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Abstract. We consider Ricci solitons with a semi-symmetric non-metric connection.
We find some properties, when the potential vector field is torse-forming. Applications
to submanifolds are also given.
Keywords: Ricci soliton, semi-symmetric non-metric connection, torse-forming vector
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1. Introduction

A semi-symmetric connection is a linear connection on a Riemannian manifold
(M, g) whose torsion tensor T is of the form

T (X1, X2) = ϕ(X2)X1 − ϕ(X1)X2,

where ϕ is a 1-form defined by ϕ(X1) = g(X1, U), and U is a vector field on M [12].

Let ∇ be the Levi-Civita connection of a Riemannian manifold (M, g). The

semi-symmetric non-metric connection ∇̃ (briefly SSNMC) is defined by

(1.1) ∇̃X1X2 = ∇X1X2 + ϕ(X2)X1,

where X1, X2 are vector fields on M [1]. Let R̃ and R denote Riemannian curvature

tensor fields of ∇̃ and ∇, respectively. Then from (1.1), it is easy to see that
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(1.2) R̃(X1, X2)X3 = R(X1, X2)X3 − α(X2, X3)X1 + α(X1, X3)X2,

where α is a tensor of type (0, 2) of M given by

(1.3) α(X1, X2) = (∇X1ϕ)X2 − ϕ(X1)ϕ(X2).

Let R̃ic and Ric state the Ricci tensor fields of the connections ∇̃ and ∇, re-
spectively. Then from (1.2), it is easy to see that

(1.4) R̃ic = Ric− (n− 1)α,

(see [1]).

Let (M, g) be a Riemannian manifold. R. S. Hamilton [14] presented the Ricci
flow for the first time as

∂

∂t
g(t) = −2Ric(g(t)).

The Ricci flow is an evolution equation for Riemannian metrics. There is a corre-
spondence between Ricci solitons and self-similar solutions of Ricci flow. A smooth
vector field υ on a Riemannian manifold (M, g) is considered to define a Ricci soli-
ton [13], if there exists a real constant λ such that

(1.5)
1

2
£υg +Ric = λg,

where £υ denotes the Lie derivative operator in the direction of the vector field υ,
Ric denotes the Ricci tensor field of (M, g).

We denote Ricci soliton by (υ, λ). It is obvious that Ricci solitons are natural
generalizations of Einstein metrics, any Einstein metric gives a trivial Ricci soli-
ton. A Ricci soliton (υ, λ) on a (semi)-Riemannian manifold (M, g) is considered
to be shrinking, steady or expanding according to λ is positive, zero or negative,
respectively [13].

Quite a few geometers have lately studied the geometry of Ricci solitons. Refer
to, for instance, [8,17,18] and the references therein. Ricci solitons on submanifolds
have also become a quite popular study subject. For such studies refer to, for
example, [3, 5, 8] and the references therein.

In the present study, we consider some properties of Ricci solitons on Rieman-
nian manifolds equipped with an SSNMC when the potential vector field is torse-
forming with respect to an SSNMC. As recent studies on torse-forming vector
fields see [?, 5, 9, 16].

The paper is organized as follows: In Section 2, we discover the geometric prop-
erties of Ricci solitons on Riemannian manifolds when the potential vector field is
torse-forming. In Section 3, we get some applications for submanifolds.



On Ricci Solitons and Submanifolds With a Semi-symmetric Non-metric Connection 377

2. Ricci solitons on Riemannian manifolds with an SSNMC

In this section, we consider Ricci solitons on Riemannian manifolds with an SSNMC.

The Euclidean 3-space, hyperbolic 3-space and Minkowski motion group are
included in the following 3-parameter family of Riemannian homogeneous spaces
(R3, g [µ1,µ2, µ3]) with left-invariant metric

g [µ1,µ2, µ3] = e−2µ1tdx2 + e−2µ2tdy2 + µ2
3dt

2.

Here µ1,µ2 are real constants and µ3 is a positive constant.

The Lie group G(µ1,µ2, µ3) can be realised as a closed subgroup of affine trans-
formation group GL3Rn R3 of R3.

The Levi-Civita connection ∇ of G(µ1,µ2, µ3) is given by the following formula:

(2.1) ∇E1E1 =
µ1

µ3
E3, ∇E1E2 = 0, ∇E1E3 = −µ1

µ3
E1

∇E2E1 = 0, ∇E2E2 =
µ2

µ3
E3, ∇E2E3 = −µ2

µ3
E2,

∇E3E1 = ∇E3E2 = ∇E3E3 = 0.

