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Abstract. In this paper, we have discussed some different growth properties of compos-
ite entire functions on the basis of their central index using the concepts of (p,q,t) L-th
order and (p,q,t) L-th type.
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1. Introduction, Definition and Notation
Let f(z) be an entire function defined in the open complex plane C. For entire
[e.e]

function f(z) = > anz™ on |z| = r, the maximum modulus symbolized as My (r),

n=0
the maximum term denoted as uy () and the central index indicated as vy (r) are

respectively defined as |In|ax|f (2) |, max (lan|r™) and max{m : pys (r) = |am|r™}.
z|l=r n>

Therefore, the central index v¢ (1) of an entire function f(z) is the greatest exponent
m such that |a,,|r™ = ps(r). Obviously, My (r), ps(r) and vy (r) are real and
increasing functions of r. For another entire function g(z), M, (r) and p,4 (r) are
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My (r)
Mg(r) g
are called the comparative growth of f(z) with respect to g(z) in terms of their
maximum moduli and the maximum terms respectively. The prime object of the
study of the growth investigation of entire function has usually been done through
their maximum modulus and maximum term. Though vy () is much weaker than
My (r) and py (r) in some sense, from another angle of view % as r — 400 is also
called the growth of f(z) with respect to g(z) where v, (r) denotes the central index
of entire function g(z). The iterations of the exponential and logarithmic functions

[k = log (log[k_”
expl®z = 2, expl~U 2 = logz, log!” # = z and log!™" z = exp z, where = € [0, )
and k € N; the set of all positive integers . Further, we assume that throughout the
present paper [, p, ¢, m and n always denote positive integers and ¢t € NU {—1,0}.

also defined and the ratios

when r — +o0o0 as well as ng; as r — 400

as expl®l z = exp (exp[k_l] x) and log x) , with convention that

To start the paper, we first recall the following definitions:

Definition 1.1. The order p(f) and the lower order A(f) of an entire function
f(2) are defined as:
log log M loglog M
p(f) = limsup BB M) g 3 () = tim ing 108108 M (7).
r—s+o00 logr r—+00 logr
Later, He et al. [7] gave the alternative definitions of order and lower order of
an entire function f(z) in terms of its central index in the following way:

1 1
p(f) = limsupm and \(f) = liminfm.
r—4o0 logr r—+oo  logr
On the other hand, Shen et al. [13] defined the (m,n)-¢ order and (m,n)-¢ lower
order of entire function f(z), which are as follows:

Definition 1.2. [13] Let ¢ : [0,4+00) — (0,400) be a non-decreasing unbounded
function and m > n. The (m,n)-¢ order p(™™(f ©) and (m,n)-p lower order
M) (f o) of entire function f(z) are defined as:

o . log™ 1 My (r
P (frg) = limsup—t— L )
rotoo log™ o(r)

1 [m+1] M
and XM (f o) = lim inf 28 Mr(r)
r—400 log["] <p(r)

If we take m = p, n = 1 and ¢(r) = loglt™" - expl™1 L(r), where L = L(r)
is a positive continuous function increasing slowly i.e., L(ar) ~ L(r) as r — oo for

every positive constant ‘a’ i.e., liT LL((“TT)) = 1, then Definition 1.2 turns into the
r—400

definitions of (p,q,t) L-th order and (p,q,t) L-th lower order of an entire function f(z)
(for details, see [3]) which are as follows:

logPt1 pr,
p(p,q,t)L(f) — limsup og £(r)
r—+oc logl? r + explt] L(r)
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logPt1 ps
and AP9OL(f) = liminf o8 1(r) .
r=+oo Jogld - expltl L(r)

Further, Shen et al. [13] also established the equivalence of the definitions of
(m,n)-¢ order of entire function in terms of maximum modulus and central index
under some conditions. For details about it, one may see [13]. In view of Lemma
3.4 of [13] and Definition 1.2, one may write the following Definition.

