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2 Doğanşehir Vahap Küçük Vocational School, Malatya Turgut Özal University
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Abstract. In this paper, we study k-type (k ∈ {0, 1, 2, ...., n − 1}) slant helices due
to non-zero parallel transport frame in En. We give some characterizations for 0-type,
1-type,..., and in general (n−1)-type slant helix due to parallel transport frame in terms
of parallel transport curvatures in En and with the aid of these characterizations we
give an important general theorem which gives the necessary and sufficient condition
for any space curve to be k-type slant helices due to parallel transport frame in En.
We also obtain the characterizations of the curves whose position vectors belong to
the normal, rectifying and osculating spaces (called normal, rectifying and osculating
curves, respectively) due to parallel transport frame in En.
Keywords: parallel transport frame, k-type slant helix, normal curve, rectifying curve,
osculating curve.

1. Introduction

In classical differential geometry, the study of space curves has been an area of
central importance and attracted many differential geometers due to its importance
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and applications in many interdisciplinary and allied sciences. One of the prominent
space curves is a general helix which is defined as a space curve whose tangent vector
is inclined at a constant angle with a certain fixed (non-zero) direction. The general
helix is characterized by the condition that the ratio of its curvature and torsion
is always constant (Lancret theorem; [17]). In 2004, Izumiya and Takeuchi [14]
introduced the notion of slant helices in E3 as a special class of general helices. They
called any space curve in E3, a slant helix, whose principal normal vector observes a
constant angle with a fixed (non-zero) direction. They showed that any space curve
in E3 is a slant helix if and only if the geodesic curvature of its principal normal
is a constant function. On the other hand, Ali and Turgut [2] extended the study
of slant helices to n-dimensional Euclidean space En and gave a characterization in
the form of curvature integral equations. Also, Gök et al. generalized the idea of
slant helices to k-type slant helices (or Vk-slant helices) and characterized them [10].
On the other hand, we refer to ( [1, 3, 8, 12, 15, 16, 18, 19, 21, 22, 24], etc.) for more
studies about slant helices in 3, 4 or higher dimensional different spaces.
It is well-known that the Frenet frame is constructed for any non-degenerate and 3-
time continuously differentiable space curve. This has the possibility that the second
derivative of the curve may vanish at some point, i.e. curvature may become zero
at some point on it and hence we need an alternative frame to be defined on a
space curve which may work in zero-curvature condition. In view of this, Bishop [6]
devised a new frame called the parallel transport frame or Bishop frame which
is well-defined even if the space curve has a vanishing 2nd derivative. In [23],
Ünlütürk, Tozak and Ekici studied k-type slant helices due to a parallel transport
frames (Bishop frame) and characterized them in 4-dimensional Euclidean space
E4. Motivated by these developments, our aim is to study k-type slant helices due
to parallel transport frame in n-dimensional Euclidean space En and characterize
them. We also obtain the characterizations of the curves whose position vectors
belong to the normal, rectifying and osculating spaces (called normal, rectifying
and osculating curves, respectively) in En.

2. Preliminaries

Analogous as for a space curve, for an arc-length parametrized curve x : I ⊂ R →
En, one can construct a Frenet frame {T (s), N1(s), N2(s), ...Ni(s), ...., Nn−1(s)}
that satisfies the equations

(2.1)

T ′(s) = k1(s)N1(s),
N ′

1(s) = −k1(s)T (s) + k2(s)N2(s),
N ′

2(s) = −k2(s)N1(s) + k3(s)N3(s),
.
N ′

i(s) = −ki(s)Ni−1(s) + ki+1(s)Ni+1(s),
.
N ′

n−1(s) = −kn−1(s)Nn−2(s),


where the functions ki(s), i ∈ {1, 2, 3, 4, ...., n − 1}, denote the curvatures of the
curve and all ki(s) are positive. If the curve x is not arc-length parametrized, then
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the right-hand sides of the equation (2.1) must be multiplied by the speed v of x [9].

