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Abstract. Let (M, g) be an n−dimensional Riemannian manifold and (T ∗M, g̃) be
its cotangent bundle with a metric g̃ that generalizes Sasaki and Cheeger-Gromoll
metrics. In this paper, we investigate the harmonicity of the canonical projection
π : (T ∗M, g̃) → (M, g), the harmonicity of 1-forms regarded as maps σ : (M, g) →
(T ∗M, g̃) and the harmonicity of the identity maps I1 : (T ∗M, g̃) → (T ∗M,S g) and
I2 : (T ∗M,S g) → (T ∗M, g̃), where Sg is the Sasaki metric. Moreover, we consider the
same problems on the unit cotangent bundle T ∗

1 M .
Keywords: Riemannian manifold, cotangent bundle, Sasaki metrics, Cheeger-Gromoll
metrics, harmonic maps.

1. Introduction

Sasaki was the first who constructed a Riemannian metric on the tangent bun-
dle of a Riemannian manifold [18]. About 30 years later, inspired by the paper of
Cheeger and Gromoll [3], Musso and Tricceri introduced another natural Rieman-
nian metric on the tangent bundle [10]. Today these metrics are known as Sasaki
and Cheeger-Gromoll metrics, respectively. In further studies, natural metrics on
tangent bundles are generally obtained by deformations of the horizontal and ver-
tical parts of the Sasaki and Cheeger-Gromoll metrics (for a history of tangent
bundles see [9]).
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Due to the duality of tangent and cotangent spaces, most geometric objects in
tangent bundles can be considered in cotangent bundles. Therefore, Sasaki and
Cheeger-Gromoll type metrics have been discussed on cotangent bundles by many
authors (for example see [1, 6, 7, 16,17]).

Let (M, g) be a Riemannian manifold and TM be the tangent bundle of M .
When a vector field X on M is given, it may be thought of as a map X : M → TM.
In the cases of TM is endowed with Sasaki, Cheeger-Gromoll, or complete lift type
metrics, some conditions were found under which X is an an isometric immersion,
a totally geodesic or a harmonic map (see [8, 12, 13]). In addition, some conditions
were examined for the canonical projection π : TM → M to be a totally geodesic
or harmonic map. Also, the methods used to investigate these properties were
considered for identity maps I : TM → TM when the domain bundle and the
target bundle have different metrics (see [13]).

Similar results were obtained by replacing the tangent bundle TM by cotangent
bundle T ∗M ; Sasaki, Cheeger-Gromoll or complete lift type metrics by Riemannian
extension type metrics and the vector field X by a 1-form σ (see [14,15]).

This paper has two parts. In the first part, we discuss the harmonicity of the
canonical projection π : T ∗M → M, the harmonicity of a 1-form which defines a
map σ : M → T ∗M and the harmonicity of the identity maps I : T ∗M → T ∗M .
In the second part, the same problems are considered on the unit cotangent bundle
T ∗
1M. Here, we assume a general metric g̃. This metric can be considered as the

correspondence of the metric in [2] on the cotangent bundle.

We assume in the sequel that the manifolds, functions, tensor fields and con-
nections under consideration are all smooth, i.e. of differentiable of class C∞. The
Einstein summation convention is used, the range of the indices i, j, s being always
{1, 2, ..., n}. We shall denote by χ(M) the module of vector fields on M and by
Λ1(M) the module of 1-forms on M.

2. The cotangent bundle T ∗M and the metric g̃

Let (M, g) be an n−dimensional Riemannian manifold and denote by π : T ∗M → M
its cotangent bundle with fibres the cotangent spaces to M . Then T ∗M may be
endowed with a structure of a 2n−dimensional manifold, induced by the structure
on the base manifold. If (U, xi); i = 1, ..., n is a system of local coordinates, then the
system of local coordinates

(
π−1(U), xi, xı̄ = pi

)
, ı̄ = n+ i = n+1, ..., 2n is defined

on T ∗M, where xı̄ = pi are the components of covectors p in each cotangent space
T ∗
xM, x ∈ U with respect to the natural coframe {dxi}.
Let X = Xi ∂