Definition 1.3. [4] Let f(z) be an entire function and vy (r) be the central index
of f(z), then

log[p] vy (r)

(P.a:t)L = lim sup
P (f) r—+4o0 log[‘ﬂ r + explt] L(r)

and
log[p] v (r)

APEOL( £y = lim inf .
r=+oo Jogld 4 explt] L(r)

In order to compare the relative growth of two entire functions having same
non-zero finite (p, ¢,t)L-th order, one may introduce the definitions of (p, q,t)L-th
type (respectively (p, q,t)L-th lower type) of entire functions having finite positive
(p, q,t)L-th order in the following manner:

Definition 1.4. [3] Let f be an entire function with non-zero finite (p, q,t)L-th
order p®OL(f). The (p,q,t)L-th type denoted by o®@HL(f) and (p,q,t)L-th
lower type denoted by 7P %"L(f) are respectively defined as follows:

log?~ 1 My (r)

(p.g:t) L =1 f

(o = l1imsu

) oo logl= 7 - explt+1) L(r)]p 0= (1)

and

loglP~4 M (r)
(Pat)L — liminf f .
g () oo [log[qfl] 7 - explt+1l L(r)]p® 0 (f)

Analogously in order to determine the relative growth of two entire functions
having same non-zero finite (p, ¢,t)L-th lower order, one may introduce the defini-
tion of (p,q,t)L-th weak type of entire function having finite positive (p, q,t)L-th
lower order in the following way:

Definition 1.5. [3] The (p, ¢, t) L-th weak type denoted by 7% OL( f) of an entire
function f(z) is defined as follows:

log=1 s
FPaL(f) = liminf = ()

, 0< APOOE(f) < oo,
=400 [loglt™ 1 - explt+1] (1) A®+ 0 (£) () < +oo

Also one may define the growth indicator 7Y% ( f) of an entire function f(z) in
the following manner:

=1 as,
7PaDL( ) = lim sup log My(r)

r—o0 [log[q—l] - exp[tJrl] L(T,)],\(p,q,t)L(f)

, 0 < APaOE(f) < 400
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Considering the above, here in this present paper, we attempt to prove some
results related to the growth rates of composite entire functions on the basis of the
central index using the ideas of (p,q,t)L-th order and (p,q,t)L-th type of an entire
function. In fact, some works in this field the using central index have been already
explored in [1, 2, 4, 10, 11]. We have used the standard notations using the theory
of entire functions which are available in [9].

2. Lemmas

In this section, we present some lemmas which will be needed in the sequel.

Lemma 2.1. [5] Let f(z) and g(z) be any two entire functions with g (0) = 0.

Also let 8 satisfy 0 < f < 1 and c(B) = %. Then for all sufficiently large
values of T,

My (c(B) My (Br)) < Myog (r) < My (Mj (1))

Lemma 2.2. ([[7], Theorems 1.9 and 1.10, or [8], Satz 4.3 and 4.4]) Let f(z) be
any entire function, then

T

t
log pif (1) = log |ag| + /VfT()dt where ag # 0,
0

and forr < R,

M) < g ) {or () + 7

3. Main results

Theorem 3.1. Let f(z) and g(z) be any two entire functions such that 0 <
E(paqxt)l’(f og) S U(p)q)t)L(f og) < +OO, 0 < E(p7q7t)L(f) S U(p)Q)t)L(f) < 400 s
pPINL(f o g) = p@aDL(f) and explt L(ar) ~ expttU L(r) as r — 400 for

p—3
every positive constant ‘a’. If logm (g) =0 (lgl log[l] Vfog (r)) as r — +o00, then

g1t (fog) o los vy (1)
g(pyq,t)L(f) r—+00 log[p*Q] vy (r)
gl (fog) oPtDL(fog) g@Pal(fog) oPtDL(fog)
FahL(f)  owabL(f) } < ma { FwahL(f)  owabL(f) }
P vpey (r) _ a0 (f o g)
[p—2] vi(r) gL (f)

§min{

log

< lim sup
r—+oo log
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Proof. For any constant E, one may get from the Lemma 2.2, that
log Mog(1) < vyog (r)logr +logvseg (2r) + E {cf.[6] }.

