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1. Introduction

1n 1905, Fréchet [11] introduced a distance space, that is“ Let X be a non-empty
set and d : X × X → [0,∞) be a function, then the pair (X, d) is called a metric
space if the following conditions hold:

1. d(x, y) = 0 if and only if x = y where x, y ∈ X,

2. d(x, y) = d(y, x) for all x, y ∈ X,

3. d(x, z) 6 d(x, y) + d(y, z), for all x, y, z ∈ X (Triangle Inequality)”.
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Abstract. The purpose of this paper is to establish some common fixed point theorems 
of w−compatible maps in bipolar metric spaces by employing a comparison function ϕ 
instead of some altering distance functions. We employ generalized type contraction 
conditions involving the comparison function ϕ to enunciate common fixed point theo-
rems. Further, we provide illustrative examples to uphold our results.
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Metric spaces can be generalized in many ways, one way is to relax some condi-
tions. Some earlier generalizations of the space are pseodometric space, quasimetric
space, semimetric space, nontriangular metric space, other generalization includes
b−metric space [3], dislocated metric space [17], rectangular metric space [7], etc.
The second way to generalize metric space is to change the codomain of the function
d. For example cone metric space [18], complex-valued metric space [2], quaternion-
valued metric space [1], etc. The third way is to change the domain of d of the
space. This category includes 2−metric space [13], D−metric space [10], G−metric
space [25], S−metric space [34], Bipolar metric space [26] etc. In rectangular metric,
space quadrilateral inequality is satisfied, which is a weaker assumption than trian-
gle inequality. The concept of quadrilateral inequality was used to define the bipolar
metric space. The First fixed point theorem has been proved in metric space and
this fixed point theorem has been extended by the researchers in different directions,
one of these directions is by changing the space also. In line with this, fixed point
theorems of many contractive type mappings have been studied in bipolar met-
ric space (see [6, 12, 15, 16, 21, 24, 26–29, 31, 32, 37]). Fixed points of ϕ−contraction
which is a generalization of Banach contraction and Rakotch type contraction [33]
have been studied in metric space (see [5]). Gillespie and Williams [14] introduced
the expanding map. After that many authors studied the fixed point theorems of
expansive type mappings (see [8, 9, 19, 36]). Kishore, Agarwal, Rao and Rao [21]
extended the definition of compatible mappings [20] in bipolar metric space to study
the common fixed point theorems.
In this paper, we introduce ϕ-contraction and ϕ-expansive maps in a bipolar met-
ric space and study common fixed points of continuous and discontinuous self-
mappings. To study the common fixed point theorems, we also introduce the
w−compatible maps in bipolar metric space which is a generalization of compatible
maps and also weak compatibility of mappings. These results are extensions of
many existing results, specially from metric fixed point theory.

1.1. Preliminaries

In this section, we recall definition of bipolar metric space with some basic concepts
from [26], which will be essential for our results.

Definition 1.1. Let A and B be the two non-empty sets and ρ : A×B → [0,+∞)
be a function. The triplet (A,B, ρ) is called bipolar metric space and ρ is called
bipolar metric on (A,B), if the following conditions hold:

(BP1) ρ(a, b) = 0 if and only if a = b, where (a, b) ∈ A×B,

(BP2) If a, b ∈ A ∩B then ρ(a, b) = ρ(b, a),

(BP3) ρ(a1, b2) ≤ ρ(a1, b1) + ρ(a2, b1) + ρ(a2, b2) for all a1, a2 ∈ A and b1, b2 ∈ B.

Definition 1.2. Let (A,B, ρ) be a bipolar metric space. Elements of A,B and
A ∩B are called left, right and central points, respectively. A sequence in A and a
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sequence in B are called left and right sequences, respectively. By a sequence, we
mean either a left or right sequence.

1. A sequence ⟨ tn⟩ is said to be convergent to a point t if and only if ⟨tn⟩ is a left
sequence, t is a right point and lim

n→+∞
ρ(tn, t) = 0; or ⟨tn⟩ is a right sequence,

t is a left point and lim
n→+∞

ρ(t, tn) = 0.

2. A sequence ⟨(an, bn)⟩ in A×B is called a bisequence on (A,B). This sequence
is simply denoted by (an, bn). If both the sequences ⟨an⟩ and ⟨bn⟩ convergent,
then the bisequence (an, bn) is said to be convergent. If both the sequences
⟨an⟩ and ⟨bn⟩ converge to the same point υ ∈ A ∩ B, then (an, bn) is called
bi-convergent.