∂xi and ω = ωidx
i be the local expressions in U of a vector field X

and a 1-form ω, respectively. Then the vertical lift V ω of ω and the horizontal lift
HX of X are given, with respect to the induced coordinates, by

V ω = ωi
∂

∂pi
(2.1)
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and
HX = Xi ∂

∂xi
+ phΓ

h
ijX

j ∂

∂pi
,(2.2)

where Γh
ij are the coefficients of the Levi-Civita connection ∇ of g. Using the equa-

tions (2.1) and (2.2), we obtain

Ej =
∂

∂xj
+ psΓ

s
hj

∂

∂ph
,(2.3)

Ej =
∂

∂pj
.(2.4)

These 2n vector fields are linearly independent and generate the horizontal distri-
bution of ∇ and the vertical distribution of T ∗M . Indeed, we have HX = XjEj

and V ω = ωjEj̄ . The set {Eβ = Ej , Ej̄} is called the frame adapted to the affine
connection ∇ on π−1(U) ⊂ T ∗M (for details concerning T ∗M see [19]).

For each x ∈ M , the scalar product g−1 = (gij) is defined on the cotangent
space π−1(x) = T ∗

xM by
g−1(ω, θ) = gijωiθj(2.5)

for all ω, θ ∈ Λ1(M).

Now, we consider the Riemannian metric g̃ on T ∗M as follows:

g̃(HX,H Y ) = V (g(X,Y )) = g(X,Y ) ◦ π,
g̃(HX,V ω) = 0,

g̃(V ω,V θ) = ag−1(ω, θ) + bg−1(ω, p)g−1(θ, p),(2.6)

for any X,Y ∈ χ(M) and ω, θ ∈ Λ1(M), where a and b are smooth functions of
t = 1

2g
−1(p, p) such that a > 0 and a+ 2tb > 0 [11]. The matrix representations of

g̃ and its inverse g̃−1 are given by respectively

g̃ =

(
gij 0
0 agij + bgi0gj0

)
(2.7)

and

g−1 =

(
gij 0
0 1

agij −
b

a(a+bg00)pipj

)
,(2.8)

where gi0 = gikpk and g00 = gi0pi.

For the Levi-Civita connection ∇̃ of the metric g̃, we get the following proposition
by a straightforward computation.

Proposition 2.1. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The Levi-Civita connection ∇̃ of the metric g̃ satisfies the relations

∇̃EiEj = Γh
ijEh + 1

2R
0

ijh Eh̄,

∇̃Eı̄
Ej =

a
2R

hi0
.j. Eh,

∇̃Ei
Ej̄ =

a
2R

hj0
.i. Eh − Γj

ihEh̄,

∇̃Eı̄Ej̄ = F1(g
i0Ej̄ + gj0Eı̄) + (F2g

ij + F3g
i0gj0)C = Aij

l El̄

(2.9)
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with respect to the adapted frame, where F1 = a′

2a , F2 = 2b−a′

2(a+2tb) , F3 = ab′−2a′b
2a(a+2tb) ,

C = phEh̄ and Aij
l = {(2F1 + F2)g

ij + F3g
i0gj0}C. Also, Γj

ih are the Christoffel
symbols of ∇, R h

ijk are the local coordinate components of the curvature tensor field

of ∇, R 0
ijh = pmR m

ijh and Rhi 0
.j. = gshgitpmR m

sjt .

3. Harmonic maps on the cotangent bundle T ∗M

Let (M, g1) and (N, g2) be two Riemannian manifolds of dimensions m and n,
respectively and f : M → N be a smooth map. Let U ⊂ M be a domain with
coordinates (x1, ..., xm) and V ⊂ N be a domain with coordinates (y1, ..., yn) such
that f(U) ⊂ V, and suppose that f is locally represented by yα = fα(x1, ..., xm), α =
1, ..., n. Then the second fundamental form of f , denoted by β(f), is locally given
by

β(f)(
∂

∂xi
,

∂

∂xj
)γ = { ∂2fγ

∂xi∂xj
−M Γk

ij

∂fγ

∂xk
+N Γγ

αβ

∂fα

∂xi

∂fβ

∂xj
} ∂

∂yγ
(3.1)

and that of the tension field τ(f) of f is

τ(f) = trβ(f) = gij{ ∂2fγ

∂xi∂xj
−M Γk

ij

∂fγ

∂xk
+N Γγ

αβ

∂fα

∂xi

∂fβ

∂xj
} ∂

∂yγ
,(3.2)

where MΓk
ij and NΓγ

αβ are the Christoffel symbols of the Levi-Civita connections of
the metrics g1 and g2 respectively.