Therefore from above we obtain that

log Mpog(r) < Vyiog(2r)logr +vieg (2r) + E
i.e., log Mfog(r) < Vyog(2r)(1+1logr)+ E
(3.1) i€, log Mog(r) < Viog(2r)log(e-r)+ E
i.e., log Myogq (g) < Vfoq (1) log (e . g) + F

, r r
ie., log? Myogq (5) <logvyog (1) + log!? (5) +0(1)

log!? (%) + O(l))

e, 1 [21Mo(f) log vse 1
1.e., Og fog 2 < Ogl/f Q(T) + log Vfog (7’)

log® (5) +0(1
i.e., logtl Myogy (g) < logl? Vfog (1) + log (1 i g” (5) (1)

log vog (1)

, we get for sufficiently large

Taking log <1 + 108 0oy (7) Tog 70y (r)

values of 7,

1og[21(;)+0(1)) < loe®(5)+o0)

log™ (§) + O(1)
logvsog (1)
log” (5) +0(1) )

log vfog (1) - log[Q] Vfog ()

log (£) +0(1) )

log vgog (1) - logm Vfog (T)

103[3] Myog (g) < 10g[2] Viog (1) +

ie., logt My, (g) < log®vpe, (r) (1 +

i.e., logt Myog (g) < log"! Viog (1) + log <1 +

ogl2l(z oel2l(
Taking log <1+ log?(5)+00) ) < logi!(5)+0(1)

log ufog(r)-log[2] Viog(r) — log l/fog(’l")~10g[2] Viog(r)
ciently large values of r,

, we get for suffi-

log!? (%) +0(1)
log vfog (1) - log[Z] Vfog ()

tog!"! Mo (%) <108 ey () +

Continuing this process, we get for sufficiently large values of r,

log™ (%) +0(1)

p—3 .
lljl log!" Vfog (T)

log[p_l] Mfog (g) < log[p_2] Vng (’]”) —+
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p—3

Using given condition log[z] (%) =0 < ) logm Vfog (r)) as r — +oo, we have

=

logP—1! Myoq ( < loglr=2 Viog (1) + 0(1)

r
2)
(3.2) ie., log? A up, (1) > logP~t My, (g) +o(1).

Again in view of the first part of Lemma 2.2, one may obtain that

2r

t
log s (2r) = log|a0|+/VfT()dt
0

2r

t
log |ao| +/VfT()dt

r

(3.3) = loglao| + vy (r)log2 {cf. [6] }.

Y

Also by Cauchy’s inequality, it is well known that
(3.4) pp (r) < Mg (r) {ef. [12] }.

Therefore for any constant D, one may obtain from (3.3) and (3.4) that
(3.5) vy (r)log2 <logM; (2r) + D {cf. [6] }.

Thus from above, we get that

log® M; (2r) + O(1),
(3.6) ie., log? A up(r) < logP~" My (2r) + O(1).

—
=}
oQ
S
[y
—
=
—
N

From the definitions of ¢® @Y (f) and 7P DL (f o g) and in view of (3.2) and
(3.6), we have for arbitrary positive € and for all sufficiently large values of r,

— — — r T\ q,Pa:)L (o
1og? vjeq (r) > @PHF(fog) —e)llog ™ (3 ) -exp™H LoD 1o(1),

(3.7) e, loglP™2 Vfog (T)
> (@RI (f o g) —)[(loglt ™ (r) + O(1)) - explt ™ L))" o) 4 o(1),

and

log® 2 vy (r) < (ePLOL(f) + &)log T (2r) - expl1 L(2r)) " D) 4 0(1),

(38) e, logPHup(r)
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< (0PVE(f) + 2)[(0gt () + O(1)) - exp L") o).