3. If lim
n,m→+∞

d(an, bm) = 0, then the bisequence (an, bn) is called a Cauchy bi-

sequence. In a bipolar metric space, every convergent Cauchy bi-sequence is
bi-convergent.

4. A bipolar metric space is called complete, if every Cauchy bisequence is con-
vergent, hence biconvergent.

Example 1.1. Let X be the class of singleton subsets of R2 and Y be the class of non-
empty bounded subsets of metric space (R2, d) where

d(x, y) = |x1 − y1|+ |x2 − y2| for all x = (x1, x2), y = (y1, y2) ∈ R2

. We define a function ρ : X × Y → [0,∞) by

ρ({x}, A) = sup{d(x, y) : y ∈ A}

We will show that (X,Y, ρ) is a bipolar metric space.

(BP1) : It is clear that ρ({x}, {x}) = 0, for every {x} ∈ X = X ∩ Y . Let ρ({x}, A) = 0,
then sup{d(x, y) : y ∈ A} = 0. This implies A = {x}.

(BP2) : ρ({x}, {y}) = ρ({y}, {x}) for all {x}, {y} ∈ X ∩ Y .

(BP3) : Let x = (x1, x2), w = (w1, w2) ∈ R2 and A,B ∈ Y then

ρ({x}, A) = sup{d(x, y) : y ∈ A}
6 sup{d(x, z) + d(w, z) + d(w, y) : y ∈ A, z ∈ B}
6 sup{d(x, z) : z ∈ B}+ sup{d(w, z) : z ∈ B}+ sup{d(w, y) : y ∈ A}
= ρ({x}, B) + ρ({w}, B) + ρ({w}, A)

So, (X,Y, ρ) is a bipolar metric space. It can be shown that it is a complete bipolar metric
space.

Definition 1.3. Let A1, B1, A2 and B2 be four sets. A function f : A1 ∪ B1 →
A2∪B2 is said to be a covariant map if f(A1) ⊆ A2 and f(B1) ⊆ B2 and is denoted
as f : (A1, B1) ⇒ (A2, B2). In particular, if (A1, B1, ρ1) and (A2, B2, ρ2) are two
bipolar metric spaces then we use the notation f : (A1, B1, ρ1) ⇒ (A2, B2, ρ2) for
covariant map f .
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Definition 1.4. Let (A1, B1, ρ1) and (A2, B2, ρ2) be two bipolar metric spaces. A
map f : (A1, B1) ⇒ (A2, B2) is said to be continuous at a point a0 ∈ A1, if for
any given ε > 0, there exists δ > 0 such that b ∈ B1 and ρ1(a0, b) < δ implies that
ρ2(f(a0), f(b)) < ε. It is continuous at a point b0 ∈ B1 if for any given ε > 0, there
exists δ > 0 such that a ∈ A1 and ρ1(a, b0) < δ implies that ρ2(f(a), f(b0)) < ε. If
f is continuous at each point a ∈ A1 ∪B1, then it is called continuous.

This definition implies that a covariant map f : (A1, B1) ⇒ (A2, B2) is contin-
uous if and only if {tn} converges to t on (A1, B1, ρ1) implies {f(tn)} converges to
f(t) on (A2, B2, ρ2).

Definition 1.5. A function g : A1 ∪ B1 → A2 ∪ B2 is said to be a contravariant
map if g(A1) ⊆ B2 and g(B1) ⊆ A2 and is denoted as g : (A1, B1) � (A2, B2).

Definition 1.6. A contravariant map f : (A1, B1, ρ1) � (A2, B2, ρ2) is continuous
if and only if it is continuous as a covariant map f : (A1, B1, ρ1) ⇒ (B2, A2, ρ̄2),
where ρ̄2 is defined as ρ̄2(y, x) = ρ2(x, y), for all (y, x) ∈ B2 ×A2.

Definition 1.7. [5] Let ϕ : R+ → R+ be a function where R+ = [0,+∞). Then
ϕ is called a comparison function if it satisfies the following conditions:

1. ϕ is monotonic increasing, i.e., t1 6 t2 implies ϕ(t1) 6 ϕ(t2);

2. {ϕn(t)} converges to 0 for all t > 0.