The map f is a totally geodesic map if and only if β(f) = 0, and the map f is
said to be harmonic if τ(f) = 0 [5].

First, we shall study the harmonicity of the canonical projection π : T ∗M → M ,
which is a Riemannian submersion. From (2.9) and (3.1), we obtain

β(π)(Ei, Ej) = β(π)(Eı̄, Ej̄) = 0,(3.3)

β(π)p(Eı̄, Ej) = −a

2
Rhi0

.j. (π(p))
∂

∂xh
.

So, we write

Theorem 3.1. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The Riemannian submersion π : (T ∗M, g̃) → (M, g) is totally geodesic
if and only if M is locally flat. Moreover, π is a harmonic map.

Let d be another Riemannian metric on M. For the projection π : (T ∗M, g̃) →
(M,d), we get the relations

β(π)(Eı̄, Ej̄) = 0,(3.4)

β(π)u(Eı̄, Ej) = −a

2
Rhi0

.j. (π(p))
∂

∂xh
,

β(π)(Ei, Ej) = {dΓh
ij − Γh

ij}
∂

∂xh
,
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where dΓh
ij are the Christoffel symbols of the metric d. Hence we have the proposition

below.

Proposition 3.1. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The map π : (T ∗M, g̃) → (M,d) is totally geodesic if and only if (M, g)
is flat and the identity map I : (M, g) → (M,d) is totally geodesic.

Note that if π : (T ∗M, g̃) → (M,d) is totally geodesic then (M, g) and (M,d)
are locally flat.

On the other hand, we know that d is harmonic with respect to g if gij{dΓh
ij −

Γh
ij} = 0 [4]. From (3.4), we obtain

Proposition 3.2. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The map π : (T ∗M, g̃) → (M,d) is harmonic if and only if d is
harmonic with respect to g.

Now, let σ be a 1-form on M. We consider σ as a smooth map from M to T ∗M.
For investigation of the harmonicity of σ, we should prove the following proposition.

Proposition 3.3. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The map σ : M → T ∗M is an isometric immersion if and only if
∇σ = 0.

Proof. We have

σ∗,pX = (HX +V (∇Xσ))σ(p), ∀p ∈ M.(3.5)

If we assume

g′p(X,Y ) = g̃
σ(p)

(σ∗,pX,σ∗,pY ) = gp(X,Y ) + ag−1
p (∇Xσ,∇Y σ)

+bg−1
p (∇Xσ, σ)g−1

p (∇Y σ, σ),

then σ is an isometric immersion if and only if g′ = g. It is obvious that g′ = g if
and only if ∇Xσ = 0 for every vector field X on M , i.e., ∇σ = 0.

Since σ : (M, g) → (T ∗M, g̃) is an immersion, we can use the formula below:

β(σ)(X,Y ) = ∇̃σ∗Xσ∗Y − σ∗(∇XY ), ∀X,Y ∈ χ(M)(3.6)

(see [14]). We have

σ∗(
∂

∂xi
) = Ei +∇iσjEj̄ .(3.7)

Using the equations (2.9), (3.5) and the formula (3.6), we obtain
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Proposition 3.4. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The second fundamental form β(σ) and the tension field τ(σ) of the
map σ : (M, g) → (T ∗M, g̃) are given by respectively

(3.8)

β(σ)(
∂

∂xi
,

∂

∂xj
) =

a

2
{(∇iσs)R

hsm
.j. σm + (∇jσk)R

hkm
.i. σm}Eh

+{−1

2
R m

ijh σm +∇i∇jσh + (∇iσm)(∇jσn)A
mn
h }Eh,

(3.9)

τ(σ) = {agij(∇jσs)R
hsm
.i. σm}Eh + {gij(∇i∇jσh) + gij(∇iσm)(∇jσn)A

mn
h }Eh.