The Ricci tensor field Ric of G is given by

R11 = −µ1(µ1 + µ2)

µ2
3

, R22 = −µ2(µ1 + µ2)

µ2
3

, R33 = −µ2
1 + µ2

2

µ2
3

and the scalar curvature τ of G is given by

τ = − 2

µ2
3

(
µ2
1 + µ2

2 + µ1µ2

)
.

(see [15]).

Using (2.1), the Levi-Civita connection ∇ of G(1, 1, 1) is given by the following
formula:

∇E1E1 = E3, ∇E1E2 = 0, ∇E1E3 = −E1,

∇E2E1 = 0, ∇E2E2 = E3, ∇E2E3 = −E2,

∇E3E1 = ∇E3E2 = ∇E3E3 = 0.

Then we can state the following example:

Example 2.1. Assume that υ = 2E3 is the potential vector field. Then G(1, 1, 1) is an
Ricci soliton with respect to an SSNMC.
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Using (1.1), we reach the Lie derivative as follows

(2.2) (£̃υg)(X1, X2) = g(∇̃X1υ,X2) + g(X1, ∇̃X2υ)− 2ϕ(υ)g(X1, X2),

Therefore, using equation (2.2), the soliton equation (1.5) with respect to an SSNMC
could be written as

(2.3)
1

2

(
g(∇̃X1υ,X2) + g(X1, ∇̃X2υ)

)
+ R̃ic(X1, X2) = (λ+ ϕ(υ)) g(X1, X2).

A vector field υ on a Riemannian manifold (M, g) is called torse-forming [20], if

∇X1υ = cX1 + ω(X1)υ,

where c is a smooth function, ω is a 1-form and ∇ is the Levi-Civita connection of
g.

Specifically, if ω = 0, then υ is called a concircular vector field [11] and if c = 0,
then υ is called a recurrent vector field [18].

Presume that U is a parallel unit vector field with respect to the Levi-Civita
connection ∇. Using (1.1), we reach

∇̃X1U = X1.

Consequently, we obtain the proposition below:

Proposition 2.1. Let (M, g) be a Riemannian manifold endowed with an SSNMC.
If U is a parallel unit vector field with respect to the Levi-Civita connection ∇ then,
U is a torse-forming potential vector field (briefly TF − PV F ) with respect to an

SSNMC of the form ∇̃X1U = X1.

A non-flat Riemannian manifold (M, g) (n ≥ 3) is called a hyper-generalized
quasi-Einstein manifold [19], if its Ricci tensor field is not likewise zero and provides

Ric = a1g + a2A⊗A+ a3 (A⊗B +B ⊗A) + a4 (A⊗D +D ⊗A) ,

where a1, a2, a3 and a4 are scalars and A, B and D are non-zero 1-forms. If a4 = 0,
then M is called a generalized quasi-Einstein manifold in the sense of Chaki [6]. If
a3 = a4 = 0, then M is called a quasi-Einstein manifold [7]. If a2 = a3 = a4 = 0,
then (M, g) is an Einstein manifold [4]. The functions a1, a2, a3 and a4 are called
associated functions.

Now let (M, g) be a Riemannian manifold equipped with an SSNMC and υ a

TF − PV F with respect to an SSNMC on M . Then ∇̃X1υ = cX1 + ω(X1)υ. So
by (2.3), we can write

(2.4) Ric(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2)

−1

2
{g(X1, υ)ω(X2) + g(X2, υ)ω(X1)} .

Hence we have:
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Corollary 2.1. Let (M, g) be a Riemannian manifold endowed with an SSNMC
and υ a TF −PV F with respect to an SSNMC on M . Assume that a 1-form η is
the g-dual of υ. Then (M, g) is a Ricci soliton (υ, λ) if and only if

Ric(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2)−
1

2
{η(X1)ω(X2) + η(X2)ω(X1)} .

Thus, we can state the following theorems:

Theorem 2.1. Let (M, g) be a Riemannian manifold endowed with an SSNMC
and υ a TF −PV F with respect to an SSNMC on M . Assume that a 1-form η is
the g-dual of υ. Then (M, g) is a Ricci soliton (υ, λ) if and only if M is a hyper-
generalized quasi-Einstein manifold with associated functions (λ− c+ ϕ(υ)) , 0, 0
and − 1

2 .

