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Abstract. In this paper, we introduce a new class of function to obtain some interesting
inequalities of Jensen-type. Our results generalize and refine some existing results in
literature. Some applications for Schurs inequality are also included.
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1. Introduction

The study of Convex functions has been a widely known concept used by several
researcher (see [5],[6], [7]). Some previous studies have employed a good number of
classes of convex functions to derive new integral inequalities of practical interest
(see [23], [24],[27]).

In this paper, I and J will be used to denote intervals of real numbers.

Definition 1.1. [24]. A function f : [a, b] → R is said to be convex if

(1.1) f(tx+ (1 − t)y) ≤ tf(x) + (1− t)f(y),

for all x, y ∈ [a, b] and t ∈ [0, 1].

Definition 1.2. [8]. A function f : I → R is a Godunova-Levin function or that
f belongs to the class Q(I) if f is non-negative and for all x, y ∈ I and t ∈ (0, 1)

(1.2) f(tx+ (1− t)y) ≤
f(x)

t
+

f(y)

1− t
.

This class of convex functions was first introduced in [2] by Godunova and Levin
and has gained attention in literature (see [7], [20], [21]).
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Definition 1.3. [2]. Let s be a real number, s ∈ (0, 1]. A function f : [0,∞) →
[0,∞) is said to be s-convex (in the second sense), or that f belongs to the class
K2

s , if

(1.3) f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y),

for all x, y ∈ [0,∞) and t ∈ [0, 1]. This was first introduced by Breckner in [2] and
some of its properties given in [9].

Definition 1.4. [7]. We say that f : I → R is a P−function, or that f belongs to
the class P (I), if f is a non-negative function and for all x, y ∈ I, t ∈ [0, 1], we have

(1.4) f(tx+ (1− t)y) ≤ f(x) + f(y).

Definition 1.5. [28]. Let h : J → R be a non-negative function, h 6≡ 0. We say
that f : I → R is an h-convex function, or that f belongs to the class SX(h, I), if
f is non-negative and for all x, y ∈ I, t ∈ (0, 1) we have

(1.5) f(tx+ (1 − t)y) ≤ h(t)f(x) + h(1− t)f(y).

Definition 1.6. [28]. A function f : I → R is said to be super-multiplicative if

(1.6) f(xy) ≥ f(x)f(y),

for all x, y ∈ I.

If the inequality (1.6) is reversed, then f is sub-multiplicative.

Definition 1.7. [28]. If f, g : I → R are functions such that for x, y ∈ I the
following inequality holds

(f(x)− f(y))(g(x) − g(y)) ≥ 0,

then, f and g are said to be similarly ordered.

By developing a new concept different from those in [3], [4], [11]-[18], [22], we prove
interesting inequalities for a new class of convex functions.

2. Main Results

We now define a new class of convex functions.

Definition 2.1. Let h : J → (0,∞), s ∈ [0, 1], t ∈ (0, 1) and φ be a given real-
valued function. Then, f : I → [0,∞) is a φh−s convex function if for all x, y ∈ I,

(2.1) f(tφ(x) + (1 − t)φ(y)) ≤

(

h(t)

t

)−s

f(φ(x)) +

(

h(1 − t)

(1 − t)

)−s

f(φ(y)).
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Observe that:
(i) If s = 0 and φ(x) = x, then f ∈ P (I).
(ii) If h(t) = t

s

s+1 and φ(x) = x, then f ∈ SX(h, I).
(iii) If s = 1 , h(t) = 1 and φ(x) = x, then f ∈ SX(I) i.e f is convex.
(iv) If h(t) = 1 and φ(x) = x then f is Breckner s-convex or s-convex in the second
sense (see [2]).
(v) If h(t) = t2 and φ(x) = x then f is s-Godunova-Levin function (see [5], [6]).

Let us denote by Qs(I) and SX(φh−s, I) the class of s-Godunova-Levin functions
and φh−s convex functions respectively, then it is easy to see that

P (I)=Q0(I)=SX(φh−0, I)⊆SX(φh−s1 , I)⊆SX(φh−s2 , I)⊆SX(φh−1, I)=SX(φh),

for 0 ≤ s1 ≤ s2 ≤ 1 whenever φ is the identity function.

If the inequality sign in (2.1) is reversed, then f is φh−s concave, i.e. f ∈SV (φh−s, I).

Next, we give some properties and examples of our new class of convex functions.

