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Abstract. In this article, the Saigo fractional g—integral operator is used, to establish
new classes of fractional g-integral inequalities using two parameters of deformation ¢,
and q,.
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1. Introduction

Integral inequalities involving fractional calculus operators and fractional g—integral

calculus operators have extensively been studied by several researchers. By ap-
plying the fractional integral operators and fractional g-integral operators, many
researchers have obtained a lot of fractional integral inequalities and fractional
g—integral inequalities and applications. For more details, we refer to [1, 2, 3,
6, 7, 8, 9, 11, 12, 13, 14, 15, 19, 20, 21] and the references therein. Dahmani
[9] gave new classes of integral inequalities of fractional order using the Riemann-
Liouville fractional integrals. In [9, 11] Dahmani et al and Brahim et al. [4] es-
tablished some new fractional integral inequalities by using fractional g—integral
operators. Also in [5] V. L. Chinchane et al. obtained some integral inequalities
for the Hadamard fractional integral operators. Recently, Purohit et al. [15] and
Yang [21] investigated some other integral inequalities involving the Saigo fractional
integral operators and also established the g—extensions of the main results. In the
literature, few results were obtained on some fractional integral inequalities using
Saigo fractional g—integral operators, see [15, 21]. Motivated by the results pre-
sented in [9, 10, 11], we prove some new fractional g—integral inequalities using
Saigo fractional g—integral operator of the two parameters of deformation ¢; and

qz2.
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2. Factional g—calculus

In this section, we give some necessary definitions and mathematical preliminaries
of fractional g—calculus. More details, one can consult [1, 2, 16, 17, 18].

Definition 2.1. A real valued function f(t), is said to be in the space C,, (0, 00),
v € R, if there exists a real number p > v such that f(t) = ¢?f1(¢), where fi (t) €
C(0,00).

Definition 2.2. A function f(¢);¢ > 0 is said to be in the space C,n € R, if
f e c,.

For any complex number « € C, we define

@) ol = T £ Ll = [o], b~ 1) . (2] 1], €
and
(2.2) ([ﬁ]q) = [9],[9+ 1], [0+n—1],, neN, 9eC,

with [0],! =1 and the g—shifted factorial is defined for as a product of n factors by
(2.3) (a;9), =1,n=0; (;q),, = (1—a)(1—0aq)..(1—ag" "), n €N,
and in terms of the basic analogue of the gamma function

Ly(a+n)(1-q)"

(2.4) (¢*;9), = , n >0,
Iy (a)
where the ¢g—gamma function is defined by
. 1— 1—z
(2.5) r, ()= @ Ua) 7y

(0% 0)
We note that

(1-9)°Ty(2)

(2.6) Iy(1+42)= -

)

and if |g| < 1, the definition (2.3) remains meaningful for n = oo, as a convergent
infinite product given by

oo

(2.7) (;q) o = H (1 - ozqi) .

i=0
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Also, the g—binomial expansion is given by

c 2)d'
(2.8) (=)= (2L ,q) —TH< ; Eﬂ)
Let 9 € R, then we define a specific time scale

(2.9) Ty, = {t;t =toq", n € N} U{0}, 0 < g <1,

The Jackson’s g—derivative and g—integral of a function f defined on T3, are, re-
spectively, given by

(2.10) Dy [f (1)] = ‘7qqt L£0, g #1,

and
(2.11) /O f(w)det(l—q);)qu(qu)

Definition 2.3. The Riemann-Liouville fractional g—integral operator of a func-
tion f(¢) of order « is given by

N - ta—l t gz
(2.12) 0= 5 /O (T,q)ailf(:v) dex, a >0, 0<q<1,
where
(2.13) (a;q), = CTIP—

(aq®;q) o

Definition 2.4. For a > 0 and n > 0, the basic analogue of the Kober fractional
integral operator is given by

—n—1 t -
(2.14) I [f ()] = ;q @ /0 (%;q)ailx"f (x)dgz, 0 < g<1.

Definition 2.5. For a > 0,5 € R a basic analogue of the Saigo’s fractional inte-
gral operator is given for |%| <1by

—B-1,=n(a+B) rt o0
(2.15)  IgPNf(1)] = %/0 (q?q)a-l

XTI o (2 (291 [¢* 7,07 ¢% ¢, q]) f (x) dy,

where 7 is any non-negative integer, and the function 22 (.) and the g—translation
operator occurring in the right-hand side of (2.15) are, respectively, defined by

— (a;9),, (b,9)
2.16 Qi la,b;c;q,t)) = ey <1,]t| <1,
(2.16) (2 [ 0.t) => a0 (4.4 lq] [t]
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and
(217) g (F (1) = 3 Aut" (T10)

where (An)nez (Z = 0,4£1,+2,...) is any bounded sequence of real or complex
numbers.