Remark 1.1. if ϕ is a comparison function then it has following properties:

1. ϕ(t) < t for all t > 0;

2. ϕ(0) = 0.

Kishore, Agarwal, Rao and Rao [21] gave the definition of compatible mappings
in bipolar metric space as follows:

Definition 1.8. [21] Let (X,Y, ρ) be a bipolar metric space and let S, T : (X,Y ) ⇒
(X,Y ) be two covariant maps then the pair {S, T} is said to be compatible if
and only if ρ(TSxn, STyn) → 0 and ρ(STxn, TSyn) → 0, whenever (xn, yn) is
a sequence in (X,Y ) such that limn→∞ Sxn = limn→∞ Txn = limn→∞ Syn =
limn→∞ Tyn = t for some t ∈ X ∩ Y .

Rao and Kishore [32] defined the following version of compatibility of two covariant
maps.

Definition 1.9. [32] Let (X,Y, ρ) be a bipolar metric space and let S, T : (X,Y ) ⇒
(X,Y ) be two covariant maps then the ordered pair (S, T ) is said to be compatible
if and only if ρ(TSxn, STyn) → 0, whenever (xn, yn) is a sequence in (X,Y ) such
that lim

n→∞
Sxn = lim

n→∞
Tyn = t for some t ∈ X ∩ Y .
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Remark 1.2. From the above two definitions, it is clear that if the ordered pairs (S, T )
and (T, S) both are compatible, then the pair {S, T} is compatible.

Definition 1.10. [32] If S and T commute at all of their coincidence points then
S and T are called weakly compatible.

Proposition 1.1. [24] Let (X,Y, ρ) be a bipolar metric space and let S, T :
(X,Y, ρ) ⇒ (X,Y, ρ) be two covariant maps satisfying the following condition for
all (x, y) ∈ X × Y :

ρ(Tx, Ty) 6 ρ(Sx, Sy)

, if S is a continuous function then T is also a continuous function.

2. Main Results

We introduce ϕ-contraction in bipolar metric space which is an extension of ϕ-
contraction [5] defined in metric space.

Definition 2.1. Let (A,B, ρ) be a bipolar metric space. A mapping T : (A,B, ρ) ⇒
(A,B, ρ) is said to be a ϕ- contraction if there exists a comparison function ϕ : R+ →
R+ such that

(2.1) ρ(Ta, Tb) 6 ϕ(ρ(a, b)) for all (a, b) ∈ A×B.

We now generalize the notion of expansive mapping (see [36]) into bipolar metric
space and give the following definition.

Definition 2.2. Let (A,B, ρ) be a bipolar metric space. A mapping T : (A,B, ρ) �
(A,B, ρ) is said to be a ϕ-expansive mapping if there exists a comparison function
ϕ : R+ → R+ such that

(2.2) ϕ(ρ(Tb, Ta) > ρ(a, b) for all (a, b) ∈ A×B.

Remark 2.1. If T is ϕ-expansive mapping then it is injective for let Tx = Ty then
0 = ϕ(0) = ϕ(ρ(Ty, Tx) > ρ(x, y). So x = y.

Remark 2.2. If T is ϕ-expansive mapping then T−1 is contractive on T (A ∪ B) for let
u ∈ T (B) and v ∈ T (A) such that u ̸= v then Ty = u and Tx = v for some (x, y) ∈ A×B.
So ρ(u, v) > ϕ(ρ(u, v)) = ϕ(ρ(Ty, Tx)) > ρ(x, y) = ρ(T−1v, T−1u).

We also give the following definition, which is weaker than definition 1.8.

Definition 2.3. Let (X,Y, ρ) be a bipolar metric space and let S, T : (X,Y ) ⇒
(X,Y ) be two covariant maps, then the pair {S, T} is said to be w−compatible if and
only if lim

n→∞
ρ(TSxn, STyn) = 0 or lim

n→∞
ρ(STxn, TSyn) = 0, whenever (xn, yn) is a

bisequence in (X,Y ) such that lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

Syn = lim
n→∞

Tyn = t

for some t ∈ X ∩ Y .
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The following example shows that a w−compatible mappings need not be compat-
ible.