Now from (3.7), (3.8) and the condition p® %)L (f o g) = pPaOL(f) it follows
for all sufficiently large values of r,
log” " vyeg (r) _ (FPVE(fog) ) +o(1)
log? 2wy (r) ~ (a®aOL(f) +e) +o(1)

As (> 0) is arbitrary, we obtain from above

logP—2] . =(p,q,t)L
(3.9) liminf 25— 1 (1) 5 @ t(Lng)
rotoo  oglP~ ],/f (r) o@atL(f)

Again in view of (3.6), for a sequence of values of r tending to infinity,
(3.10) logP~? Vfog ()
< @I og) +e)|(logh ™ (1) + O(1)) - expl T L))" - 0(),
and in view of (3.2), for all sufficiently large values of r,
(3.11) log?=2 v; (r)
> @POL(f) — o) [(og" Y (1) +0(1)) - expl Y L(r) +o(1),

Combining (3.10) and (3.11) and the condition p®P %)L (fog) = p®POOL(f), we get
for a sequence of values of r tending to infinity

PP DL ()

log” A oy (r) _ (@P4E(fog) +¢) +0(1)
logP=2ur(r) = (EPEOE(f) —e) +o(1)

Since (> 0) is arbitrary, it follows from above that

logP—2] . =(p,q,t)L
(3.12) lim inf — 20 () @ t(Lfo”
rtoo oglP—?l v () FP et (f)

Further in view of (3.6) for a sequence of values of r tending to infinity, it follows
that

(3.13)  log? v, (r)
< @ (f) +9)[0g Y (1) + 0(1)) - expl I L)) - 0(1),

Now from (3.7), (3.13) and the condition p® %L (f o g) = pP4DL( ), we obtain
for a sequence of values of r tending to infinity

1o vyoq () _ (FP904(f 0 g) — ) +ol1)

log" vy (r) = (@PMVE(f) +e) +o(1)
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As g(> 0) is arbitrary, we get from above

loglP=2 o FPat)L
(3.14) lim sup o8 QVf o (r) > g - (Lf °9)
oo log[p— ] vy (r) FP DL (f)

Also for all sufficiently large values of r,
(3.15) logP~2 vy (r)
< (@PPH(fog)+o)[(log" ! (r) + O(1)) - expl T L") 1 0(1).

In view of the condition p®4DL(f o g) = p®oOE(f), it follows from (3.11) and
(3.15) for all sufficiently large values of r,
logP=2 vyoy () < (cP@OL(fog)+e) +o(1)
log?=2ur(r) = (EPEOE(f) —e) +0(1)

Since £(> 0) is arbitrary, we obtain

[p—Q] (p1Q1t)L
(3.16) lim sup 28 Yoo ) @ t(Lfog)
r—+o00 log[p_ ] Vg (T) E(p,q, ) (f)

Again in view of (3.2), we get for a sequence of values of r tending to infinity
(317)  logP=Zws (r)
> (0®0(f) — £)[(og™! () + O(1) - expl T L)) - 0(1).

Now from (3.15), (3.17) and the condition p®P 3N (f o g) = pPaDL(f) it follows
for a sequence of values of r tending to infinity

log" ™ vyoy (r) _ (6" *VE(f o) + ) + (1)
logP A v (r) = (cPedL(f) =€) +o(1)

As (> 0) is arbitrary, we obtain

log?=2 (p.g;t)L
(3.18) lim inf —8 2Vf o (7) <7 . (Lf °9)
r—00 log[P_ ]Vf (T) o(P:a:t) (f)

Again in view of (3.2), for a sequence of values of r tending to infinity
(3.19) log?=F vp, (1)
> (e (fog) = e)[(10g ) (1) + O(1)) - expl T L))" IO o).