Furthermore, the Bishop frame, also known as parallel transport, is an orthonor-
mal frame formed by transporting each component in parallel. In this context, we
suppose that x is any unit speed curve in En with the tangent vector T (s), then
one can choose any convenient arbitrary basis which consists of relatively parallel
vector fields {M1(s),M2(s), ...,Mn−1(s)} which are perpendicular to T (s) at each
point. The parallel transport frame equations are

(2.2)


T ′(s)
M ′

1(s)
M ′

2(s)
...

M ′
n−1(s)

 =


0 −k1(s) −k2(s) . . . −kn−1(s)

k1(s) 0 0 . . . . . .
k2(s) 0 0 . . . . . .
...

...
...

...
...

kn−1(s) 0 0 . . . . . .




T (s)
M1(s)
M2(s)

...
Mn−1(s)

 ,

where ki(s) are principal curvature functions according to parallel transport frame
of the curve x and they are called parallel transport curvature functions (for more
details, see [7, 20]).

Definition 2.1. The normal space, rectifying space and osculating space accord-
ing to parallel transport frame {T (s),M1(s),M2(s), ...,Mn−1(s)} in En are defined
as

T⊥(s) = {X ∈ En : ⟨X,T (s)⟩ = 0},
M⊥

1 (s) = {X ∈ En : ⟨X,M1(s)⟩ = 0},
M⊥

2 (s) = {X ∈ En : ⟨X,M2(s)⟩ = 0},

respectively. Also, normal curve, rectifying curve and osculating curve are defined
as curves whose position vectors always lie in their normal space, rectifying space
and osculating space, respectively. Hence, position vectors of the normal curve,
rectifying curve and osculating curve according to the parallel transport frame in
En satisfy the equations

x(s) = d1(s)M1(s) + d2(s)M2(s) + d3(s)M3(s) + .....+ dn−1(s)Mn−1(s),(2.3)

x(s) = d1(s)T (s) + d2(s)M2(s) + d3(s)M3(s) + .....+ dn−1(s)Mn−1(s),(2.4)

x(s) = d1(s)T (s) + d2(s)M1(s) + d3(s)M3(s) + .....+ dn−1(s)Mn−1(s),(2.5)

respectively and here d1(s), d2(s), ....., dn−1(s) are differentiable functions (see [4,5,
8, 11,13]).

3. Characterization of k-type Slant Helices due to Parallel Transport
Frame in En

In this section, we give characterizations for 0-type, 1-type,..., (n − 1)-type slant
helix due to parallel transport frame in terms of parallel transport curvatures in En
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and with the aid of these characterizations we give an important general theorem
which gives the necessary and sufficient condition for any space curve to be k-type
(k = 1, 2, ..., n− 1) slant helix due to parallel transport frame in En.

Definition 3.1. Let {T (s),M1(s),M2(s), ....,Mn−1(s)} be a parallel transport frame
of the curve x = x(s) which is parametrized by arc-length. If there exists a non-zero
constant vector field U in En such that ⟨Mk(s), U⟩ ≠ 0 is constant for all s ∈ I,
where M0(s) = T (s) and k ∈ {0, 1, 2, ...., n − 1}, then x is said to be k-type slant
helix due to parallel transport frame and U is called the axis of x [23].

Now, let U be any non-zero constant vector in En. Then, due to the parallel
transport frame, it can be represented as

U = co(s)T (s) + c1(s)M1(s) + c2(s)M2(s) + .....+ cn−1(s)Mn−1(s),

where c0(s), c1(s), c2(s), ....., cn−1(s) are differentiable functions. Differentiating U ,
we get

(c′o(s) + c1(s)k1(s) + c2(s)k2(s) + .....+ cn−1(s)kn−1(s))T (s) + (−co(s)k1(s)

+ c′1(s))M1(s) + (−co(s)k2(s) + c′2(s))M2(s) + .......+ (−co(s)kn−1(s)

+ c′n−1(s))Mn−1(s) = 0

which implies that

(3.1)

c′o(s) + c1(s)k1(s) + c2(s)k2(s) + .....+ cn−1(s)kn−1(s) = 0,

−co(s)k1(s) + c′1(s) = 0,

−co(s)k2(s) + c′2(s) = 0,

.

.

−co(s)kn−1(s) + c′n−1(s) = 0.


