
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this paper, we investigate Yamabe solitons on deformed Sasakian mani-
folds. We proved that the Yamabe soliton constant is invariant under new deformation
of contact manifolds that deforms metric and structure tensor simultaneously. Further,
we show that the scalar curvature is equal to the soliton constant and the potential
vector field of Yamabe soliton reduces to an affine vector field.
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1. Introduction

The notions of Yamabe and Ricci flow were introduced by Hamilton [11] and Yam-
abe soliton introduced as a tool to produce the Riemannian metric of constant scalar
curvature. The evolution of a time-dependent Riemannian or semi-Riemannian met-
ric g defines Yamabe flow by the equation

(1.1)
∂g(t)

∂t
= −rg(t), g(0) = g0,

where r is the scalar curvature that corresponds to g. A self similar solution to
the Yamabe flow known as Yamabe soliton is defined on a pseudo-Riemannian or
Riemannian manifold (M, g) by the equation [1]

(1.2) (LV g)(X, Y ) = 2(r − λ)g(X, Y ),
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for all vector fields X and Y on M , where LV denotes the Lie derivative with re-
spect to V and λ is a soliton constant. If λ in (1.2) is a smooth function on M
then g is referred to as an almost Yamabe soliton. According as λ < 0, λ = 0,
λ > 0, Yamabe soliton is shrinking, steady and expanding respectively. Kundu [12]
proved that 3-dimensional α-Sasakian manifold (M, g) with g as a Yamabe soliton
is of constant curvature and gave an example of such a manifold. Sasakian metric
on a 3-dimensional manifold as a Yamabe soliton was studied by Sharma [17]. The
notion of Yamabe soliton generalized to quasi Yamabe soliton by Deshmukh and
Chen [6]. Suh and De [18] extended the study to almost co-Kahler manifolds and
De and co-authors [7–10] extensively studied Yamabe solitons in different contexts
such as space time manifolds and para contact manifolds. Several authors [5,15,16]
studied Yamabe solitons on manifolds with different contact structures. The action
of projective vector fields on Riemannian manifolds with contact structures reveals
intrinsic properties of the manifolds. Romero and Sanchez [14] studied a projective
vector field on the Lorentzian manifold and established some relations between the
casual character of projective vector field and curvature in a Lorentzian manifold.
Nagaraja and Sharma [13] while studying almost Ricci soliton on D-homothetically
deformed K-contact metric established that η-Einstein K-contact metric as an al-
most gradient Ricci soliton is fixed D-homothetically and the potential vector field
preserves the structure tensor ϕ. Bouzir and Beldjilali [4] introduced a new defor-
mation of almost contact metric structure, where the deformation is for metric g
and the structure tensor ϕ simultaneously. Beldjilai and Akyol [2] further inves-
tigated the above deformation and established relations among different classes of
almost contact metrics.
In this paper, we study new deformation introduced by Bouzir and Beldjilali on
Sasakian manifold (M , g) with g as a Yamabe soliton and establish conditions for g
to have constant scalar curvature. Further, we show that on (M , g), the projective
vector field becomes affine.

2. Preliminaries

A (2n + 1) dimensional C∞ manifold M together with a 1-form η such that η ∧
(dη)n ̸= 0 is called a contact manifold. There is a global vector field ξ called Reeb
vector field or characteristic vector field on M satisfying dη(ξ,X) = 0 for any vector
field X on M and η(ξ) = 1.
An odd-dimensional manifold M has an almost contact structure (ϕ, ξ, η), if it
admits a tensor field ϕ of type (1, 1), a vector field ξ and a 1-form η satisfying

(2.1) η(ξ) = 1, ϕ2 = −I + η ⊗ ξ.