Theorem 2.2. Let (M, g) be a Riemannian manifold endowed with an SSNMC
and υ a TF − PV F with respect to an SSNMC on M. Assume that a 1-form η is
the g-dual of υ and ω = η. Then (M, g) is a Ricci soliton (υ, λ) if and only if M is
a quasi-Einstein manifold with associated functions (λ− c+ ϕ(υ)) ,−1.

If υ is a concircular potential vector field (briefly C − PV F ) with respect to an
SSNMC, then the following theorem can be expressed:

Theorem 2.3. Let (M, g) be a Riemannian manifold endowed with an SSNMC
and υ a C − PV F with respect to an SSNMC on M . Assume that a 1-form η
is the g-dual of υ. Then (M, g) is a Ricci soliton. (υ, λ) if and only if M is an
Einstein manifold with an associated function (λ− c+ ϕ(υ)) .

Using (1.4), the equation (2.4) can be written as

(2.5) R̃ic(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2)− (n− 1)α(X1, X2)

−1

2
{g(X1, υ)ω(X2) + g(X2, υ)ω(X1)} .

Thus, the following corollary can be expressed:

Corollary 2.2. Let (M, g) be a Riemannian manifold endowed with an SSNMC
and υ a TF − PV F with respect to an SSNMC on M . Then (M, g) is a Ricci
soliton if and only if the Ricci tensor field of an SSNMC is of the form (2.5).
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Now assume that U is a parallel unit vector field with respect to the Levi-Civita
connection, i.e., ∇U = 0 and ∥U∥ = 1. Then

(∇X1ϕ)X2 = ∇X1ϕ(X2)− ϕ(∇X1X2) = 0.

So from (1.3), α(X1, X2) = −ϕ(X1)ϕ(X2). Thus by (2.5), we have

(2.6) R̃ic(X1, X2) = (λ− c+ ϕ(υ))g(X1, X2) + (n− 1)ϕ(X1)ϕ(X2)

−1

2
{g(X1, υ)ω(X2) + g(X2, υ)ω(X1)} .

Hence we have:

Corollary 2.3. Let (M, g) be a Riemannian manifold endowed with an SSNMC,
U a parallel unit vector field with respect to the Levi-Civita connection ∇ and υ a
TF − PV F with respect to an SSNMC on M . Then (M, g) is a Ricci soliton if
and only if the Ricci tensor field of an SSNMC is of the form (2.6).

Thus, the following theorems can be stated:

Theorem 2.4. Let (M, g) be a Riemannian manifold endowed with an SSNMC,
U a parallel unit vector field with respect to the Levi-Civita connection ∇ and υ a
TF − PV F with respect to an SSNMC on M . Assume that a 1-form ϕ is the
g-dual of υ. Then (M, g) is a Ricci soliton (υ, λ) if and only if M is a general-
ized quasi-Einstein manifold with respect to an SSNMC with associated functions(
λ− c+ ∥υ∥2

)
, (n− 1) and − 1

2 .

Theorem 2.5. Let (M, g) be a Riemannian manifold endowed with an SSNMC,
U a parallel unit vector field with respect to the Levi-Civita connection ∇ and υ a
C−PV F with respect to an SSNMC on M . Assume that a 1-form ϕ is the g-dual
of υ. Then (M, g) is a Ricci soliton (υ, λ) if and only if M is a quasi-Einstein

manifold with respect to an SSNMC with associated functions
(
λ− c+ ∥υ∥2

)
and

(n− 1) .

3. Submanifolds

Let
(
M̃, g̃

)
be an (n + d)-dimensional Riemannian manifold endowed with an

SSNMC ∇̃ and the Levi-Civita connection ∇. Decomposing the vector field U on
M uniquely into its tangential and normal components UT and U⊥, respectively,
we have

U = UT + U⊥.