For f(t) =t% in (2.15), we get the known formula

Iy(w+ 1)y (w+1-5+n) y—

o,f, w]
(2.18) 100t ]—Fq(w+1_5)rq(w+1+a+n) ’

for allt > 0, min (w,w—B+1n) >1,0< ¢ < 1.

3. Saigo fractional g—integral inequalities

In this section, we prove some g—integral inequalities concerning the Saigo fractional
q—integral operators.

Theorem 3.1. Suppose that f is a positive, continuous and decreasing function
on Ti,. Then for allt > 0,0 < q1,q2 < 1, we have

(3.1) I2m [17 £ ()] Ly [0 ()] + TP [£0 (0)] L™ [¢7 £ (¢)]
< IO O] L [ £ (0] + LB [ £ (0] 1P [0 (1] -
where 6 > 6 > 0,0 >0, >max (0,—5),6<1,8—1<n<0.

Proof. Consider

- . t=B—1g—n(a+p)
. t = — t;
( ) q ( 7$) I\q (a) (qI/ ) q)a—l

X o (20 [4°7,4775 6% g, q]) -

We note that the function Fy (¢, x) remains positive for all values of z € (0,t),t >0
and under the conditions imposed with Theorem 3.1.

Since the function f is positive, continuous and decreasing on 7%,, then for all
§>60>0,0>0,z,9¢€(0,t),t>0, we can write

(3.3) (£ @)= P (y) (y7 —a°) >0,

which implies that

(3.4) 27 0 (@) +y 0 (y) <y 00 () + a7 0 ().
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Multiplying both sides of (3.4) by Fy, (t,x) f? (z) and integrating the resulting
inequality with respect to = from 0 to ¢, we get

(35) TP 17 5 ()] + 9 £ () 1525 £ 9)]
< I [ 0] + 0 ) I [ (1)

Next on multiplying both sides of (3.5) by F,, (t,y) f’ (v) and integrating the re-
sulting inequality with respect to y from 0 to ¢, we obtain

(3.6) I P [ 0 (O] LB [£0 (O] + 1P [f0 (0] L5 [t f° (1)]
< IO ]It [ 0 (O] + 1P [ £ ] 17 [0 ()]
which implies (3.1). O

Theorem 3.2. Suppose that f is a positive, continuous and decreasing function
on Ty,. Then for allt >0, >0 >0,0>0 and 0 < ¢, < 1, we have

(3.7) I[P 1P [ 10 (0] + L™ [17 2 ()] TP [£2 (1)
< I[P O] IO O] + I [0 )] L™ [ £ ()]
where o > max (0, —3) ,w > max (0,—A),8,A <1, n—F,v—A>—1.

Proof. Multiplying both sides of (3.4) by G, (¢,9) f? (y), where
t—)\—lq—'y(w-i-)\) qy
b Gty = I
( ) q ( y) Fq (CU) t q wel
X gy (00 [0 0775 0% 0,4]) 5
fory € (0,t),t > 0. We can see that the function G (¢, y) remains positive under the

conditions stated with Theorem 3.2. Integrating the resulting inequality obtained
with respect to y from 0 to ¢, we have

(3.9) 27 fO70 () I [f0 ()] + I [t £ (1)
< L@ I [0 ()] + 27 I [0 ()]

Now, multiplying both sides of (3.9) by F, (t,z) f’ () and integrating the resulting
inequality with respect to = from 0 to ¢, we have

(3.10) IS [FO @] I8 [87 £ (8)] + I [t £ ()] I8P [ (8)]
< IS OO I [0 ()] + I [0 (O] I8P [ 0 (1)]
which implies (3.7). O

Remark 3.1. For a =w, f = XA and n = v, Theorem 3.2 immediately reduce to Theorem
3.1.
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Theorem 3.3. Let f and h be two positive and continuous functions on Ty, such
that f is decreasing and h is increasing on Ty,. Then for allt > 0,0 < g1,q2 < 1
and § > 60 > 0,0 >0, we have

(3.11) LB R () £ (0)] L™ [f0 ()] + L™ [B7 () £0 (8)] L™ [ £7 (1)]
< 217 R @) £F O [ (O] + 150 [ (O] 17 [ (1) £ (1]
where a > max (0, —f) ,w > max (0, =\), 8, A< 1,n— B,y — A > —1.

Proof. Since f and h are two positive and continuous functions on 73, such that f
is decreasing and h is increasing on 7},, then we have

(3.12) (S (@) = 177 () (h° (y) = b7 (2)) = 0,
forallo > 0,6 >0 >0,z,y € (0,¢t),t >0,
which implies
(3.13) KT () S0 () + A7 (@) £ (@) S BT (y) £00 (@) + 70 (y) BT () -
for z € (0,t),t > 0.