From (2.1), it is easy to deduce that

η ◦ ϕ = 0, ϕξ = 0.(2.2)

If there is a Riemannian metric g on manifold M with a (ϕ, ξ, η)-structure such
that

(2.3) g(ϕX, ϕY ) = g(X, Y )− η(X) η(Y ),
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for any vector fields X and Y on M , then we say that M has almost contact metric
structure and M(ϕ, ξ, η, g) is called an almost contact metric manifold.
It follows from (2.3) that

(2.4) η(X) = g(X, ξ),

for any vector field X on M. A Sasakian manifold is a normal contact metric mani-
fold and an almost contact metric structure ( ϕ, ξ, η, g) on a manifold M is Sasakian
if and only if

(2.5) (∇Xϕ)(Y ) = −η(Y )X + g(X, Y )ξ,

for any vector fields X and Y on M . The formula (2.5) implies

(2.6) ∇Xξ = −ϕX

and

(2.7) (∇Xη)Y = −g(ϕX, Y ).

The following equations hold in a Sasakian manifold :

(2.8) R(X, Y )ξ = η(Y )X − η(X)Y,

(2.9) S(X, ξ) = 2n η(X),

where R and S are respectively the Riemannian curvature tensor and Ricci tensor
of g.

Definition 1. On a Riemannian manifold, a vector field is called a solenoidal
vector field if and only if its divergence is zero.

Definition 2. A vector field V on a Riemannian manifold M with connection ∇
is called a projective vector field if there is a scalar 1-form P -satisfying

(2.10) (LV ∇)(X, Y ) = P (X)Y + P (Y )X.

It is to be noted that if LV ∇ = 0, V is called an affine vector field and V is Killing
if LV g = 0.
On a (2n+ 1)-dimensional manifold M with almost contact metric structure (ϕ, ξ,
η, g), a new structure (ϕ, ξ, η, g) is defined on M in the form [4]

(2.11) ξ = ξ, ϕX = ϕX + θ(ϕX)ξ, η = η − θ,

and

(2.12) g(X, Y ) = fg(X, Y ) + η(X) η(Y )− fη(X) η(Y ),
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for all vector fields X and Y on M , smooth function f and a closed 1-form θ
orthogonal to η on M.
The relation between the connections ∇ and ∇ corresponding to the Riemannian
metrics g and g is given by [3]

(2.13) ∇XY = ∇XY + θ(X) ϕY + θ(Y ) ϕX − (∇Xθ)(Y ) ξ.

We give the following result due to Benaoumeur and Gherici [3] for later use.

Remark 2.1. [Lemma 1 of [3]]: Let r and r denote the scalar curvatures respec-
tively for the metric g and deformed metric g, the metric obtained from g under
(2.11)-(2.12). Then r = r.

Throughout this paper, we use {ei} as an orthonormal basis for tangent space TpM,
p ∈ M and its deformed orthonormal basis as {ei = ei + θ(ei)ξ}1≤i≤2n+1.

3. Sasakian manifold as a Yamabe soliton under new deformation

Let the metric g in a Sasakian manifold (M, g) be a Yamabe soliton. Then we
have

(3.1) g(∇XV, Y ) + g(∇Y V, X) = 2(−λ+ r) g(X, Y ).

We write

g(∇XV, Y ) =
1

2
[g(∇XV, Y ) + g(∇Y V, X)]

+
1

2
[g(∇XV, Y ) − g(∇Y V, X)].(3.2)

Using (LV g)(X, Y ) = g(∇XV, Y ) + g(∇Y V, X) in (3.2), we get

(3.3) g(∇XV, Y ) =
1

2
(LV g)(X, Y ) + du(X, Y ),

where

(3.4) 2du(X, Y ) = g(∇XV, Y )− g(∇Y V, X).

Using (1.2) in (3.3), we have

(3.5) g(∇XV, Y ) = (−λ+ r) g(X, Y ) + du(X, Y ).

Interchanging X and Y in (3.5), the symmetry of g gives

(3.6) g(∇Y V, X) = (−λ+ r)g(X, Y ) + du(Y, X).

Adding (3.5)-(3.6) and using (1.2), we obtain

(3.7) du(X, Y ) = −du(Y, X).
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As du is skew-symmetric, we write using tensor field ϕ of type (1, 1) as

(3.8) du(X, Y ) = g(ϕX, Y ).