The equation (3.9) gives the following results.

Theorem 3.2. Let (M, g) be a Riemannian manifold and (T ∗M, g̃) be its cotan-
gent bundle. The map σ : (M, g) → (T ∗M, g̃) is harmonic if and only if it satisfies
the system:

gij(∇jσs)R
hsm
.i. σm = 0, gij(∇i∇jσh) + gij(∇iσm)(∇jσn)A

mn
h = 0.(3.10)

Corollary 3.1. The tension field τ(σ) is collinear with C = pi
∂

∂pi
if and only if

gij(∇i∇jσh) = fσh, g
ij(∇jσs)R

hsm
.i. σm = 0, where f is a smooth function.

At the end of the first part, we investigate the harmonicity of the identity maps
Ig̃ : (T ∗M, g̃) → (T ∗M,S g) and ISg : (T ∗M,S g) → (T ∗M, g̃), where Sg denotes
the Sasaki metric on T ∗M. Therefore, before we proceed, we need to recall the
Levi–Civita connection S∇ of the metric Sg. From [1], the Levi-Civita connection
components of Sg are given as follows.

S∇EiEj = Γh
ijEh + 1

2R
0

ijh Eh̄,
S∇Eı̄Ej =

1
2R

hi0
.j. Eh,

S∇EiEj̄ =
1
2R

hj0
.i. Eh − Γj

ihEh̄,
S∇Eı̄Ej̄ = 0,

(3.11)

where Γ and R are given as in Proposition 2.1. Using (2.9), (3.1) and (3.11), we get

β(Ig̃)(Ei, Ej) = 0, β(Ig̃)(Eı̄, Ej) =
1− a

2
Rhi0

.j. Eh,(3.12)

β(Ig̃)(Eı̄, Ej̄) = −Aij
l El̄

and

β(ISg)(Ei, Ej) = 0, β(ISg)(Eı̄, Ej) =
a− 1

2
Rhi0

.j. Eh,(3.13)

β(ISg)(Eı̄, Ej̄) = Aij
l El̄.

Thus, we write



Harmonic Maps on Cotangent and Unit Cotangent Bundles 371

Proposition 3.5. (i) The map Ig̃ : (T ∗M, g̃) → (T ∗M,S g) cannot be totally
geodesic.

(ii) The tension field τIg̃ of Ig̃ is τIg̃ = − (na+g00(nb−1))(2F1+F2)+ag00F3

a(a+bg00) . So, the

map Ig̃ : (T ∗M, g̃) → (T ∗M,S g) cannot be harmonic, i.e., Sg cannot be harmonic
with respect to g̃.

Proposition 3.6. (i) The map ISg : (T ∗M,S g) → (T ∗M, g̃) cannot be totally
geodesic.

(ii) The tension field τISg
of Ig̃ is τISg

= n(2F1 + F2) + g00F3. So, ISg :

(T ∗M,S g) → (T ∗M, g̃) cannot be harmonic, i.e., g̃ cannot be harmonic with re-
spect to Sg.

4. Harmonic maps on the unit cotangent bundle T ∗
1M

The unit cotangent bundle T ∗
1M of a Riemannian manifold (M, g) is the (2n −

1)−dimensional hypersurface given by T ∗
1M = {ω ∈ T ∗M : g−1(ω, ω) = 1}. If

we denote by (xi, pi) local coordinates on T ∗M , then T ∗
1M can be expressed as

g00 = 1, where gi0 = gijpj . The local vector fields {Ei, Y
i} generate a system for

T ∗
1M, where

Y i =
∂

∂pi
− gi0C, C = pj

∂

∂pj
.(4.1)

The induced metric from (T ∗M, g̃) on T ∗
1M is given as follows:

ga(Ei, Ej) = gij , ga(Ei, Y
j) = 0, ga(Y

i, Y j) = a(gij − gi0gj0),(4.2)

where a is a constant that satisfy a > 0. It is easy to check that ga(Ei, C) =
ga(Y

i, C) = 0, i.e. C is orthogonal on T ∗
1M with respect to ga.