Proposition 2.1. If f, g ∈ SX(φh−s, I) i.e they are φh−s convex, and c ≥ 0 is a
positive real number, then f + g and cf are both φh−s convex.

Proof. f, g ∈ SX(φh−s, I) implies

(2.2) f(λφ(a) + (1− λ)φ(b)) ≤

(

h(λ)

λ

)−s

f(φ(a)) +

(

h(1−λ)

1− λ

)−s

f(φ(b)).

(2.3) g(λφ(a) + (1− λ)φ(b)) ≤

(

h(λ)

λ

)−s

g(φ(a)) +

(

h(1−λ)

1− λ

)−s

g(φ(b)).

Clearly,
(2.4)

(f+g)(λφ(a) + (1−λ)φ(b))≤

(

h(λ)

λ

)−s

[(f+g)(φ(a))]+

(

h(1−λ)

1−λ

)−s

[(f+g)(φ(b))]

and,

(2.5) cf(λφ(a) + (1− λ)φ(b)) ≤

(

h(λ)

λ

)−s

cf(φ(a))+

(

h(1− λ)

1−λ

)−s

cf(φ(b)).

We have just shown that addition and scalar multiplication holds for our newly
defined class of convex functions so that SX(φh−s, I) is a linear space for c ≥ 0.
Observe that, SX(φh−s, I) satisfies the properties (and even more) enjoyed by many
known classes of convex function. We give examples in Proposition 2.2.
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Proposition 2.2. Let f be a non-negative convex function on I. If h is a non-
negative function such that

h(λ) ≤ λ1− 1
s , s ∈ (0, 1], λ ∈ (0, 1).

Then, f ∈ SX(φh−s, I).

Proof. Proposition 2.2 implies that all convex functions are examples of our newly
defined class of convex function provided that the condition h(λ) ≤ λ1− 1

s is satisfied.
In particular, an example of such h(λ) is h(λ) = λk for k ≥ 1− 1

s
, s ∈ (0, 1]. Now,

f(λφ(a) + (1− λ)φ(b)) ≤ λf(φ(a)) + (1− λ)f(φ(b))

≤

(

h(λ)

λ

)−s

f(φ(a)) +

(

h(1− λ)

1− λ

)−s

f(φ(b)).(2.6)

Therefore, f ∈ SX(φh−s, I).

Similarly, if h satisfies h(λ) ≥ λ1− 1
s for any λ ∈ (0, 1), then any non-negative concave

function f belongs to the class SV (φh−s, I) i.e is φh−s concave. This new notion of
φ(x)h−s convex functions generalizes quite a number of classes of convex functions
which exist in literature. The immediate implication of this is that φ(x)h−s convex
functions provide us with many inequalities which generalize and extend the Jensen-
type inequalities for the classes of convex functions that already exist in literature.
In this paper, we obtain some interesting results for our newly introduced class of
convex functions.

Theorem 2.1. Let f ∈ SX(φh−s, I),

(i) If g is a linear function, then f ◦ g is φh−s(I) convex.

(ii) If f is increasing and g is convex, then f ◦ g is φh−s(I) convex.

Proof. Since f is φh−s(I) convex then,

(2.7) f (λφ(x) + (1− λ)φ(y)) ≤

(

λ

h(t)

)s

f(φ(x)) +

(

(1− λ)

h(1− λ)

)s

f(φ(y)).

Now,

f ◦ g (λφ(a) + (1− λ)φ(b)) = f (λg(φ(a)) + (1− λ)g(φ(b)))

≤

(

λ

h(λ)

)s

f ◦ g(φ(a)) +

(

(1 − λ)

h(1− λ)

)s

f ◦ g(φ(b)).(2.8)

and (i) is proved.

We now prove (ii). Since g is convex then

g(λφ(a) + (1− λ)φ(b)) ≤ λg(φ(a)) + (1− λ)g(φ(b)).
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Now,

f ◦ g(λφ(a) + (1− λ)φ(b)) ≤ f(λg(φ(a)) + (1 − λ)g(φ(b)))

≤

(

λ

h(λ)

)s

f(φ(a)) +

(

(1 − λ)

h(1 − λ)

)s

f(φ(b)).(2.9)

Remark 2.1. This result generalizes Theorems 1 and 3 recently obtained by Ardic and
Özdemir in [1] with appropriate choices of h(λ), φ and s. In particular, with h(λ) = λ2

and s = 1, we obtain Theorem 3 in [1] and with h(λ) = 1, we obtain Theorem 1 in [1].