From (3.5) and (3.8), we get

g(∇XV, Y ) = (−λ+ r) g(X, Y ) + g(ϕX, Y )

or

∇XV = (r − λ)X + ϕX

and so

(3.9) ∇ξV = (r − λ)ξ.

The following lemma proves the invariance of soliton constant under deformation
(2.11)-(2.12).

Lemma 1. Let the Yamabe Soliton (M, g, V, λ) be obtained from the Yamabe Soli-
ton (M, g, V, λ) by deformation (2.11)-(2.12). Then λ = λ. i.e., the Yamabe soliton
consatnt is invariant under the deformaton of Sasakian Manifolds.

Proof. Let (M , g) be a Sasakian manifold and (M , g) be obtained by deformation
(2.11)-(2.12) of (M , g). Suppose that (M , g, V , λ) and (M , g, V , λ) are Yamabe
solitons. Then we have

(3.10) (LV g)(X, Y ) = 2(r − λ)g(X, Y ).

Applying the Lie derivative of (2.12) with respect to V , following the expression for
the Yamabe soliton under new deformation, we obtain

(3.11) LV g(X, Y ) = LV fg(X, Y )− LV fη(X)η(Y ) + LV η(X)η(Y ).

Using (2.3) in (3.11), we get

(LV g)(X, Y ) = V fg(ϕX, ϕY ) + f
[
g(LV X, Y ) + g(X, LV Y ) + (LV g)(X, Y )

]
−f

[
η(Y )

(
η(LV X) + (LV η)(X)

)
+ η(X)

(
(η(LV Y ) + LV η)(Y )

)]
+η(Y )

(
(LV η)(X) + η(LV X)

)
+ η(Y )

(
(LV η)(Y ) + η(LV Y )

)
−g(LV X, Y )− g(X,LV Y ).(3.12)

For the unit vector field V corresponding to 1-form θ, we have

θ(X) = g(X, V ), θ(V ) = 1.

(3.13) Also θ(ξ) = 0, η(V ) = 0, η(V ) = −1.
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Making use of (2.11) and (2.13) in (LV g)(X, Y ) = g(∇XV, Y ) + g(X, ∇Y V ), we
obtain

(LV g)(X, Y ) = (LV g)(X, Y ) + θ(X) g(ϕV, Y ) + θ(ϕX) η(X) + θ(Y )g(X,ϕV )

+θ(ϕY )η(X)− (∇Xθ)(V ).(3.14)

Differentiation of g(V, V ) = 1 with respect to X gives θ(∇XV ) = 0, which then
imply that

(3.15) (∇Xθ)(V ) = 0.

Using equation (3.15) in (3.14), we get

(LV g)(X, Y ) = (LV g)(X, Y ) + g(ϕV, Y ) θ(X) + η(Y ) θ(ϕX)(3.16)

+g(X,ϕV ) θ(Y ) + θ(ϕY )η(X).

Let us take f = 1. Using (3.16) in (3.12) and replacing ξ for X and Y in the
resulting equation, we can get easily

(LV g)(ξ, ξ) = (LV g)(ξ, ξ) + 2[g(∇V ξ, ξ)− g(∇ξV, ξ)− g(∇V ξ, ξ)]

−2(LV g)(ξ, ξ) + 4g(∇ξV, ξ)− 2(∇ξθ)(V ) + 2(LV g)(ξ, ξ).(3.17)

Setting X = Y = ξ in (3.16), we obtain

(3.18) (LV g)(ξ, ξ) = (LV g)(ξ, ξ).

Now differentiating g(V, ξ) = θ(ξ) = 0 with respect to ξ and using (3.13), we get

(3.19) g(∇ξV, ξ) = 0.

Differentiating g(V, V ) = 1 with respect to ξ, we obtain g(∇ξV, V ) = 0. i.e.,
θ(∇ξV ) = 0. This with ∇ξθ(V ) = 0 gives

(3.20) (∇ξθ)(V ) = 0.

Using (3.18), (3.19) and (3.20) in (3.17), we obtain

(3.21) (LV g)(ξ, ξ) = (LV g)(ξ, ξ) + 2[g(∇V ξ, ξ)− g(∇ξV, ξ)− g(∇V ξ, ξ)].