Now, on multiplying both sides of (3.13) by F,, (t,x) f? () and integrating the
resulting inequality with respect to = from 0 to ¢, we get
(314) h7 () £ () I [ (1)) + 1527 [ () £ (1)

< W) IR 1] + 170 @) ISP [ () £ (1)

Next, on multiplying both sides of (3.14) by F,, (t,y) f® (y) and integrating the
resulting inequality with respect to y from 0 to ¢, we obtain

(3.15)  IP[R (8) fO (O] Lo [f7 (O] + g2 [n7 (2) £ ()] TP [f2 ()]
< IO R () O O] I [0 (0] + L [F0 (O] 1o [R7 (28) £ (1)]
The proof is done. [

Theorem 3.4. Let f and h are two positive and continuous functions on Ty, , such
that f is decreasing and h is increasing on Ty,. Then for allt > 0,0 < g1,q2 < 1
and § > 60 > 0,0 >0, we have

(3.16)  Io™ [T ( t)] I;‘l*ﬁ’” LfO@)] + 1M [0 (1) Igﬁm (R (t) f° ()]
< IR () £ ()] I8P [0 ()] + T2 [f0 ()] I8P [he (1) £2 (1)

where o > max (0, —3) ,w > max (0,—A), 8, A <1, n—F,v—A>—1.

t)f°
t) f°

Proof. Multiplying both sides of (3.13) by Gy, (t,y) f? (y) and integrating with re-
spect to y from 0 to ¢, we have

(3.17) I [0 (8) £2 (0] + 7 (@) £° (@) T 1 (1]
< P @ I BT @ £ 0] + 0 @) I [ 0]
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Multiplying both sides of (3.17) by F,, (t,z) f? (z) and integrating the resulting

inequality with respect to = from 0 to ¢, we obtain

(3.18) IV [ (4) fO ()] I&PM [£2 ()] + I |
< I [ (1) £ () TR [0 ()] + 12 |

FEONIO R (1) £ (1)]
PP L [he () £ (1)] -
This ends proof of Theorem 3.4. O

Remark 3.2. For a = w, f§ = XA and n = ~, Theorem 3.4 immediately reduces to
Theorem 3.3.

Now, by using Saigo fractional g—integral, we generate new class of Saigo frac-
tional g—integral inequalities involving a family of n positive functions defined on
T;,.

Theorem 3.5. Suppose that (fi), i=1,...n are n positive and continuous functions
on Ty,. Then, for allt > 0,0 < q1,q2 <1 ando > 0,0 >0, >0, k € {1,...,n}, the
following fractional inequality

(3.19) 1008 le ]I""ﬂ" 7 (¢ ﬁfﬁi
i#k

w1 | g o T I;f"[ 7 (0 ]
i#k i=1

o 0; a,, o
< o | gl o fq;*n[t
itk

I“"”[t”]_[f ]IW 0N E0
ik

is valid for any a > max (0,—6),8<1, f—1<n<0.

Proof. Suppose (fi), i=1,...n are n positive continuous functions on T}, then we
can write

(3.20) (77 @) = 17" W) " =) 0,

for any fixed k € {1,...,n} and for any § > 0, > 0,0 > 0,2,y € (0,t),t > 0.
From (3.20), we obtain

(3.21) I () + 2t [0 () <y 0 (@) + a2t f) 0 ()
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Now, multiplying both sides of (3.21) by F, (¢,z) ], £ (z) and integrating
with respect to = from a to ¢, we obtain

n

(3.22) yﬁ%<m%ﬂnﬁw

i=1

Sl G0N | O

i#k

< v | ROTLE @) + 17 w1 [t” [1s" ]
i#k =1
Next, multiplying both sides of (3.22) by Fy, (¢t,y) [T, fiei (y) and integrating the
resulting inequality with respect to y from a to ¢, we get
(3.23) IO"/3 K [Hf 1 IO"/3 T £ (t) eri
i#k
1 1

Sfﬁ”ﬁ@ﬁ#wzw”kﬁﬁm]

i#k i=1

P e i T @) I;f”l
ik

=

+1a5"[t“]_[f ]IQB” TGN I PG

i=1 i#k

which implies (3.19). O

Theorem 3.6. Suppose that (f;) ,i=1,...n are n positive and continuous functions
on Ty,. Then, for all t > 0, O<q1,q2<1 and o > 0,0 >0, >0, k € {1,...,n}, the
following fractional inequality