Now, let us give a characterization for a 0-type slant helix due to parallel trans-

port frame in terms of parallel transport curvatures in En.

Theorem 3.1. Any smooth curve x(s) in En is a 0-type slant helix due to parallel
transport frame {T (s),M1(s),M2(s), ....,Mn−1(s)} if and only if the equation

(3.2) k1(s)

∫
k1(s)ds+ k2(s)

∫
k2(s)ds+ .....+ kn−1(s)

∫
kn−1(s)ds = 0

holds.

Proof. Let x(s) be a 0-type slant helix due to parallel transport frame in En. Then,
we have

< T (s), U >= co ̸= 0 (constant).



On Certain Space Curves Due to Parallel Transport Frame in En 391

Combining the above equation with (3.1), we obtain

c1(s)k1(s) + c2(s)k2(s) + ......+ cn−1(s)kn−1(s) = 0,

c1(s) = co

∫
k1(s)ds,

c2(s) = co

∫
k2(s)ds,

.

.

cn−1(s) = co

∫
kn−1(s)ds


and so

co

{
k1(s)

∫
k1(s)ds+ k2(s)

∫
k2(s)ds+ .....+ kn−1(s)

∫
kn−1(s)ds

}
= 0.

Since co is a non-zero constant, we have our assertion.

Conversely, let us assume that (3.2) holds. If we consider the axis that

(3.3) U =

(
coT (s) +

(
co

∫
k1(s)ds

)
M1(s) +

(
co

∫
k2(s)ds

)
M2(s) + .....

+

(
co

∫
kn−1(s)ds

)
Mn−1(s)

)
,

where c0 is a non-zero constant, then by differentiating U and using (2.2) and (3.2),
we have U ′ = 0. Thus, the proof is completed.

The following result can be easily obtained from the Theorem 3.1.

Corollary 3.1. Let x(s) be a 0-type slant helix with non-zero parallel transport
curvatures k1(s), k2(s), . . . , kn−1(s) due to parallel transport frame {T (s),M1(s),
M2(s), . . . ,Mn−1(s)} in En. Then, the axis of x(s) is given by (3.3).

Here, let us characterize a 1-type slant helix due to parallel transport frame in
terms of parallel transport curvatures in En.

Theorem 3.2. Any smooth curve x(s) in En is a 1-type slant helix due to parallel
transport frame {T (s),M1(s),M2(s), ....,Mn−1(s)} if and only if the function

(3.4) −c2k2(s)

k1(s)
− c3k3(s)

k1(s)
− ....− cn−1kn−1(s)

k1(s)

is a non-zero constant, where c2, c3, .....cn−1 are constants.
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Proof. Let x(s) be a 1-type slant helix due to parallel transport frame {T (s),M1(s),
M2(s), ....,Mn−1(s)} in En. Then, we have ⟨M1(s), U⟩ = c1 ̸= 0 (constant). There-
fore, from the second equation of (3.1), we have co = 0. Hence, we get the following
equations:

(3.5)

c1k1(s) + c2(s)k2(s) + .....+ cn−1(s)kn−1(s) = 0,

c2(s) = constant,

c3(s) = constant,

.

.

cn−1(s) = constant.


In view of the assumption that c1 is a non-zero constant, we can say that the
function

−c2k2(s)

k1(s)
− c3k3(s)

k1(s)
− ....− cn−1kn−1(s)

k1(s)

is constant, where c2, c3, ....cn−1 are constants.

Conversely, let us assume that the function (3.4) is a non-zero constant and
c2, c3, .....cn−1 are constants. Then, we can find a fixed non-zero vector U which
satisfies < M1(s), U >= c1 ̸= 0 (constant) as follows:

(3.6)

U =

((
−c2k2(s)

k1(s)
− c3k3(s)

k1(s)
− .....− cn−1kn−1(s)

k1(s)

)
M1(s) + c2M2(s) + ......

+ cn−1Mn−1(s)

)
.

Differentiating the equation (3.6) and using (2.2), we get U ′ = 0 and this completes
the proof.

The following result can easily be observed from Theorem 3.2.