Combining (3.8) and (3.19) and in view of the condition p® %L (fog) = pPaDL( f),
we get for a sequence of values of r tending to infinity
log? 2 vyey (r) _ (679 (fog) — €) + (1)
log" 2 vy (r) ~ (a®aOE(f) +e) +o(1)
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Since £(> 0) is arbitrary, it follows that

logP=2 o (pg,t)L
(3.20) lim sup o8 QVf o (1) >Z - (Lf °9)
r—+o0 loglP™ ]uf (r) o@at)L( f)

Thus the theorem follows from (3.9), (3.12), (3.14), (3.16), (3.18) and (3.20). O

Remark 3.1. In Theorem 3.1, if we replace the conditions “0 < P2V (f) < g@aDE(f)
< +o0” and “pPADE(f o ) = pPAOL(FY by 40 < GIaDE(g) < oI (g) < foo?
and “p(”“”t)L(fog) = pm@OL ()7 and other conditions remain same, then Theorem 3.1 re-
mains valid with “o("™@9L(g)” “logl™ =2y, ()7 and “G™ YL (g)” instead of “oPEDE(f)?,
“logP~2 vs (r)” and “GP YL (f)” respectively in the denominators.

Remark 3.2. In Theorem 3.1, if we replace the conditions “0 < 7P L(f) < g@aDL(f)
< Foc” and “pPHVE(f 0 g) = pPEVE(f)7 by 0 < rOVE(f) < FPOUE(f) < 4007
and “pPIVL(fog) = APOL(£)” and other conditions remain same, then Theorem 3.1 re-
mains valid with “7(”"”’£)L(f)77 and “7'(”"1”5)L(f)’7 instead of “a(p’q’t)L(f)” and “E(p’q’t>L(f)”
respectively in the denominators.

Remark 3.3. In Theorem 3.1, if we replace the conditions “0 < @P DL (f) < gP0DL(f)
< 400" and up(p,q,t)L(f og) = p(p,q’t)L(f)w by “0 < T(m,q,t)L(g) < 7(m,q7t)L(g) < 400"
and “pP VL (fog) = NmaL(g)” and other conditions remain same, then Theorem 3.1 re-
mains valid with “?(m’q‘t)L(g)”, “loglm—2 vg (r)” and “7‘<m’q’t>L(g)” instead of “U<p’q’t)L(f)”7
“loglP=Z vs (r)” and “GP YL (f)” respectively in the denominators.

The following theorem can be proved in the line of Theorem 3.1 and so its proof
is omitted.

Theorem 3.2. Let f(z) and g(z) be any two entire functions such that 0 <
7@ (f o g) < ?(nq,t)L(f 0g) < 400, 0 < TPINL(f) < ;(p,qJ)L(f) < 00,
AP (f o g) = APIDL(F) and explttl Lar) ~ exptt L(r) as 1 — +oo for

p—3
every positive constant ‘a’. If logm (g) =0 (lgl log[l] Vfog (7“)) as r — +o0, then

(p,q,t)L [p—2]
T M9 (fog) < lim inf—log Vyoq (1)
?(p,qyt)L(f) =00 log[p*Z] vy (r)
TPaDL(fog) TWIE(fog)y _ TPaDL(fog) TPEDL(fog)
T(p,q,t)L(f) ’ ?(p,q,t)L(f) } { T(p,q,t)L(f) ’ ?(p,q,t)L(f) }
logP—2] R =(pq,t)L
< lim sup o8 2Vf a (1) < i ; (Lf °9)
r—+o00 loglP2 vy (r) TPaL(f)

< min{

Remark 3.4. In Theorem 3.2, if we replace the conditions “0 < 7™ )L (f) < FPaOL(f)

< 00” and “)\@’q’t)L(foy) = )\(p’q’t)L(f)” by “0 < T(m’q’t)L(g) < 7(m’q’t>L(g) < 4+00” and