Example 2.1. Consider the bipolar metric space (X,Y, ρ), where X = [0,∞) , Y =
(−∞, 1] and ρ is defined by ρ(x, y) = |x− y|. Let T and S be two covariant maps defined
by

Tx =

{
1
x
, if x > 0

0, if x = 0

Ty =

{
2y, if y 6 0
1
y
, if 0 < y 6 1

Sx = xe−x,

Sy =

{
πy, if y 6 0

ye−y, if 0 6 y 6 1

where x ∈ X, y ∈ Y.
Now, let us assume that

lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

Syn = lim
n→∞

Tyn = t ∈ [0, 1]

for some bisequence (xn, yn).
We observe that the possible value of t is 0. So it is sufficient to consider two cases.

Case 1: xn = yn = 0 for all n ∈ N. In this case

lim
n→+∞

ρ(TSxn, STyn) = 0 and lim
n→+∞

ρ(STxn, TSyn) = 0

Case 2: {xn} approaches infinity with xn > 0 and {yn} approaches zero with yn < 0. In
this case

lim
n→+∞

ρ(TSxn, STyn) = lim
n→+∞

ρ(T (xne
−xn), S(2yn)) = ρ( 1

xn
exn , 2πyn) diverges to

+∞. but lim
n→+∞

ρ(STxn, TSyn) = 0. Therefore the pair {S, T} is a w−compatible

mapping but not a compatible mapping.

The following propositions and lemmas will be used to prove our main theorems.

Proposition 2.1. If the ordered pair (S, T ) or (T, S) is compatible then the pair
{S, T} isw−compatible.

Proof. The proof follows from definitions (2.3) and (1.9).

Proposition 2.2. Let (X,Y, ρ) be a bipolar metric space and let S, T : (X,Y, ρ) ⇒
(X,Y, ρ) be two covariant maps. If the pair {S, T} is w−compatible or ordered pair
(S, T ) is compatible, then S and T are weakly compatible.

Proof. This proposition can be easily proved by taking xn = yn = u in the definition
(2.3) and (1.9), where u is a coincidence point of S and T .
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Proposition 2.3. Let (X,Y, ρ) be a bipolar metric space and let S, T : (X,Y, ρ) ⇒
(X,Y, ρ) be two covariant maps satisfying the following conditions for some com-
parison function ϕ:

ρ(Tx, Ty) 6 ϕ(ρ(Sx, Sy)) for all (x, y) ∈ X × Y

then

ρ(Tx, Ty) < ρ(Sx, Sy) if Sx ̸= Sy and

ρ(Tx, Ty) 6 ρ(Sx, Sy) for all x ∈ X, y ∈ Y.

Proof. The result is direct consequence of the properties of the comparison function
ϕ.

Lemma 2.1. Let (X,Y, ρ) be a bipolar metric space, T, S : (X,Y, ρ) ⇒ (X,Y, ρ)
be two covariant maps and {un} be a sequence in X or in Y . If T , S and {un}
satisfy the following conditions:

1. Tun = Sun+1

2. lim
n→∞

Sun = Sw for some w ∈ X ∩ Y

3. ρ(Tx, Ty) 6 ρ(Sx, Sy) for all (x, y) ∈ X × Y

Then w is a coincidence point of S and T . Further if S is injective and condition
3 is replaced by following stronger condition

4. ρ(Tx, Ty) < ρ(Sx, Sy) for all (x, y) ∈ X × Y with Sx ̸= Sy and Sx = Sy
implies Tx = Ty.

Then w will be the unique coincidence point of S and T .

Proof. From condition 3, we have

ρ(Tun, Tw) 6 ρ(Sun, Sw) if {un} ⊆ X

or

ρ(Tw, Tun) 6 ρ(Sw, Sun) if {un} ⊆ Y.

So using condition 2, we get

lim
n→∞

Tun = Tw ∈ X ∩ Y

But Tun = Sun+1, so
lim
n→∞

Sun = Tw.
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Using condition 2, we get
Tw = Sw

Hence w is a coincidence point of S and T . Further let S be injective and the
condition 4 holds, then as before w is a coincidence point. To prove the uniqueness
of coincidence point, let v be another coincidence point of S and T . Then using
condition 4, we have

ρ(Sw, Sv) = ρ(Tw, Tv) < ρ(Sw, Sv) if v ∈ Y or

ρ(Sv, Sw) = ρ(Tv, Tw) < ρ(Sv, Sw) if v ∈ X.