Corollary 3.2. Let x(s) be a 1-type slant helix with non-zero parallel transport
curvatures k1(s), k2(s), . . . , kn−1(s) due to parallel transport frame {T (s),M1(s),
M2(s), . . . ,Mn−1(s)} in En. Then, the axis of x(s) is given by (3.6).

Similarly, one can characterize 2-type slant helices, 3-type slant helices, etc.

Now, let us characterize in general (n− 1)-type slant helix due to parallel trans-
port frame {T (s),M1(s),M2(s), ....,Mn−1(s)} in En.

Theorem 3.3. Any smooth curve x(s) in En is an (n− 1)-type slant helix due to
parallel transport frame {T (s),M1(s),M2(s), ....,Mn−1(s)} if and only if the func-
tion

(3.7) − c1k1(s)

kn−1(s)
− c2k2(s)

kn−1(s)
− ....− cn−2kn−2(s)

kn−1(s)
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is a non-zero constant, where c1, c2, .....cn−2 are constants.

Proof. If x(s) is an (n− 1)-type slant helix due to parallel transport frame {T (s),
M1(s),M2(s),M3(s), ....,Mn−1(s)} in En, then we have ⟨Mn−1(s), U⟩ = cn−1 ̸= 0
(constant). Using this equality in the last equation of (3.1), we get co = 0. Hence,
we have the following equations:

(3.8)

c1(s)k1(s) + c2(s)k2(s) + .....+ cn−1kn−1(s) = 0,

c1(s) = constant,

c2(s) = constant,

.

.

cn−2(s) = constant.


In view of the assumption that cn−1 is a non-zero constant, the first equation in the
above set of equations implies that the function

− c1k1(s)

kn−1(s)
− c2k2(s)

kn−1(s)
− ....− cn−2kn−2(s)

kn−1(s)

is constant, where c1, c2, ....., cn−2 are constants.

Conversely, let us assume that the function (3.7) is a non-zero constant and
c1, c2, ...., cn−2 are constants. Then, we can find a fixed non-zero vector U which
satisfies < Mn−1(s), U >= cn−1 ̸= 0 (constant) as follows:

(3.9) U =

(
c1M1(s) + c2M2(s)......+ cn−2Mn−2(s)+(

− c1k1(s)

kn−1(s)
− c2k2(s)

kn−1(s)
− .....− cn−2kn−2(s)

kn−1(s)

)
Mn−1(s)

)
.

It is easy to prove that U is constant and this completes the proof.

Corollary 3.3. Let x(s) be an (n−1)-type slant helix with non-zero parallel trans-
port curvatures k1(s), k2(s), . . . , kn−1(s) due to parallel transport frame {T (s),
M1(s),M2(s), . . . ,Mn−1(s)} in En. Then, the axis of x(s) is given by (3.9).

Hence, from Theorem 3.2 and Theorem 3.3, we can state the following theorem
which gives the necessary and sufficient condition for any space curve to be i-type
(i = 1, 2, ..., n− 1) slant helices due to parallel transport frame in En:

Theorem 3.4. In general, any smooth curve x(s) in En is an i-type slant helix
due to parallel transport frame {T (s),M1(s),M2(s), ....,Mn−1(s)} if and only if the
function

(3.10) F(k1(s), k2(s), ...., kn−1(s)) = − 1

ki(s)

∑
j ̸=i

cjkj(s)

is non-zero constant, where cj are constants and i, j ∈ {1, 2, ..., n− 1}.
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4. Normal, Rectifying and Osculating Curves due to Parallel
Transport Frame in En

In this section, we characterize the normal, rectifying and osculating curves due to
parallel transport frame in terms of parallel transport curvatures in En.

Theorem 4.1. Any curve x(s) is a normal curve according to due to parallel trans-
port frame {T (s),M1(s),M2(s), ....,Mn−1(s)} in En if and only if the equation

(4.1)
n−1∑
i=1

aiki(s) = 1

holds for constants ai, i ∈ {1, 2, ..., n− 1}.