APGDL(f o g) = )\(m’q’t)L(g)” and other conditions remain same, then Theorem 3.2 re-

mains valid with “?(m’q‘t)L(g)”, “log[mﬂ] vg (r)” and “T<m’q’t>L(g)” instead of “?(p’q’tﬂ‘(f)”,
“loglP=H vs (r)” and “r®4DE(f) respectively in the denominators.
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Remark 3.5. In Theorem 3.2, if we replace the conditions “0 < 7P @IL(f) < F@aOL(f)
< 00” and u)\(p,q,t)L(fog) _ )\(p,q,t)L(f)w by “0 < E(p,q,t)L(f) < 0'<p’q’t)L(f) < 400" and
“APGDL (6 gy = pPaBDL(#) and other conditions remain same, then Theorem 3.2 re-
mains valid with “c® @D ()7 and “g@DE(f)” instead of “TPTOL(£)” and “rP0OL(f)”

respectively in the denominators.

Remark 3.6. In Theorem 3.2, if we replace the conditions “0 < 7(P¢OL(f) < 7@ (f)
< 00” and “ANPIDE(fog) = \PIOL( )7 by «) < gmaDE(g) < oM™ (g) < 400" and
APDOL(f o g) = pmatL(g)” and other conditions remain same, then Theorem 3.2 re-
mains valid with “c(™%9L ()7 “log™ =2y, (r)” and “a(™¢DE(g)” instead of “TPTOE(f)”,
“logP=2 vs (r)” and “r®PTDE(f)” respectively in the denominators.

Theorem 3.3. Let f(z) and g(2) be any two entire functions such that p®P YL (f) <

t00, pPIDL(f) = plmml(g) 0 < gL (g) < 400 and TPIVE(f) > 0 where
p—3

m—1=mn=gq. Also 1og[2] (%) =o0 <1H1 1ogm Vfog (r)) as r — 4oo. Then for any

constant E,

s log[p} Vfog(T)

im sup

r—+o00 1og? 2 vy (1) + exp[L(exp[v, (47)log (e - 2r) + F
! 9

(Pya,t) L (£y5(m,n,t) L X _
e if expl[L(explyy (4r) log (e - 2r) + EI)] = o{log” P vy (1)},

IN

pP e (f) if 1og? 2 v (r) = ofexpl[L(explv, (4r) log (e - 2r) + E))]}.
Proof. From (3.1) we obtain that

(3.21) M, (r) < explyg (2r)log (e - r) + E.

In view of (3.5) and the second part of Lemma 2.1, we obtain for all sufficiently
large values of r that

Viog(1)1log2 < log Myoq (2r) + D <log My (M, (2r)) + D,
i.e., log[p](z/fog(r) log2) < log (log My (M, (2r)) + D),
(3.22) ie., logP g (r) < log®™V My (M, (2r) + O(1),
(3.23) ie., logl? Viog(T)

< (pPeOE(f) + e)[logl! M, (2r) + expl L(M,(2r))] + O(1).
Now in view of (3.21) we get for all sufficiently large values of r that

log" vjoy(r) < (pPIOH(S) 4-2)
x[log!™ Y My (2r) + explY L (expl, (4r) log (e - 2r) + E])J| + O(1),

ie., logPl vpog (1) < (pPODE(f)+e)
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x[(c™ DL (g) + &) [log" ™ 27 - expltt] L(2r)}p<m’"’t>L(g)
+ expl![L(exply, (47) log (e - 2r) + E])]] + O(1).

Since pP 4L (f) = p(mnL(g) we obtain from above for all sufficiently large values
of r,

logl ey (r) < (PP 4O(f) + o)

[(U(m’n’t)L(g) + 6)[log[nfl] 2r - exp[t'H] L(2r)]p(p’q’t)L(f)
+exp[L(exply, (47) log (e - 2r) + E])]] + O(1),

(3.24) i.e., logP vso,(r) < (pPTOE(f) +¢)-

[(O_(m,n,t)L(g) + 6)[(1Og[n_1] r+ O(].)) . eXp[tJrl] L(T)]p(p,q,t)L(f)
+explI[L(explv, (4r) log (¢ - 2r) + E])]] + O(1).