In both cases, we arrive at contradiction. So w = v.

Lemma 2.2. Let (X,Y, ρ) be a bipolar metric space, T, S : (X,Y, ρ) ⇒ (X,Y, ρ)
be two covariant maps which are weakly compatible. S and T satisfy the following
contractive condition ρ(Tx, Ty) < ρ(Sx, Sy) for all (x, y) ∈ X × Y, Sx ̸= Sy If
v ∈ X ∩ Y is a coincidence point of S and T , then Sv is the unique common fixed
point of S and T . Further let S be injective, then v will be the unique common fixed
point of S and T .

Proof. Let Sv = Tv = u ∈ X ∩ Y , then by weak compatibility of S and T , we get

STv = TSv

This implies
Su = Tu

. That is u is also a coincidence point of S and T . We will show that u is the unique
common fixed point of S and T . On the contrary, let us assume that Su ̸= u,. Then
using the given contractive condition, we get

ρ(Tu, u) = ρ(TSv, Tv)

< ρ(SSv, Sv)

= ρ(Su, u)

= ρ(Tu, u)

which is a contradiction. So Su = u = Tu.
Further, let S be an injective map then we will show that u = v. Suppose not, then
using contractive condition, we get

ρ(Tu, Tv) < ρ(Su, Sv) = ρ(Tu, Tv).

This is a contradiction, so u = v and hence v is a common fixed point of S and T .
For the uniqueness of fixed point, Assume that p and q are two distinct common
fixed points of S and T such that p ∈ X ∩ Y . Then, using the given contractive
condition, we get

ρ(Sp, Sq) = ρ(Tp, Tq) < ρ(Sp, Sq) if q ∈ Y or

ρ(Sq, Sp) = ρ(Tq, Tp) < ρ(Sq, Sp) if q ∈ X

In both cases, we have a contradiction. So p = q.
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Lemma 2.3. Let (X,Y, ρ) be a bipolar metric space and let T, S : (X,Y, ρ) ⇒
(X,Y, ρ) be two covariant maps. (xn, yn) be a bisequence. If the following conditions
hold:

1. the pair {S, T} is w−compatible,

2. S and T are continuous,

3. Txn = Sxn+1 and Tyn = Syn+1,

4. lim
n→∞

Txn = lim
n→∞

Tyn = l for some l ∈ X ∩ Y .

Then l is a coincidence point of S and T .

Proof. From condition 3 and 4, we have

lim
n→∞

Txn = lim
n→∞

Tyn = lim
n→∞

Sxn = lim
n→∞

Syn = l

. Since {S, T} is w-compatible, so we get ρ(TSxn, STyn) → 0 or ρ(STxn, TSyn) →
0 as n→ ∞. As S and T are continuous, this implies that

ρ(T l, Sl) = 0 or ρ(Sl, T l) = 0

. So, we get Sl = T l, that is, l is a coincidence point of S and T .

Our first main result is the following:

Theorem 2.1. Let (X,Y, ρ) be a complete bipolar metric space and let T, S :
(X,Y, ρ) ⇒ (X,Y, ρ) be two covariant maps satisfying the following conditions:

1. T (X ∪ Y ) ⊆ S(X ∪ Y ),

2. ρ(Tx, Ty) 6 ϕ(ρ(Sx, Sy)) for all (x, y) ∈ X × Y ,
for some comparison function ϕ,

3. the pair {S, T} is w−compatible,

4. S is continuous,

then S and T have unique common fixed point.

Proof. We define a bisequence (un, vn) as follows:

(x0, y0) ∈ X × Y be arbitrary

un = Txn = Sxn+1

vn = Tyn = Syn+1, n ∈ N ∪ {0}.
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This bisequence can be defined as T (X ∪ Y ) ⊆ S(X ∪ Y ). Now

ρ(un, vn) = ρ(Txn, T yn) 6 ϕ(ρ(Sxn, Syn)) = ϕ(ρ(un−1, vn−1)) 6 ϕn(ρ(u0, v0))

taking the limit as n→ ∞ and using the property of ϕ, we get

(2.3) lim
n→∞

ρ(un, vn) = 0.