Let M be an n-dimensional submanifold of
(
M̃, g̃

)
. On the submanifold M, let

us denote the induced SSNMC by
◦
∇̃ and the induced Levi-Civita connection by

◦
∇.
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The Gauss formulas and Weingarten formulas with respect to ∇ and ∇̃ could
be written as follows:

∇X1X2 =
◦
∇X1X2 + h(X1, X2),

∇̃X1X2 =
◦
∇̃X1X2 +

◦
h(X1, X2), X1, X2 ∈ χ(M),

and

∇X1N = −ANX1 +
◦
∇

⊥

X1
N,

∇̃X1N = −
◦
ANX1 +

◦
∇̃

⊥

X1
N,

respectively, where X1, X2 ∈ χ(M), h is the second fundamental form, N is a unit

normal vector field and AN is the shape operator of M in
(
M̃, g̃

)
and

◦
h is a normal

valued (0, 2)-tensor field and
◦
A is a (1, 1)-tensor field on M [2]. The tangential and

normal parts of U are denote by UT and U⊥, respectively. Then from [2], we get

(3.1)
◦
h(X1, X2) = h(X1, X2)

and

(3.2)
◦
ANX1 = ANX1 − ϕ(N)X1.

It is known from [2] that the induced connection
◦
∇̃ on a submanifold of a Rieman-

nian manifold endowed with an SSNMC is also an SSNMC.

Now assume that (M̃, g̃) is a Riemannian manifold admitting an SSNMC and

υ is a TF −PV F with respect to an SSNMC on M̃ . Let (M, g) be a submanifold

of (M̃, g̃). Denote by υT and υ⊥, the tangential and normal parts of υ, respectively.
Then using (1.1), it can be written as follows

∇̃X1υ = ∇̃X1

(
υT + υ⊥) = ∇̃X1υ

T + ∇̃X1υ
⊥

= ∇X1υ
T + ϕ(υT )X1 +∇X1υ

⊥ + ϕ(υ⊥)X1

= cX1 + ω(X1)υ
T + ω(X1)υ

⊥.

So by using Gauss and Weingarten formulas and by the equality of the tangential
and normal parts, we have

(3.3)
◦
∇X1υ

T = (c− ϕ(υ))X1 +Aυ⊥X1 + ω(X1)υ
T

and

h
(
X1, υ

T
)
+

◦
∇

⊥

X1
υ⊥ = ω(X1)υ

⊥.
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Then in view of (3.3), we get

(£υT g)(X1, X2) = g(
◦
∇X1υ

T , X2) + g(X1,
◦
∇X2υ

T )

= 2 (c− ϕ(υ)) g(X1, X2) + 2g̃(h(X1, X2), υ
⊥)

+ω(X1)g(X2, υ
T ) + ω(X2)g(X1, υ

T ).

Thus, equation (1.5) gives us

(3.4)
◦

Ric(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2)− g̃(h(X1, X2), υ
⊥)

−1

2

{
ω(X1)g(X2, υ

T ) + ω(X2)g(X1, υ
T )

}
.

So we reach the following corollary:

Corollary 3.1. Let M be an n-dimensional submanifold isometrically immersed

into a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a TF−PV F

with respect to an SSNMC on M̃ . Then (M, g) is a Ricci soliton (υT , λ) if and
only if the condition (3.4) holds on M .

If M is υ⊥-umbilical, then Aυ⊥ = kI, where k is a function on M and I is
the identity map [8]. Therefore, we obtain g̃(h(X1, X2), υ

⊥) = g(Aυ⊥X1, X2) =
kg(X1, X2). Then from (3.4), we have

(3.5)
◦

Ric(X1, X2) = (λ− c+ ϕ(υ)− k) g(X1, X2)

−1

2

{
ω(X1)g(X2, υ

T ) + ω(X2)g(X1, υ
T )

}
.

Hence we can state the following corollary:

Corollary 3.2. Let M be an n-dimensional υ⊥-umbilical submanifold isometri-

cally immersed into a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC

and υ a TF − PV F with respect to an SSNMC on M̃ . Then (M, g) is a Ricci
soliton (υT , λ) if and only if the condition (3.5) holds on M .

Thus, we can state the following theorems:

Theorem 3.1. Let M be an n-dimensional υ⊥-umbilical submanifold isometrically

immersed into a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a

TF−PV F with respect to an SSNMC on M̃ . Assume that a 1-form η is the g dual
of υT . Then (M, g) is a Ricci soliton (υT , λ) if and only if it is a hyper-generalized
quasi-Einstein manifold with related functions (λ− c+ ϕ(υ)− k) , 0, 0 and − 1

2 .
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Theorem 3.2. Let M be an n-dimensional υ⊥-umbilical submanifold isometrically

immersed into a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a

TF −PV F with respect to an SSNMC on M̃ . Accept that a 1-form ω is the g dual
of υT . Then (M, g) is a Ricci soliton (υT , λ) if and only if it is a quasi-Einstein
manifold with associated functions (λ− c+ ϕ(υ)− k) , −1.