Theorem 2.2. Let 0 ∈ I and φ(x) be an identity function. Then the following
holds.

(i). If f ∈ SX(φh−s, I), f(0) = 0 and h is super-multiplicative, then the inequality

(2.10) f(αx + βy) ≤

(

h(α)

α

)−s

f(x) +

(

h(β)

β

)−s

f(y),

holds for all x, y ∈ I and α, β ≥ 0 such that α+ β ≤ 1.

(ii). Let h be non-negative function with
(

h(α)
α

)−s

< 1
2 for some α ∈ (0, 12 ), s ∈

[0, 1]. If f is a non-negative function satisfying (2.10) for all x, y ∈ I, and
α, β > 0 with α+ β ≤ 1, then f(0) = 0.

(iii). If f ∈ SV (φh−s, I), f(0) = 0 and h is sub-multiplicative then the inequality

(2.11) f(αx + βy) ≥

(

h(α)

α

)−s

f(x) +

(

h(β)

β

)−s

f(y),

holds for all x, y ∈ I and α, β > 0 such that α+ β ≤ 1.

(iv). Let h be a non-negative function with
(

h(α)
α

)−s

> 1
2 for some α ∈ (0, 1

2 ),

s ∈ [0, 1]. If f is a non-negative function satisfying (2.11) for all x, y ∈ I and
α, β > 0 with α+ β ≤ 1, then f(0) = 0.

Proof. We first prove (i). The proof is trivial for α, β > 0, α + β = 1 since (2.10)
reduces to (2.1) in definition 2.1. Let α, β > 0, α + β = r < 1 and let a and b be
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numbers such that a = α
r
and b = β

r
, then a+ b = 1 and

f(αx+ βy) = f(arx + bry)

≤

(

h(a)

a

)−s

f(φ(rx)) +

(

h(b)

b

)−s

f(φ(ry))

≤

(

h(a)

a

)−s
[

(

h(r)

r

)−s

f(x) +

(

h(1− r)

1− r

)−s

f(0)

]

+

(

h(b)

b

)−s
[

(

h(r)

r

)−s

f(y) +

(

h(1− r)

1− r

)−s

f(0)

]

≤

(

h(ar)

ar

)−s

f(x) +

(

h(br)

br

)−s

f(y)

=

(

h(α)

α

)−s

f(x) +

(

h(β)

β

)−s

f(y).

We now prove (ii). Suppose f(0) 6= 0, then f(0) > 0. By setting x = y = 0 in
(2.10) we get

(2.12) f(0) ≤

(

h(α)

α

)−s

f(0) +

(

h(β)

β

)−s

f(0).

Again, we set α = β, where α ∈ (0, 1
2 ) and dividing both sides of the inequality

(2.12) by f(0) to obtain 2
(

h(α)
α

)−s

≥ 1, for all α ∈ (0, 12 ). This contradicts the

assumption that
(

h(α)
α

)−s

< 1
2 , so f(0) must be 0. Hence the proof of (ii).

The proofs of (iii) and (iv) follow by similar arguments and are thus omitted.

Theorem 2.3. Let f and g be similarly ordered on I for all a, b ∈ I. If f ∈

SX(φh1−s, I) and g ∈ SX(φh2−s, I) such that
(

h(λ)
λ

)−s

+
(

h(1−λ)
1−λ

)−s

≤ c−s, ∀ λ ∈

(0, 1) with h(λ) = maxλ∈(0,1){h1(λ), h2(λ)} and c is a fixed positive number. Then,
fg ∈ SX(φch−s, I).

Proof. Since f and g are similarly ordered, then

(f(φ(a)) − f(φ(b)))(g(φ(a)) − g(φ(b))) ≥ 0, ∀φ(a), φ(b) ∈ I.

Implying,

f(φ(a))g(φ(a)) + f(φ(b))g(φ(b)) ≥ f(φ(a))g(φ(b)) + f(φ(b))g(φ(a)).