Similarly, we can prove

lim
n→∞

ρ(un+1, vn) = 0(2.4)

lim
n→∞

ρ(un, vn+1) = 0.(2.5)

We will show that (un, vn) is a Cauchy bisequence. For this let ϵ > 0 be arbitrary.
Choose δ > 0 such that

(2.6) δ <
ϵ− ϕ(ϵ)

2

Using (2.3), (2.4) and (2.5), we can find n0 ∈ N such that

(2.7) ρ(un, vn) 6 δ, ρ(un+1, vn) 6 δ, ρ(un, vn+1) 6 δ

for all n > n0.
Now we will show that ρ(un, Sy) 6 ϵ implies ρ(un, T y) 6 ϵ if n > n0. For this let
n > n0 and

(2.8) ρ(un, Sy) 6 ϵ.

Now using (BP3), (2.6) (2.7), (2.8), contractive condition 2 and property of ϕ, we
get

ρ(un, T y) 6 ρ(un, vn) + ρ(un+1, vn) + ρ(un+1, Ty)

= ρ(un, vn) + ρ(un+1, vn) + ρ(Txn+1, T y)

6 ρ(un, vn) + ρ(un+1, vn) + ϕ(ρ(Sxn+1, Sy))

6 δ + δ + ϕ(ρ(un, Sy))

6 2δ + ϕ(ϵ)

< ϵ.

Now since ρ(unSyn+1) = ρ(un, vn) 6 δ < ϵ−ϕ(ϵ)
2 < ϵ, so this implies that

ρ(un, vn+1) = ρ(un, T yn+1) 6 ϵ.

But ρ(un, vn+1) = ρ(un, Syn+2). So we get

ρ(un, T yn+2) 6 ϵ

ρ(un, vn+2) 6 ϵ
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By induction, we get

(2.9) ρ(un, vn+p) 6 ϵ for all n > n0.

Similarly, we can prove that

(2.10) ρ(un+p, vn) 6 ϵ for all n > n0.

From (2.9) and (2.10), we conclude that (un, vn) is a Cauchy bisequence and hence
biconverges to some point l ∈ X ∩ Y as (X,Y, ρ) is complete. That is

lim
n→∞

un = lim
n→∞

vn = l

. By proposition (1.1) and (2.3), T is also continuous, so using lemma (2.3), we
conclude that l is a coincidence point of S and T . Let Sl = T l = u. By proposition
(2.2) S and T are weakly compatible. Hence using proposition (2.3) and lemma
(2.2), we conclude that u is the unique common fixed point of S and T .

Remark 2.3. In view of proposition (2.1), condition 3 of above theorem can be replaced
by the stronger condition that either ordered pair (S, T ) or (T, S) is compatible.

Here are some corollaries:

Corollary 2.1. Let (X,Y, ρ) be a complete bipolar metric space and let T : (X,Y, ρ) ⇒
(X,Y, ρ) be a ϕ-contraction for some comparison function ϕ, then T has unique fixed
point in X ∩ Y .

Proof. This can be proved by taking S = I in theorem (2.1), where I is the identity
mapping on X ∪ Y.

We get the theorem 5.1 in [26] as a following corollary.

Corollary 2.2. Let (X,Y, ρ) be a complete bipolar metric space and let T : (X,Y, ρ) ⇒
(X,Y, ρ) be a mapping satisfying the following condition

ρ(Tx, Ty) 6 aρ(x, y) for all (x, y) ∈ X × Y

for some a ∈ [0, 1), then T has unique fixed point.

Proof. In corollary (2.1), take ϕ(t) = at.

Remark 2.4. In the above corollary, when we take X = Y , then we get the Banach
fixed point theorem in metric space.

In the next main result, we have relaxed the continuity of S and T discussed as in
theorem (2.1).
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Theorem 2.2. Let (X,Y, ρ) be a bipolar metric space and let T, S : (X,Y, ρ) ⇒
(X,Y, ρ) be two covariant maps satisfying the following conditions:

1. T (X ∪ Y ) ⊆ S(X ∪ Y ),

2. S(X ∪ Y ) is complete,

3. ρ(Tx, Ty) 6 ϕ(ρ(Sx, Sy)), for all (x, y) ∈ X × Y ,
for some comparison function ϕ,

4. S and T are weakly compatible,

5. S is an injective map.

Then S and T have unique common fixed point.