Again in view of (3.2), we get for all sufficiently large values of r,

log® 2 us (1) > (@PCOL(f) —&)[(log Y (r) + O (1)) -expl1 L) (D) 4 o(1),

(p—2]
. lq—1] ' [t+1] PP L (f) log vy (r) +o(1)
i.e., [(log (r) 4+ 0(1)) - exp L(r)] < SPIDE(f)

)

[p—2]
. ne (p.a.t)L log ve(r)+o(1
(3.25) i, [(log[ ! (r)+0(1)) 'eXp[tJrl] L(r)]? < J(p,q,t)igf)) - 6( )

Now from (3.24) and (3.25) it follows for all sufficiently large values of r that
0B ey (r) < (pP4OH (1) 4 €) - expl [L(explr, (4r) log (e -2) + B])] +O(1)+

log[p_m ve(r)+o(l)
5(p7q,t)L(f) —_e

(pPOL(£) 4-€) (o ™D ) ) -

)

log oy (r)
log” " v; (r) + explt][L(exp[v, (47) log (e - 2r) + E])]
pPeIL(f) +e

loglP=2 vy (r)
expltI[L(exp[vy(4r) log(e-2r)+E])]

(3.26) ie.,

< o(l)+
1+

(o DE(f) ) (oD (g) )
e (F)=e) +o(1)
expl T [L(explv, (4r) log (e 2r) E])]
Log? T vy (r)

+

1+
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If expl[L(exp[v, (47)log (e - 2r) + E])] = o{logP~% vy (r)} then from (3.26) we get

. log[p] Vfog(T)

lim sup 5

P2 1og? T 1y (1) + expl (L (explvy (4r) log (c - 2r) + B
o (PP +e) (eI (g) + )
- g(p,q,t)L(f) _c )

Since (> 0) is arbitrary, it follows from above that

log P! R
lim sup 5 0g™ Vog(r)
r—+oo 10gP 2 vy (r) + expl [L(exp[v, (47) log (e - 2r) + E))]
pP DL (f)otmmDL(g)
- FPat) L (f)

Again if log?~2 v (r) = o{expl?[L(exply, (47) log (e - 2r) 4+ EJ)]} then from (3.26)
it follows that

(]
lim sup 1087 Vyoq (r)

= < pPEDE(f) +e.
r—+o0 log®? ™ vy (1) + expll[L(explv, (4r)log (e - 2r) + EJ)]

As g(> 0) is arbitrary, we obtain from above

log [p]

VfoglT
fog(T) < p(p,mt)L(f)_

lim su
r—>+oflog[p72} vs (r) + expl[L(exply, (47) log (e - 2r) + E))]

Thus the theorem is established. [

Remark 3.7. In Theorem 3.3, if we replace the conditions “p(p’q’t)L(f) < +o0” by
“APaDL () « 160" and other conditions remain the same, then Theorem 3.3 remains
valid with “A®4DE(£)” and “liminf” instead of “p® %YL (f)” and “limsup” respectively.

Remark 3.8. In Theorem 3.3, if we replace the conditions “G»% 9L (f) > 0”7 by
“gPaDL(£) > 0”7 and other conditions remain the same, then Theorem 3.3 remains valid
with “0(p‘q’t>L(f)” and “liminf” instead of “E(p’q’t)f“(f)” and “limsup” respectively.

Remark 3.9. In Theorem 3.3, if we replace the conditions “0 < o(™™YE(g) < 4007
by “0 < E(m’"’t)L(g) < 400" and other conditions remain the same, then Theorem 3.3
remains valid with “G(™™9%(g)” and “liminf” instead of “o(™™YE(g)” and “lim sup”
respectively.

