ(xn, u)− ρ(u, u) ≥ r+ ε} and M = r+ a+ ε. Then d(K) = 0 and if n ∈ Kc, then

ρ(xn, u) = |ρ(xn, u)− ρ(u, u) + ρ(u, u)|
≤ |ρ(xn, u)− ρ(u, u)|+ |ρ(u, u)|
< r + ε+ a

< M

So, n ∈ {n ∈ N : ρ(xn, u) < M}. This implies Kc ⊂ {n ∈ N : ρ(xn, u) < M}.
So, {n ∈ N : ρ(xn, u) ≥ M} ⊂ K. Since d(K) = 0, d({n ∈ N : ρ(xn, u) ≥ M}) = 0.
Hence {xn} is statistically bounded.

Theorem 3.6. Let {xnk
} be a subsequence of {xn} such that d({n1, n2, ....}) = 1,

then st− LIMrxn ⊆ st− LIMrxnk
.

Proof. Let {xnk
} be a subsequence of {xn} and x ∈ st − LIMrxn and let ε > 0.

So the set A = {n ∈ N : |ρ(xn, x) − ρ(x, x)| ≥ r + ε} has density zero. So,
d(Ac) = 1. Since the set K = {n1, n2, ....} has density 1, Ac ∩ K ̸= ϕ. For if
Ac ∩ K = ϕ, then K ⊂ A and so d(K) = 0, since d(A) = 0. But d(K) = 1,
then Ac ∩ K ̸= ϕ. Let nq ∈ Ac ∩ K. Then |ρ(xnq

, x) − ρ(x, x)| < r + ε i.e.
nq ∈ {nk ∈ K : |ρ(xnk

, x)− ρ(x, x)| < r + ε}. So, {nk ∈ K : |ρ(xnk
, x)− ρ(x, x)| ≥

r + ε} ⊂ A ∪Kc. This implies that d({nk ∈ K : |ρ(xnk
, x)− ρ(x, x)| ≥ r + ε}) = 0,

since d(A∪Kc) ≤ d(A)+ d(Kc) = 0+ 0 = 0. Therefore, x ∈ st−LIMrxnk
. Hence

st− LIMrxn ⊆ st− LIMrxnk
.

Theorem 3.7. Let {xn} and {yn} be two sequences in (X, ρ) such that ρ(xn, yn) −→
0 as n −→ ∞. If {xn} is r-statistically convergent to x and ρ(xn, xn) −→ 0



216 S. Khatun and A. K. Banerjee

as n −→ ∞, then {yn} is r-statistically convergent to x. Conversely, if {yn} is
r-statistically convergent to y and ρ(yn, yn) −→ 0 as n −→ ∞, then {xn} is r-
statistically convergent to y.

Proof. Let {xn} be r-statistically convergent to x and let ε > 0 be arbitrary. So,
for ε > 0, d(A) = 0, where A = {n ∈ N : |ρ(xn, x)− ρ(x, x)| ≥ r + ε

3}.
Again, since ρ(xn, yn) −→ 0 as n −→ ∞, for ε > 0, ∃ k1 ∈ N such that

(3.4) ρ(xn, yn) ≤
ε

3
, when n ≥ k1.

Since ρ(xn, xn) −→ 0 as n −→ ∞, ∃ k2 ∈ N such that

(3.5) ρ(xn, xn) ≤
ε

3
, when n ≥ k2.

Let k = max{k1, k2}. Then for n ≥ k, (3.4) and (3.5) both hold.
We can write ρ(yn, x) ≤ ρ(yn, xn) + ρ(xn, x) − ρ(xn, xn). So, ρ(yn, x) − ρ(x, x) ≤
ρ(yn, xn) + ρ(xn, x)− ρ(xn, xn)− ρ(x, x).
Since d(A) = 0, d(Ac) = 1. Since d({1, 2, ....k}) = 0, so d({1, 2, ....k}c) = 1. So,
Ac ∩ {1, 2, ....k}c ̸= ϕ. Therefore, if n ∈ Ac ∩ {1, 2, ....k}c, then

|ρ(yn, x)− ρ(x, x)| = |ρ(yn, x)− ρ(x, x)|
≤ |ρ(yn, xn) + ρ(xn, x)− ρ(xn, xn)− ρ(x, x)|
≤ |ρ(xn, yn)|+ |ρ(xn, x)− ρ(x, x)|+ |ρ(xn, xn)|