Proof. Let x(s) be a normal curve due to parallel transport frame {T (s),M1(s),
M2(s), . . . ,Mn−1(s)} in En. Then, the position vector of the curve x(s) is given by
(2.3). Now differentiating (2.3) with respect to ‘s’ and using (2.2), we get

T (s) = (d1(s)k1(s) + d2(s)k2(s) + ....+ dn−1(s)kn−1(s))T (s)

+d′1(s)M1(s) + d′2(s)M2(s) + d′3(s)M3(s)...+ d′n−1(s)Mn−1(s)

which gives

d1(s)k1(s) + d2(s)k2(s) + ....+ dn−1(s)kn−1(s) = 1,

d′1(s) = 0,

d′2(s) = 0,

.

.

d′n−1(s) = 0.


Combining the above set of equations gives our result (4.1), where di(s) = ai (con-
stant), i = 1, 2, ...., n− 1.

Conversely, let us suppose that the curvatures k1(s), k2(s), .....kn−1(s) satisfy the
equation (4.1) for constants a1, a2, ....., an−1 and let us consider the vector X ∈ En

given by

X(s) = x(s)− (a1M1(s) + a2M2(s) + .....+ an−1Mn−1(s)).

Differentiating X(s) and using (2.2), we get

X ′(s) = T (s)− (a1k1(s) + a2k2(s) + .....+ an−1kn−1(s))T (s).

Combining the above equation with (4.1), we get X ′(s) = 0. Hence, X(s) is a
constant vector field and so, the curve x(s) is a normal curve.
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Theorem 4.2. Any curve x(s) is a rectifying curve due to parallel transport frame
{T (s),M1(s),M2(s), ....,Mn−1(s)} in En if and only if the equation

(4.2)
n−2∑
i=1

aiki+1(s) = 1

holds for constants ai, i ∈ {1, 2, ..., n− 2}.

Proof. Let x(s) be a rectifying curve due to parallel transport frame {T (s),M1(s),
M2(s), ....,Mn−1(s)} in En. Then, the position vector of the curve x(s) is given by
(2.4). Now, differentiating (2.4), we get

d′1(s) + d2(s)k2(s) + d3(s)k3(s) + ....+ dn−1(s)kn−1(s) = 1,

−d1(s)k1(s) = 0,

−d1(s)k2(s) + d′2(s) = 0,

.

.

−d1(s)kn−1(s) + d′n−1(s) = 0.


Combining the above set of equations gives our result (4.2), where di(s) = ai−1

(constant), i = 2, 3, ....., n− 1.

Converse can be proved easily by taking the vector X ∈ En as

X(s) = x(s)− (a1M2(s) + a2M3(s) + .....+ an−2Mn−1(s)),

where a1, a2, ....., an−2 are constants.

Using a similar procedure to the proofs of Theorem 4.1 and Theorem 4.2, one
can prove the following theorem which characterizes the osculating curve due to
parallel transport frame {T (s),M1(s),M2(s), ....,Mn−1(s)} in En.

Theorem 4.3. Any curve x(s) is an osculating curve due to parallel transport
frame {T (s),M1(s), M2(s), ....,Mn−1(s)} in En if and only if the equation

(4.3) a1k1(s) +
n−2∑
i=2

aiki+1(s) = 1

holds for constants ai, i ∈ {1, 2, ..., n− 2}.

5. Conclusion

A general and comprehensive formulation of differentiation theory and parallel
transport on manifolds is provided by the n-dimensional parallel transport frame.
In particular, this is a crucial step in expanding the basic theoretical framework
and comprehending complex differentiation processes in multidimensional spaces.
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Additionally, it illustrates the usefulness of this theoretical framework by examin-
ing applications of the n-dimensional parallel transport frame in intricate physical
theories like general relativity.

The goal of our research is to shed light on how this expanded frame in differ-
ential geometry might be applied to better comprehend physical phenomena and
construct models. Therefore, we are encouraged to study the n-dimensional parallel
transport frame with the goal of exploring useful applications of this extended frame
in physical theories, improving the comprehension of parallel transport notions on
manifolds, and generalizing differentiation theory.

Hence, in the present study, we study the k-type slant helices due to the parallel
transport frame in n-dimensional Euclidean space En and obtain some character-
izations of the curves whose position vectors belong to the normal, rectifying and
osculating spaces due to parallel transport frame in En.
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