(3.24) A e TLA | 10 [
ik

+Igh lﬁ ]I“’ﬂ K t”f‘s()f[ff“ (t)

i#k

< I“’“[t"Hf ]I“’ﬂ" R )ﬁffi(t)

ik

+@MﬁwnﬁwﬁmFHﬁd'

i£k i=1
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Proof. Multiplying both sides of (3.21) by Gq, (t,y) [[i-, fiei (y) and integrating the
resulting inequality with respect to y over (0,t), we obtain

I ®

i=1

(3.25) IS 1 f (t)Hffi )| + 27 f70% (x IWM[

+a7 I RO T @)
i#k

Multiplying both sides of (3.25) by F, (t,z) [T\, f* (y) and integrating the result-
ing inequality with respect to y over (0,t), we obtain

(3.26) A e ) [ @ I:;ﬁ’"[
i#k
+I;-12;>\7’Y [

wvltaﬂf ]I“vﬂ" ROTLH @

i#k

HE:

o] e oot o

i#k

IN

+I ) T A )| IgePn lt”
ik

I17 (t)} :

=

—

The result is proved. O

Remark 3.3. Applying Theorem 3.6 for « = w, 8 = A and n = 7, we obtain Theorem
3.5 immediately.

Theorem 3.7. Let (fi),i=1,..n and h be positive continuous functions on Ty,
such that h is increasing and (f;) yi=1,....n are decreasing on Ty,. Then for allt > 0,
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0<q,g2<1,and o >0,6>0>0,ke{l,..,n}, we have

(3.27) gl [Hf ]Iﬂ“{h“()fi(f)ﬂffi <t>]
+I;ﬁ="[h“<>f5<>ﬂ ]I‘” [H ]

i#k
< I [M)Hf <>] Iaﬁ"[hf’wﬂff’i(t)]

i£k i=1

n

I [h” oI« )] 1008 [fk o I+ <t>] :

i=1 i#k
where o > max (0,—38),6<1,n—F > —1.
Proof. Let z,y € (0,t), t > 0, we have
(328) K7 (y) fi ™ (y) + BT (@) [ () S BT () 7 (@) + 70 () B ()

forany 0 >0, >0, >0,k € {1,2,...,n}.
Multiplying both sides of (3.28) by Fy, (t,x) [/, f* (z) and integrating with
respect to z over (0,t), we obtain

+ IE [h" RO @

(329) A7 (y) ;7 ( I““[Hf
ik

n

s M f”"[ DI ]+f£f’k<y>fsrﬂ’" [h“(t)Hffwt)

i£k i=1

Now, multiplying both sides of (3.29) by F, (t,y) [T, f¥ (y) and integrating with
respect to y from 0 to ¢, we have

(3.30) 1008 [Hf ] 108 [lf’( t)fo ) [T £ <t>}

i#k

ik

+Iw[ha<>fa<>ﬁ } dh

< I [mef <>] Iaﬁnlhmﬂf;’i(t)]

i#k i=1

I [h” Hf ]Iaﬁ"lf;f(t)ﬁff" <t>].

i#k
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This completes proof of Theorem 3.7. O

Theorem 3.8. Let (f;), i=1,...n and h be positive continuous functions on Ty,
such that h is increasing and (f;), i=1,..n are decreasing on Ty . Then for all
t>0,0<g<lando>0,0>0,>0 ke{l,..n}, wehave

(331) 1o | he 0 8 O LA ] 120 [ﬁ Iz <t>]
ik i=1
S [Hf ]IQB" he (t Hf
i#k

S@MV®Hﬁﬂ%Mﬁ®Hﬁ@

i=1 i#k

R T o) e [h“ ONIFis <t>] ,
=1

ik
where o > max (0, —3) ,w > max (0,—A), 8, A <1, n—F,v—A>—1.
Proof. Multiplying both sides of (3.28) by G, (t,v) [1i—, £ (y) and integrating

with respect to y over (0,t), we obtain

n

@32) 1 | O L 0 +17 0 70 ) 1 [Hffi(t)

i£k i=1

+h7 @) I o T @
ik

< R @) It lh“ er

Now, multiplying both sides of (3.32) by Fy, (t,x) []i—, £’ (z) and integrating with
respect to  over (0,t), we have

(5.33) zywwwﬁ@nﬁ@zwﬂnﬁm]
=1

ik

S [Hf ]IQB" he (t Hf

i#k

S@MV®Hﬁﬂ%Mﬁ®Hﬁ@

i#k

RO LT @ 150 [h“ Oy & @] '
=1

ik
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Theorem 3.8 is thus proved. O

Remark 3.4. Applying Theorem 3.8 for « = w, f = A and = ~, we obtain Theorem

3.7.

10.

11.

12.

13.

14.

15.

16.

17.
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