Proof. As in theorem (2.1), we can define a bisequence (un, vn) as follows:

(x0, y0) ∈ X × Y be arbitrary

un = Txn = Sxn+1

vn = Tyn = Syn+1, n ∈ N ∪ {0}

Arguing in the same way given in theorem (2.1), we conclude that the bisequence
(un, vn) is a Cauchy bisequence. As S(X ∪ Y ) = S(X) ∪ S(Y ) is complete, so
bisequence (un, vn) biconverges to a point in S(X) ∩ S(Y ) = S(X ∩ Y ). Let the
point be Sw for some w ∈ X∩Y . So that lim

n→∞
Sxn = Sw. Hence using Proposition

(2.3) and Lemma (2.1), w is a unique coincidence point of S and T . Now using
proposition (2.3) and Lemma (2.2), w is the unique common fixed point of S and
T .

Now we are going to prove a fixed point theorem for ϕ-expansive map which follows:

Theorem 2.3. Let (X,Y, ρ) be a complete bipolar metric space and let T : (X,Y, ρ)
� (X,Y, ρ) be a surjective and ϕ-expansive map for some comparison function ϕ,
then T has a unique fixed point.

Proof. First we observe by remark (2.1) that T is injective and hence bijective. Let
x0 ∈ X. As T is surjective, we can choose y0 ∈ Y such that Ty0 = x0, then choose
x1 ∈ X such that Tx1 = y0. Continuing this process we find a bisequence (xn, yn)
such that yn = Txn+1 and xn = Tyn, n = 0, 1, 2, .....
As T is ϕ-expansive, we obtain

(2.11) ϕ(ρ(xn, yn−1)) > ϕ(ρ(Tyn, Txn)) > ρ(xn, yn)).

Similarly, we can obtain

(2.12) ϕ(ρ(xn, yn)) > ρ(xn+1, yn)).
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From (2.11) and (2.12), we obtain

ϕ2(ρ(xn, yn−1)) > ρ(xn+1, yn)),

this implies by induction that

ϕ2n(ρ(x1, y0)) > ρ(xn+1, yn)).

Taking limit and using the property of ϕ, we obtain

(2.13) lim
n→∞

ρ(xn+1, yn)) = 0.

From (2.11), we have

ρ(xn, yn−1) > ϕ(ρ(xn, yn−1)) > ρ(xn, yn))

taking limit, we get

(2.14) lim
n→∞

ρ(xn, yn)) = 0.

Now using (BP3), we have

(2.15) ρ(xn, yn+1)) 6 ρ(xn, yn) + ρ(xn+1, yn) + ρ(xn+1, yn+1)

taking limit, we get

(2.16) lim
n→∞

ρ(xn, yn+1)) = 0.

We will show that (xn, yn) is a Cauchy bi-sequence. For this let ϵ > 0 be arbitrary.
Choose δ > 0 such that

(2.17) δ <
ϵ− ϕ2(ϵ)

2
.

Using (2.13), (2.14) and (2.16), we can find n0 ∈ N such that

(2.18) ρ(xn, yn) 6 δ, ρ(xn+1, yn) 6 δ, ρ(xn, yn+1) 6 δ

for all n > n0.
Now we show that B̄(xn, ϵ) is invariant under T−2 if n > n0. For this let n > n0
and y ∈ B̄(xn, ϵ). That is

(2.19) ρ(xn, y) 6 ϵ.

Now using (BP3) and (2.18), we get

ρ(xn, T
−2y) 6 ρ(xn, yn) + ρ(xn+1, yn) + ρ(xn+1, T

−2y)

6 2δ + ρ(xn+1, T
−2y)(2.20)
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Now

ϕ(ρ(xn, y)) = ϕ(ρ(Tyn, TT
−1y))

> ρ(T−1y, yn)

This implies

ϕ2(ρ(xn, y)) > ϕ(ρ(T−1y, yn))

= ϕρ(TT−2y, TT−1yn)

> ρ(xn+1, T
−2y)

So

(2.21) ρ(xn+1, T
−2y) 6 ϕ2(ρ(xn, y)) 6 ϕ2(ϵ).

Hence from (2.17), (2.20) and (2.21), we get

ρ(xn, T
−2y) < 2δ + ψ2(ϵ) < ϵ.

This implies
T−2y ∈ B̄(xn, ϵ)

So by induction, we conclude that

T (−2m)y ∈ B̄(xn, ϵ) for all m ∈ N.