<
ε

3
+ (r +

ε

3
) +

ε

3
= r + ε

This implies that Ac∩{1, 2, ....k}c ⊂ {n ∈ N : |ρ(yn, x)−ρ(x, x)| < r+ε} and hence
{n ∈ N : |ρ(yn, x)− ρ(x, x)| ≥ r+ ε} ⊂ (Ac ∩ {1, 2, ....k}c)c = A∪ {1, 2, ....k}. Since
d(A ∪ {1, 2, ....k}) ≤ d(A) + d({1, 2, ....k}) = 0 + 0 = 0, it follows that d({n ∈ N :
|ρ(yn, x)− ρ(x, x)| ≥ r + ε}) = 0. Therefore, {yn} is r-statistical convergent to x.

Converse part is similar.

Theorem 3.8. Let {xn} and {yn} be two sequences in (X, ρ) such that ρ(xn, yn) −→
0 as n −→ ∞. If {xn} is r-statistically convergent to x and a positive number c
such that ρ(xn, xn) ≤ c for all n (i.e. self-distance of the sequence is less or equal
to c), then {yn} is (r + c)-statistically convergent to x. Conversely, if {yn} is r-
statistically convergent to y and a positive number d such that ρ(yn, yn) ≤ d for all
n, then {xn} is (r + d)-statistically convergent to y.

Proof. The proof is parallel to the proof of the above theorem and so is omitted.

Definition 3.4. Let (X, ρ) be a partial metric space. Then c ∈ X is called a
statistical cluster point of a sequence {xn} in (X, ρ) if for every ε > 0, d({n ∈ N :
|ρ(xn, c)− ρ(c, c)| < ε}) ̸= 0.
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Theorem 3.9. Let (X, ρ) be a partial metric space and a be a real constant such
that ρ(x, x) = a, ∀x ∈ X. Let {xn} be a sequence in (X, ρ). If c is a cluster point

of {xn}, then st− LIMrxn ⊂ Bρ
r (c) for some r > 0.

Proof. If possible suppose that y ∈ st − LIMrxn but y /∈ Bρ
r (c) = {y ∈ X :

ρ(c, y) ≤ ρ(c, c) + r} = {y ∈ X : ρ(c, y) ≤ a + r}. So, a + r < ρ(c, y). Let

ε
′
= ρ(c, y) − (a + r), so that ρ(c, y) = ε

′
+ a + r, where ε

′
> 0. Choose ε = ε

′

2
and so we can write ρ(c, y) = 2ε + a + r. Then Br+ε(y) ∩ Bε(c) = ϕ. [ For, if
q ∈ Br+ε(y) ∩Bε(c), then it would imply that ρ(q, y) < ρ(y, y) + r + ε = a+ r + ε
and ρ(q, c) < ρ(c, c)+ε = a+ε which in turn implies that ρ(c, y) ≤ ρ(c, q)+ρ(q, y)−
ρ(q, q) < {a+ε}+{a+r+ε}−a = a+r+2ε = ρ(c, y), a contradiction ]. Therefore,
Br+ε(y) ∩ Bε(c) = ϕ. But since y ∈ st − LIMrxn, for ε > 0, d(A1) = 0, where
A1 = {n ∈ N : |ρ(xn, y)−ρ(y, y)| ≥ r+ ε}. Again, since c is a cluster point of {xn},
for the same ε > 0, d(A2) ̸= 0, where A2 = {n ∈ N : |ρ(xn, c)− ρ(c, c)| < ε}. Now,
let k ∈ Ac

1 ∩A2, then |ρ(xk, c)− ρ(c, c)| < ε. This implies that ρ(xk, c)− ρ(c, c) < ε.
So, ρ(c, xk) < ρ(c, c) + ε. Hence xk ∈ Bε(c). Also, |ρ(xk, y) − ρ(y, y)| < r + ε. So,
ρ(xk, y)− ρ(y, y) < r + ε. This implies that ρ(y, xk) < ρ(y, y) + r + ϵ. Hence xk ∈
Br+ε(y). So, xk ∈ Br+ε(y) ∩Bε(c), which is a contradiction. Hence y ∈ Bρ

r (c).
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