Since the induced connection
◦
∇̃ on a submanifold of a Riemannian manifold

endowed with an SSNMC is also an SSNMC, from (1.4), (3.1) and (3.4), we also
have

(3.6)
◦

R̃ic(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2)− (n− 1)α(X1, X2)

−g̃(
◦
h(X1, X2), υ

⊥)− 1

2

{
ω(X1)g(X2, υ

T ) + ω(X2)g(X1, υ
T )

}
where

◦

R̃ic denotes the Ricci tensor of the induced SSNMC.

So we get the following corollary:

Corollary 3.3. Let M be an n-dimensional submanifold isometrically immersed

into a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a TF−PV F

with respect to an SSNMC on M̃ . Then (M, g) is a Ricci soliton (υT , λ) with
respect to the SSNMC if and only if the condition (3.6) holds on M .

If U is a parallel unit vector field with respect to the Levi-Civita connection ∇,
then we get

(3.7)
◦

R̃ic(X1, X2) = (λ− c+ ϕ(υ)) g(X1, X2) + (n− 1)ϕ(X1)ϕ(X2)

−g̃(
◦
h(X1, X2), υ

⊥)− 1

2

{
ω(X1)g(X2, υ

T ) + ω(X2)g(X1, υ
T )

}
.

If M is υ⊥-umbilical, then by (3.2), we have

◦
Aυ⊥X1 =

(
k − ϕ(υ⊥)

)
X1,

which brings us(
k − ϕ(υ⊥)

)
g (X1, X2) = g

(
◦
Aυ⊥X1, X2

)
= g̃(

◦
h(X1, X2), υ

⊥).

Hence from (3.7), we have

◦

R̃ic(X1, X2) = (λ− c− k + ϕ(υ) + ϕ(υ⊥)) g(X1, X2) + (n− 1)ϕ(X1)ϕ(X2)

−1

2

{
ω(X1)g(X2, υ

T ) + ω(X2)g(X1, υ
T )

}
.

So we get the following theorem:
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Theorem 3.3. Let M be a υ⊥-umbilical submanifold isometrically immersed into

a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a TF−PV F with

respect to an SSNMC on M̃ . Assume that a 1-form ϕ is the g dual of υT . Then
(M, g) is a Ricci soliton (υT , λ) if and only if it is a hyper-generalized quasi-Einstein

manifold with respect to an SSNMC with associate functions
(
λ − c − k + ∥υ∥2

+
∥∥υ⊥

∥∥2 ), (n− 1) , 0 and − 1
2 .

When υ is a C−PV F with respect to an SSNMC on M̃ , we have the following
theorem:

Theorem 3.4. Let M be a υ⊥-umbilical submanifold isometrically immersed into

a Riemannian manifold
(
M̃, g̃

)
endowed with an SSNMC and υ a C−PV F with

respect to an SSNMC on M̃ . Assume that a 1-form ϕ is the g dual of υT . Then
(M, g) is a Ricci soliton (υT , λ) if and only if it is a quasi-Einstein manifold with

respect to an SSNMC with associate functions
(
λ− c− k + ∥υ∥2 +

∥∥υ⊥
∥∥2) and

(n− 1) .
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Übertragungen. Math. Z. 21 (1924), 211–223.

13. R. S. Hamilton: The Ricci flow on surfaces. Mathematics and general relativity
(Santa Cruz, CA, 1986), 237–262, Contemp. Math. 71 (1988), Amer. Math. Soc.,
Providence, RI.

14. R. S. Hamilton: Three-manifolds with positive Ricci curvature. J. Differential Geom-
etry 17 (1982), 255–306.

15. J. Inoguchi: Minimal surfaces in 3-dimensional solvable Lie groups. Chinese Ann.
Math. Ser. B 24 (2003), 73–84.

16. A. Mihai and I. Mihai: Torse forming vector fields and exterior concurrent vector
fields on Riemannian manifolds and applications. J. Geom. Phys. 73 (2013), 200–208.
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