Taking y = yn as yn ∈ B̄(xn, ϵ), we get

T (−2m)yn ∈ B̄(xn, ϵ)

But T (−2m)yn = yn+m, so ρ(xn, yn+m) 6 ϵ.
Similarly, we can prove that ρ(xn+m, yn) 6 ϵ for all n > n0,m ∈ N and hence the
sequence (xn, yn) is Cauchy bisequence. So it biconverges to a point p ∈ X ∩Y . As
T−1 is contractive by remark (2.2), so it is continuous, and hence {T−1xn} converges
to T−1p, i.e. {yn} converges to T−1p. So T−1p = p. This implies Tp = p. Fixed
point p must be unique as T−1 is contractive mapping.

Example 2.2. Let (X,Y, ρ) be the complete bipolar metric space defined in example 1.1.
Let T, S : X ∪ Y ⇒ X ∪ Y be two covariant maps defined by

T{(x1, x2)} =

{(
x1
4
,
x2
4

)}
T (A) =

{(
x1
4
,
x2
4

)
: (x1, x2) ∈ A

}
S{(x1, x2)} =

{(
x1
2
,
x2
2

)}
S(A) =

{(
x1
2
,
x2
2

)
: (x1, x2) ∈ A

}
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for every {(x1, x2)} ∈ X and A ∈ Y .
Now we will prove that the pair {S, T} is w-compatible. For this let

lim
n→∞

Sxn = lim
n→∞

Txn = lim
n→∞

SAn = lim
n→∞

TAn = t

for some t = {(t1, t2)} ∈ X ∩ Y and bisequence (xn, An). Let xn = {(an, bn)}.
Now lim

n→∞
ρ(Sxn, t) = 0 implies that lim

n→∞
an = 2t and lim

n→∞
bn = 2t. Similarly,

lim
n→∞

ρ(Txn, t) = 0 implies that lim
n→∞

an = 4t and lim
n→∞

bn = 4t. Hence t1 = t2 = 0.

So

lim
n→∞

an = lim
n→∞

bn = 0(2.22)

ρ({(0, 0)}, SAn) = 0 and ρ({(0, 0)}, TAn) = 0(2.23)

(2.23) implies that

(2.24) lim
n→∞

Mn = 0 where Mn = sup{|cn|+ |dn| : (cn, dn) ∈ An}

Now

ρ(STxn, TSAn) =
1

8
sup{|an − cn|+ |bn − dn| : {(cn, dn)} ∈ An}

6 1

8
sup{|an|+ |bn|+ |cn|+ |dn| : {(cn, dn)} ∈ An}

=
1

8
(|an|+ |bn|) +

1

8
sup{|cn|+ |dn| : {(cn, dn)} ∈ An}

=
1

8
(|an|+ |bn|) +

1

8
Mn

This implies using (2.22) and (2.24) that

lim
n→∞

ρ(STxn, TSAn) = 0

So the pair {S, T} is w-compatible. Now we can observe the following

X ∪ Y = Y and T (Y ) = Y = S(Y )

and we can prove the following

ρ(Tx, Ty) =
1

4
ρ(x, y) for all (x, y) ∈ X × Y

and

ρ(Sx, Sy) =
1

2
ρ(x, y) for all (x, y) ∈ X × Y.

So we can write

ρ(Tx, Ty) =
1

2
ρ(Sx, Sy).

So all the conditions of theorem (2.1) are satisfied with ϕ(t) =
t

2
, So S and T have unique

common fixed point.
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3. Conclusion

This paper establishes common fixed point theorems for w−compatible maps in
bipolar metric spaces using a comparison function ϕ in place of altering distance
functions. By introducing generalized contraction conditions involving ϕ, we derive
new common fixed point results that extend previous theorems in bipolar metric
spaces. These results provide a broader, more flexible framework for fixed point
theory. Additionally, illustrative examples are provided to validate and support the
theoretical findings, demonstrating the practical relevance of our theorems. The
results can be explored in other metric-like spaces, such as partial metric spaces,
cone metric spaces, or fuzzy metric spaces, to generalize the fixed point theory.
Also, investigating the application of w−compatible maps and comparison functions
in stochastic or probabilistic bipolar metric spaces could lead to new insights in
uncertain environments.
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