Using (2.11) and (2.12) in (3.21), we get

(3.22) (LV g)(ξ, ξ) = (LV g)(ξ, ξ) + 2
(
g(∇V ξ, ξ)− g(∇ξV, V )

)
.

Expanding ∇V ξ using (2.13), (3.13) and noting that θ(ϕV ) = 0, after simplification
from (3.22), we get

(3.23) (LV g)(ξ, ξ) = (LV g)(ξ, ξ).

Using (1.2) and (3.10) in (3.23) and from Remark 2.1, we have

(3.24) λ = λ.

Proof is completed.
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Theorem 1. Under the deformation (2.11)-(2.12) with f = 1 of Sasakian metric
as a Yamabe Soliton, the Yamabe Soliton constant λ is equal to the scalar curvature
r.

Proof. Let the Sasakian manifold (M, g) be Yamabe soliton with V as potential
vector field and λ as a soliton constant. We write

(3.25) (LV g)(X, Y ) = g(∇XV, Y ) + g(X,∇Y V ).

Using (2.1), (2.6), (2.11), (2.12) and (2.13) in (3.25), we obtain

(LV g)(X,Y ) = (LV g)(X,Y ) + θ(X) (g(ϕV, Y )− η(∇Y V )) + θ(Y )(g(ϕV,X)

−η(∇XV ))−∇Xθ(V )η(Y )−∇Y θ(V )η(X).(3.26)

Using (2.12) and (3.26) in (3.10), we get

(LV g)(X,Y )= 2(r − λ) [g(X, Y )− η(X) η(Y ) + η(X) η(Y )]

−θ(Y ) ( g(ϕV, X) − η(∇XV ))− θ(X)( g(ϕV, X)

−η(∇XV )) +∇Xθ(V )η(Y ) +∇Y θ(V )η(X).(3.27)

Substituting ei for X and Y in (3.27) and using Remark 2.1, we get

(LV g)(ei, ei) = 2(r − λ) [g(ei, ei)− η(ei) η(ei) + η(ei) η(ei)] .

−2θ(ei) g(ϕV, ei)− 2θ(ei) η(∇eiV ) + 2∇eiθ(V )η(ei).(3.28)

We see that

(3.29) θ(ei) η(∇eiV ) = g(∇V V, ξ) = g(∇eiV, ξ)g(ei, V ).

Differentiating g(ξ, V ) = 0 along V, we obtain

(3.30) 0 = g(∇V ξ, V ) + g(ξ, ∇V V ).

Use of 0 = θ(ϕV ) = g(∇V ξ, V ) in (3.30) gives g(∇V V, ξ) = 0. This with (3.29) gives

(3.31) θ(ei)η(∇eiV ) = 0.

Using (1.2), (3.10), (3.31) and noting that θ(ϕV ) = 0 and θ(V ) = 1 in (3.28), we
get

(3.32) (λ− λ)(2n+ 1) = (r − λ).

From (3.32) and Lemma 1, it follows that

(3.33) r = λ.

This proves Theorem 1.
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Corollary 1. Under the deformation (2.11)-(2.12) with f = 1, Sasakian metric
as a Yamabe soliton has constant scalar curvature.

From equation (1.2) and Theorem 1, we have

Corollary 2. Under the deformation of Sasakian metric as a Yamabe Soliton, the
potential vector field V is Killing.

In the following part, we show that the potential vector field is solenoidal.

Theorem 2. Under the deformation of the Sasakian metric as a Yamabe Soliton,
the potential vector field is solenoidal.

Proof. We now write

(3.34) (LV g)(X, Y ) = g(∇XV, Y ) + g(X, ∇Y V ).