We have

Proposition 4.1. Let (M, g) be a Riemannian manifold and (T ∗
1M, ga) be its unit

cotangent bundle. The Levi-Civita connection a∇ of the metric ga satisfies the
relations 

a∇EiEj = Γh
ijEh + 1

2R
0

ijh Y h,
a∇Y iEj =

a
2R

hi0
.j. Eh,

a∇EiY
j = a

2R
hj0
.i. Eh − Γj

ihY
h,

a∇Y iY j = −gj0Y i,

(4.3)

where Γ and R are given as in Proposition 2.1.

Now, we examine the harmonicity of the projection π̃ = π |T∗
1 M . From (3.1)

and (4.3), we get

β(π̃)(Ei, Ej) = β(π̃)(Y i, Y j) = 0,(4.4)

β(π̃)p(Y
i, Ej) = −a

2
Rhi0

.j. (π(p))
∂

∂xh
.

The equations in (4.4) give us the following theorem.
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Theorem 4.1. Let (M, g) be a Riemannian manifold and (T ∗
1M, ga) be its unit

cotangent bundle. The map π̃ : (T ∗
1M, ga) → (M, g) is totally geodesic if and only

if M is locally flat. Moreover π̃ is a harmonic map.

Denote by Sg the induced Sasaki metric on T ∗
1M. For investigation of the har-

monicity of the identity map from (T ∗
1M, ga) to (T ∗

1M,S g) (resp. from (T ∗
1M,S g)

to (T ∗
1M, ga)), we should express the following proposition.

Proposition 4.2. Let (M, g) be a Riemannian manifold and (T ∗
1M,S g) be its unit

cotangent bundle. The Levi-Civita connection S∇̄ of the metric Sg satisfies the
relations 

S∇̄EiEj = Γh
ijEh + 1

2R
0

ijh Y h,
S∇̄Y iEj =

1
2R

hi0
.j. Eh,

S∇̄EiY
j = 1

2R
hj0
.i. Eh − Γj

ihY
h,

S∇̄Y iY j = −gj0Y i,

(4.5)

where Γ and R are given as in Proposition 2.1.

Using (3.1), (4.3) and (4.5), we obtain the following expressions for the identity
maps Iga : (T ∗

1M, ga) → (T ∗
1M,S g) and ISg : (T ∗

1M,S g) → (T ∗
1M, ga), respectively:

β(Iga)(Ei, Ej) = β(Iga)(Y
i, Y j) = 0, β(Iga)(Y

i, Ej) =
1− a

2
Rhi0

.j. Eh(4.6)

and

β(ISg)(Ei, Ej) = β(ISg)(Y
i, Y j) = 0, β(ISg)(Y

i, Ej) =
a− 1

2
Rhi0

.j. Eh.(4.7)

Consequently, we state

Proposition 4.3. (i) The map Iga : (T ∗
1M, ga) → (T ∗

1M,S g) (resp. the map
ISg : (T ∗

1M,S g) → (T ∗
1M, ga)) is totally geodesic if and only if (M, g) is locally flat.

(ii) The maps Iga : (T ∗
1M, ga) → (T ∗

1M,S g) and ISg : (T ∗
1M,S g) → (T ∗

1M, ga)
are harmonic.

Let σ be a 1-form with g−1(σ, σ) = 1. Denote by σg̃ : (M, g) → (T ∗M, g̃), σg̃(q) =
σ(q) and σ̄ga : (M, g) → (T ∗

1M, ga), σ̄ga(q) = σ(q), ∀q ∈ M. We have

σ̄∗(
∂

∂xi
) = Ei + (∇iσj)Y

j .(4.8)

So from (4.3) and (4.8), we get the expression for τ(σ̄ga):

τ(σ̄ga) = {gij(∇i∇jσh)}Y h + a{gij(∇jσk)R
hkm
.i. σm}Eh.(4.9)

Having in mind Corollary 3.1 and the expression (4.9), we give the final theorem of
the paper.

Theorem 4.2. Let (M, g) be a Riemannian manifold and (T ∗
1M, ga) be its unit

cotangent bundle. The map σ̄ga : (M, g) → (T ∗
1M, ga) is harmonic if and only if

τ(σg̃) is collinear with C.
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