Now,
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fg(λφ(a) + (1 − λ)φ(b)) = f(λφ(a) + (1− λ)φ(b))g((λφ(a) + (1− λ)φ(b)))

≤

[

(

h1(λ)

λ

)−s

f(φ(a)) +

(

h1(1 − λ)

1− λ

)−s

f(φ(b))

]

×

[

(

h2(λ)

λ

)−s

g(φ(a)) +

(

h2(1− λ)

1− λ

)−s

g(φ(b))

]

≤

(

h(λ)

λ

)−2s

fg(φ(a)) +

(

h(λ)h(1 − λ)

λ(1 − λ)

)−s

f(φ(a))g(φ(b))

+

(

h(1− λ)

1− λ

h(λ)

λ

)−s

f(φ(b))g(φ(a)) +

(

h(1− λ)

1− λ

)−2s

fg(φ(b))

≤

(

h(λ)

λ

)−2s

fg(φ(a)) +

(

h(λ)

λ

h(1− λ)

1− λ

)−s

f(φ(a))g(φ(a))

+

(

h(λ)

λ

h(1− λ)

1− λ

)−s

f(φ(b))g(φ(b)) +

(

h(1− λ)

1− λ

)−2s

fg(φ(b))

≤

(

ch(λ)

λ

)−s

fg(φ(a)) +

(

ch(1− λ)

1− λ

)−s

fg(φ(b)).

Hence, fg ∈ SX(φch−s, I).

Remark 2.2. Theorem 2.4 extends the following result of Varoŝanec on SX(h, I) i.e the
class of h−convex functions (see [28]). For arbitrary λ ∈ (0, 1) and c ≥ 0, define φ(x) = x

and λ
s

s+1 = ch(λ) in Theorem 2.3, then Corollary 2.1 follows immediately.

Corollary 2.1. Let f and g be similarly ordered functions on I, ∀ x, y ∈ I. If
f ∈ SX(h1, I) and g ∈ SX(h2, I) such that h(λ) + h(1 − λ) ≤ c for all λ ∈ (0, 1),
with h(λ) = max{h1, h2} and c a fixed positive number. Then the product fg belongs
to SX(ch, I).

Theorem 2.4. Let h : J → R be a non-negative super-multiplicative and let f :
I → R be a function such that f ∈ SX(φh−s, I) where φ(x) = x. Then, for all
x1, x2, x3 ∈ I such that x1 < x2 < x3 and x3−x1, x3−x2, x2−x1 ∈ J , the following
holds:

[(x3 − x1)(x2 − x1)h(x3 − x2)]
−sf(x1)− [(x3 − x2)(x2 − x1)h(x3 − x1)]

−sf(x2)

+ [(x3 − x1)(x3 − x2)h(x2 − x1)]
−s

f(x3) ≥ 0.(2.13)

Proof. Since f ∈ SX(φh−s, I), then it is easy to see that

x3 − x2

x3 − x1
,

x2 − x1

x3 − x1
∈ J and

x3 − x2

x3 − x1
+

x2 − x1

x3 − x1
= 1.
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Also,

(h(x3 − x2))
−s

=

(

h

(

x3 − x2

x3 − x1
(x3 − x1)

))−s

≥

(

h

(

x3−x2

x3−x1

)

h(x3 − x1)

)−s

.

Similarly,

(h(x2 − x1))
−s

≥

(

h

(

x2 − x1

x3 − x1

)

h(x3 − x1)

)−s

.

Setting α = x3−x2

x3−x1
, x = x1, y = x3, β = x2−x1

x3−x1
in (2.1), we have x2 = αx+ βy and

f(x2) ≤





h
(

x3−x2

x3−x1

)

x3−x2

x3−x1





−s

f(x1) +





h
(

x2−x1

x3−x1

)

x2−x1

x3−x1





−s

f(x3)(2.14)

≤





h(x3−x2)
h(x3−x1)

x3−x2

x3−x1





−s

f(x1) +





h(x2−x1)
h(x3−x1)

x2−x1

x3−x1





−s

f(x3).(2.15)

Multiplying both sides of (2.15) by
(

x3−x2

x3−x1

)−s

(h(x3−x1))
−s and rearranging, gives

(2.13). This result has several implications for the Schurs inequality (interested
reader can see [19] and references therein).

Theorem 2.5. Let w1, w2, · · · , wn be positive real numbers and let (m,M) be an
interval in I. If h : (0,∞) → R is a non-negative super-multiplicative function
and f ∈ SX(φh−s, I) where φ is an identity function, then for all x1, x2, · · · , xn ∈
(m,M) the following inequality holds,

(2.16)

n
∑

i=1

pif(xi) ≤ f(m)

n
∑

i=1

pi





h
(

M−xi

M−m

)

M−xi

M−m





−s

+f(M)

n
∑

i=1

pi





h
(

xi−m
M−m

)

xi−m
M−m





−s

,

where

pi =





h
(

wi

Wn

)

wi

Wn





−s

, Wn =
n
∑

i=1

wi.