Substituting from (2.13) to (3.34), we get

(LV g)(X,Y ) = g(∇XV, Y ) + θ(X) g(ϕV, Y )− (∇Xθ)(V )g(ξ, Y ) + g(X,∇Y V )

+θ(Y ) g(ϕV, X)− (∇Y θ)(V ) g(ξ, X).(3.35)

Taking X = Y = ei = {ei + θ(ei)ξ}0≤i≤2n in (3.35), we get

2n∑
i=0

(LV g)(ei + θ(ei)ξ, ei + θ(ei)ξ) = 2
∑2n

i=0{g
(
∇ei+θ(ei)ξV, ei + θ(ei)ξ

)
+θ(ei + θ(ei)ξ)g(ϕV, ei + θ(ei)ξ)

−(∇ei+θ(ei)ξθ)V ) g(ξ, ei + θ(ei)ξ)},(3.36)

where θ(ei) = −g(ei, ξ), g(e0, e0) = g(ξ, ξ) = 1 and for i ∈ {1, . . . 2n}.
Using (2.12), (3.10) and (3.13) in (3.36), we obtain

2(r − λ)

2n∑
i=1

g(ei, ei) = 2divV − 2

2n∑
i=1

g(ei, ξ)g(∇eiV, ξ)(3.37)

− 2(∇ξθ)(V ).

By Remark 2.1, we get

(r − λ)(2n+ 1) = divV − g(∇ξV, ξ)− (∇ξθ)(V ).(3.38)

Using (3.9), (3.24) and (3.33) in (3.38), we get

div V = (∇ξθ)(V ).(3.39)

From (3.20) and (3.39), it follows that

div V = 0.(3.40)

This leads to the Theorem 2.
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4. Projective vector field on Sasakian manifold (M, g) with g as a
Yamabe soliton

Theorem 3. Let (M, g, V, λ) be a Sasakian manifold with the metric g as a Yam-
abe soliton and the vector field V as a projective vector field. If scalar curvature r
is constant along ξ, then M has constant scalar curvature and the vector field V
reduces to an affine vector field.

Proof. Let the metric g be a Yamabe soliton. Then

(4.1)
1

2
(LV g)(Z,X) = (r − λ)g(Z,X).

Differentiating (4.1) on both sides covariantly with respect to Y, we have

∇Y (LV g)(Z, X) = 2∇Y ((r − λ)g(Z, X))

= 2(Y r)g(Z,X) + 2(r − λ) (g(∇Y Z,X) + g(Z,∇Y X))

= 2(Y r)g(Z,X) + 2(r − λ)g(∇Y Z,X) + 2(r − λ)g(Z,∇Y X)

−(LV g)g(∇Y Z,X)− (LV g)g(Z,∇Y X).(4.2)

Using (1.2) in (4.2), we get

(∇Y (LV g))(Z, X) = 2(Y r)g(Z, X).(4.3)

We make use of ∇g = 0 in the commutation formula [19],

(LV ∇Y g −∇Y LV g −∇[V,Y ]g)(Z, X) = −g ((LV ∇)(Y, Z), X)− g ((LV ∇)(Y, X), Z) ,

to obtain

(∇Y (LV g))(Z, X) = g ((LV ∇)(Y, Z), X) + g ((LV ∇)(Y, X), Z) .(4.4)

Using (4.3) in (4.4), we obtain

2(Y r)g(Z, X) = g((LV ∇)(Y,Z), X) + g((LV ∇)(Y,X), Z).

As V is a projective vector field, the above equation with (2.10) gives

(4.5) 2(Y r)g(Z, X) = g(P (Y )Z + P (Z)Y, X) + g(P (Y )X + P (X)Y, Z).

Substitution of ei for X and Z in (4.5) gives

(4.6) P (Y ) =
(2n+ 1)(Y r)

2(n+ 1)
.

Substituting ξ for X and Y in (4.5), we get

(4.7) P (Z) = (2(ξr)− 3P (ξ)) η(Z).
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Replace Z by ξ in (4.7) to get

(4.8) P (ξ) =
1

2
(ξr).

If r is constant along ξ, then

P (ξ) = 0.

Now (4.7) gives

(4.9) P (Z) = 0.

Thus from (4.9) and (4.6), it follows that Xr = 0, i.e., r is a constant.
Also P (X) = 0 in (2.10) gives (LV ∆)(X,Y ) = 0, which makes V an affine vector
field.
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