Remark 3.10. In Theorem 3.3, if we replace the conditions “p(”’q’t>L(f) = p(m’"’t)L(g)”,
“0 < O,(m,n,t)L(g) < —|—OO” and uE(p,q,t)L(f) > 0” by LL)\(p,q,t)L(f) _ )\(m,n,t)L(g)n7 “0 <
FmnOL(g) « 4o0” and “r®TDE(f) > 07 and other conditions remain the same, then
Theorem 3.3 remains valid with “rP%YL(£)? and 7D ()7 instead of “GP L (f)”

and “c(™ ™YL (g)” respectively.



Central Index Oriented Some Generalized Growth Analysis 231

Remark 3.11. In Theorem 3.3, if we replace the conditions “pP@VE(f) = ptmmbL(g)»
and “E(p’q’t>L(f) > 0" by “)\(p’q’t)L(f) = p(m’"’t)L(g)” and “T(p‘q’t>L(f) > (0” and other
conditions remain the same, then Theorem 3.3 remains valid with “7® %YL (f)” instead of
447(p,q,t)L(f)a:

o .

Remark 3.12. In Theorem 3.3, if we replace the conditions “pP¢DE(f) = plmmbL(g)»
and “0 < J(m,n,t)L(g) < 400" by “p(p,q,t)L(f) _ )\(m,n,t)L(g)n and “0 < ?(m,n,t)L(g) <
+00” and other conditions remain the same, then Theorem 3.3 remains valid with “7(™™DE(g)”
instead of “a(m’"’t)L(g)”.

The following theorem can be proved in the line of Theorem 3.3 and so its proof
is omitted.

Theorem 3.4. Let f(2) and g(2) be any two entire functions such that \P-4DL(f) <

H00, APGOL(f)y = NmnOL(gy 0 < 7D (g) < oo and 7PDL(f) > 0 where
p—3

m—1=mn=gq. Also log? () =o 11:[1 logl! Vfog (r)) as r — 4+oo. Then for any

constant E,

lim inf log[p} Viog (r)
r—r+oo log[pfz] vy (r)+ explt] [L(exp[v, (47)log (e - 2r) + EJ)]

(p,a,t) L ( pyz(m,n,t)L . _
NTDPDTI @) i expl! [L(explug (4r) log (e - 2r) + EI)] = oflog 2 vy (1)}

IN

AP0 () if 10g"=2 v; (r) = o{expl![L(exply, (4r)log (e - 2r) + E])]}.

Remark 3.13. In Theorem 3.4, if we replace the conditions “>\<p’q’t)l‘(f) < +o0” and
“reablfy > 7 by “pPEYE(f) < 4oo” and “FPTIL(f) > 07 and other conditions
remain same, then Theorem 3.4 remains valid with “pP 9% (£)” and 7P 9L (£)” instead
of “APaOL(f) and “rPoOL(f) respectively.

Remark 3.14. In Theorem 3.4, if we replace the conditions “/\(p’q’t)L(f) < +o0” and
“0 < ?(m,n,t)L(g) < +OO’7 by up(p,q,t)L(f) < +OO77 and “0 < T(m,n,t)L(g) < +OO” and
other conditions remain the same, then Theorem 3.4 remains valid with “p®%%(£)” and
“r(mm LGy instead of “APTDE(f)7 and “Fmm DL ()7 respectively.

Remark 3.15. In Theorem 3.4, if we replace the conditions “\® DL (f) = \(mmDL(g)»
and “0 < ?(m,n,t)L(g) < 400" by ng(p,q,t)L(f) _ p(m,n,t)L(g)n and “0 < J(m,n,t)L(g) <
+00” and other conditions remain same, then Theorem 3.4 remains valid with “o (™% (g)”
instead of “?(m’"’t)L(g)”.

Remark 3.16. In Theorem 3.4, if we replace the conditions “\P@DL(f) = \(mmDL(g)»
and “T(p,q,t)L(f) > 0’ by up(p,q,t)L(f) — )\(m,n,t)L(g)n and “E(p,q,t)L(f) > 0” and other
conditions remain the same, then Theorem 3.4 remains valid with “G®»%L(f)” instead
of LLT(p,q,t)L(f)w.
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