Proof. Setting x1 = m, x2 = xi, x3 = M in (2.14) we obtain

(2.17) f(xi) ≤





h
(

M−xi

M−m

)

M−xi

M−m





−s

f(m) +





h
(

xi−m
M−m

)

xi−m
M−m





−s

f(M).

Multiplying both sides of (2.17) by pi and adding both sides of the resulting in-
equality for (i = 1, · · · , n), we obtain (2.16).
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Theorem 2.6. Let f ∈ SX(φh−s, I) and
∑n

i=1 ti = Tn = 1, ti ∈ (0, 1), i =
1, 2, · · · , n. Then

f

(

n
∑

i=1

tiφ(xi)

)

≤

[

h(ti)

ti

]−s n
∑

i=1

f(φ(xi)).

Proof. Observe that

f

(

n
∑

i=1

tiφ(xi)

)

= f

(

Tn−1

n−1
∑

i=1

ti

Tn−1
φ(xi) + tnφ(xn)

)

≤

[

h(Tn−1)

Tn−1

]−s

f

(

Tn−2

Tn−1

n−2
∑

i=1

ti

Tn−2
φ(xi) + tn−1φ(xn−1)

)

+

[

h(tn)

tn

]−s

f(φ(xn))

≤

[

h(Tn−1)

Tn−1

]−s [
h(Tn−2)

Tn−1

]−s [
Tn−1

Tn−2

]−s

f

(

n−2
∑

i=1

ti

Tn−2
φ(xi)

)

+

[

h(Tn−1)

Tn−1

]−s

f(φ(xn−1)) +

[

h(tn)

tn

]−s

f(φ(xn))

≤

[

h(ti)

ti

]−s n
∑

i=1

f(φ(xi)).

Remark 2.3. Set h(t) = 1 and s = 1 in Theorem 2.6, then we obtain what is known in
literature as the discrete version of the Jensen’s inequality (see [10]).

Theorem 2.7. Let t1, · · · , tn be positive real numbers (n ≥ 2). If h is a non-
negative super-multiplicative function and if f ∈ SX(φh−s, I) where φ is an identity
function, for x1, · · · , xn ∈ I, then

(2.18) f

(

1

Tn

n
∑

i=1

tixi

)

≤

n
∑

i=1

[

h( ti
Tn

)
ti
Tn

]−s

f(xi),

where Tn =
∑n

i=1 ti.

If h is sub-multiplicative and f ∈ SV (φh−s, I) then the inequality (2.18) is reversed.

Proof. Let us suppose that f ∈ SX(φh−s, I). If n=2, then the inequality (2.18)
is equivalent to the definition of φh−s convex functions with λ = t1

T2
and 1 − λ =

t2
T2
. Suppose the inequality holds for n − 1, then for n-tuples (x1, · · · , xn) and

(t1, · · · , tn), we have,
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f

(

1

Tn

n
∑

i=1

tixi

)

= f

(

tn

Tn

xn +

n−1
∑

i=1

ti

Tn

xi

)

= f

(

tn

Tn

xn +
Tn−1

Tn

n−1
∑

i=1

ti

Tn−1
xi

)

≤





h
(

tn
Tn

)

tn
Tn





−s

f(xn) +




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
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
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(
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)
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f(xi)

≤





h
(
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)

tn
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



−s

f(xn) +

n−1
∑
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



h
(

ti
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)

ti
Tn





−s

f(xi) =

n
∑

i=1





h
(

ti
Tn

)

ti
Tn





−s

f(xi).

Remark 2.4. If we choose h(λ) = 1 and s = 1, then Theorem 2.11 becomes the well
known discrete version of the classical Jensen inequality for convex functions (see [10],
[26]). If we choose h(λ) = 1, then our result is the Jensen-type inequality for s-convex
functions (see [26]). If h(λ) = λ2, then we obtain the very recent result known as the
Jensen-type inequality for s-Godunova-Levin functions (see [25]).

3. Open Problems

It is known in literature that several direct and converse results can be obtained
for Jensen’s inequality by using convex functions. Is it possible to obtain similar
results for functions belonging to the class SX(φh−s, I) ?
Also, recent developments has shown that time scaled inequalities are more general
and widely applicable, can new inequalities on time scales be obtained for functions
belonging to the class SX(φh−s, I) ?
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