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1. Introduction

Symmetry plays a significant role in nature. One of the most useful ways to analyse
the symmetry of a semi-Riemannian manifold is to study the curvature conditions
arising from the restriction of its curvature. Cartan showed that if all local geodesic
symmetry is an isometry for any point on the semi-Riemannian manifold M of di-
mension (2n+1), then M is called locally symmetric manifold [3]. This is equivalent
to the following condition

∇R = 0,

where R and∇ denote the Riemannian curvature tensor and the Levi-Civita connec-
tion, resp. The idea of locally symmetric manifolds has been weakened and exten-
sively studied. Recurrent manifolds as a generalization that properly includes the set
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of locally symmetric manifolds were introduced by Ruse [15]. A semi-Riemannian
manifold is said to be recurrent manifold if it satisfies

∇R = A⊗R,

where A is a non-vanishing 1-form, ⊗ is the tensor product. Geometrically, the
recurrent manifolds are related with the study of first order change on sectional
curvature of a plane that obtained after the parallel transportation around a curve
on M . This work extended to ϕ-recurrent manifolds by De [11] as following

ϕ2(∇R) = A⊗R.

Dubey [12] introduced the notation of generalized recurrent manifold which satisfies

∇R = A⊗R+B ⊗G.

Here A and B are two 1-forms of which B is non-zero. G is defined by G(X,Y )Z =
g(Y, Z)X−g(X,Z)Y . If B = 0, the manifold reduces to a recurrent manifold. This
work extended to generalized ϕ-recurrent manifolds as follows

ϕ2(∇R) = A⊗R+B ⊗G.

Afterwards, new kinds of recurrent manifolds were introduced. A semi-Riemannian
manifold is said to be hyper-generalized recurrent manifold if the condition

∇R = A⊗R+B ⊗ (g ∧ S)

holds where S is the Ricci tensor, A,B are two 1-forms which B is non-zero and
∧ denotes the Kulkarni-Nomizu product. The Kulkarni-Nomizu product E ∧ F of
two (0, 2) tensors E and F is defined by

(E ∧ F )(X1, X2, X3, X4) = E(X1, X4)F (X2, X3) + E(X2, X3)F (X1, X4)

−E(X1, X3)F (X2, X4)− E(X2, X4)F (X1, X3),

for Xi ∈ χ(M), i = 1, 2, 3, 4.

A semi-Riemannian manifold is called a quasi-generalized recurrent manifold if
the condition

∇R = A⊗R+B ⊗ (G+ g ∧H)

holds where A and B are two 1-forms of which B is non-zero and H = η ⊗ η, η
being a non-zero 1-form.

A semi-Riemannian manifold is said to be Ricci symmetric if ∇S = 0, where
S is a Ricci tensor. The notation of Ricci symmetry has been weakened by many
authors such as Ricci recurrent manifold which was presented by Patterson [14]. A
semi-Riemannian manifold is said to be Ricci recurrent if the condition

∇S = A⊗ S
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holds where A is a non-vanishing 1-form.

De et al. introduced the notation of generalized Ricci-recurrent manifold [9]
which satisfies

∇S = A⊗ S +B ⊗ g,

where A and B are two 1-forms of which B is non-zero. If B = 0, then it reduces
to the notation of Ricci-recurrent manifold.

A semi-Riemannian manifold is said to be super generalized Ricci-recurrent man-
ifold if its Ricci tensor S satisfies the condition

(1.1) ∇S = A⊗ S +B ⊗ g + C ⊗ (η ⊗ η),

where A,B and C are non-vanishing 1-forms. In particular, if B = C, then it
reduces to the notation of a quasi-generalized Ricci-recurrent manifold. There have
been many studies on recurrent manifolds and paracontact manifolds [1,4–8,10,16].

All the studies mentioned above motivate us to investigate hyper-generalized
ϕ-recurrent and quasi-generalized ϕ-recurrent paracontact metric (κ ̸= −1, µ)-man-
ifolds. This paper is organized in the following way. In Section 2, we recall some
notations required for this paper. In Section 3, we present some properties of para-
contact metric (κ ̸= −1, µ)-manifolds. In Section 4, we work on hyper-generalized
ϕ-recurrent paracontact metric (κ ̸= −1, µ)-manifolds and give some relations be-
tween 1-forms. We show that, in recurrent-like structures on paracontact metric
(κ, µ)-manifolds, either the manifold reduces to N(κ)-paracontact manifold or the
characteristic vector field ξ and ρ1 (the associated vector field which corresponds to
1- form A) are co-directional. This is also valid for contact cases. We give the neces-
sary conditions for a hyper-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0)
manifold to be generalized Ricci recurrent and Ricci recurrent. We present some
results according to whether the scalar curvature of a hyper-generalized ϕ-recurrent
paracontact metric (κ ̸= −1, µ)-manifold is zero or not. We obtain the neces-
sary condition for a hyper-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0)-
manifold to be an η-Einstein manifold. Moreover, we prove that there does not
exist any Einstein hyper-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0)-
manifold of dimension 2n+ 1, where n > 1. For dimension 3, the manifold is Ricci
flat. In the last section, we study quasi-generalized ϕ-recurrent paracontact met-
ric (κ ̸= −1, 0)-manifolds. We obtain some relations between 1-forms. We prove
that a quasi-generalized ϕ-recurrent paracontact metric (κ ̸= −1, µ)-manifold is ei-
ther N(κ)-paracontact metric manifold or characteristic vector field ξ and ρ3 (is
a vector field associated with 1-form D) are co-directional. We show that every
quasi-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0) manifold is a super
generalized Ricci recurrent manifold and also can never be a quasi-generalized Ricci
recurrent manifold. We prove that the scalar curvature r of a quasi-generalized
ϕ-recurrent paracontact metric (κ ̸= −1, µ)-manifold can never be zero. Also we
show that there does not exist any quasi-generalized ϕ-recurrent paracontact metric
(0, µ)-manifold. Finally, we give the necessary condition for a quasi-generalized ϕ-
recurrent paracontact metric (κ ̸= −1, 0)-manifold to be η-Einstein. Moreover, we
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prove that there do not exist any Einstein quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is called an almost paracontact
manifold if it admits a triple (ϕ, ξ, η) satisfying the followings:

(2.1) η(ξ) = 1, ϕ2 = I − η ⊗ ξ

and ϕ induces on almost paracomplex structure on each fiber of D = ker(η), where
ϕ, ξ and η are (1, 1)−tensor field, vector field and 1−form, resp. One can easily
checked that ϕξ = 0, η ◦ ϕ = 0 and rankϕ = 2n, by the definition. Here, ξ is a
unique vector field (called Reeb or characteristic vector field) dual to η and satisfying
dη(ξ,X) = 0 for all X ∈ χ(M). When the tensor field Nϕ := [ϕ, ϕ]−2dη⊗ξ vanishes
identically, the almost paracontact manifold is said to be normal. If the structure
(M,ϕ, ξ, η) admits a pseudo-Riemannian metric such that

(2.2) g(ϕX, ϕY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y ∈ χ(M) then we say that (M,ϕ, ξ, η, g) is an almost paracontact
metric manifold. Note that any pseudo-Riemannian metric with a given almost
paracontact metric manifold structure is necessarily of signature (n + 1, n). For
an almost paracontact metric manifold, one can always find an orthogonal basis
{X1, . . . , Xn, Y1, . . . , Yn, ξ}, namely ϕ−basis, such that g(Xi, Xj) = −g(Yi, Yj) = δij
and Yi = ϕXi, for any i, j ∈ {1, . . . , n}. Further, an almost paracontact metric man-
ifold is said to be paracontact metric manifold if the following holds for all vector
fields X,Y ∈ χ(M):

dη(X,Y ) = g(X,ϕY ).

In a paracontact metric manifold, one defines a symmetric, trace-free operator
h := 1

2Lξϕ, where L denotes the Lie derivative. The operator h also satisfies the
followings:

hξ = 0, ϕh = −hϕ, trace(h) = 0,(2.3)

∇Xξ = −ϕX + ϕhX(2.4)

where ∇ is the Levi-Civita connection of the pseudo-Riemannian manifold [17].

An almost paracontact metric manifold is said to be η-Einstein if its Ricci tensor
S is of the form

(2.5) S = λg + µη ⊗ η,

where λ and µ are smooth functions on the manifold. If µ = 0, then the manifold
is said to be Einstein.
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3. Paracontact metric (κ, µ)-manifolds

The (κ, µ)-nullity distribution on (M,ϕ, ξ, η, g) is a distribution

N(κ, µ) : p → Np(κ, µ) = {Z ∈ TpM : R(X,Y )Z = κ[g(Y,Z)X − g(X,Z)Y ]

+µ[g(Y,Z)hX − g(X,Z)hY ]}(3.1)

for all X,Y ∈ TpM and κ, µ ∈ R. If the ξ belongs to the above distribution, namely,

(3.2) R(X,Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

then the paracontact metric manifold is called a paracontact metric (κ, µ)- manifold.
When µ = 0, a paracontact metric (κ, µ)-manifold reduces to N(κ)-paracontact
metric manifold [2].

Lemma 3.1. [2] Let (M,ϕ, ξ, η, g) be a paracontact metric (κ, µ)-manifold such
that κ ̸= −1. If κ > −1 (respectively κ < −1), then there exists a local orthogonal
ϕ-basis {X1, . . . , Xn, Y1, . . . , Yn, ξ} of eigenvectors of h (respectively ϕh) such that
X1, . . . , Xn ∈ Γ(Dh(λ)) (respectively, Dϕh(λ)), Y1, . . . , Yn ∈ Γ(Dh(−λ)) (respec-
tively, Dϕh(−λ)), and

g(Xi, Xi) = −g(Yi, Yi) =

{
1, for 1 6 i 6 r,

−1 for r + 1 6 i 6 r + s,
(3.3)

where r = index(Dh(−λ)) (respectively, r = index(Dϕh(−λ))) and s = n − r =
index(Dh(λ)) (respectively, s = index(Dϕh(λ))).

Lemma 3.2. [2] Let (M,ϕ, ξ, η, g) be a paracontact metric (κ, µ)-manifold of di-
mension 2n+ 1, then the following identities hold:

h2 = (1 + κ)ϕ2,(3.4)

Qξ = 2nκξ,(3.5)

(∇Xϕ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX); κ ̸= −1,(3.6)

∇ξh = µh ◦ ϕ, ∇ξϕh = −µh,(3.7)

R(ξ,X)Y = κ[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],(3.8)

for all vector fields X,Y ∈ χ(M), where Q denotes the Ricci operator of M .

Corollary 3.1. [2] In any (2n + 1)-dimensional paracontact (κ, µ)-manifold
(M,ϕ, ξ, η, g) such that κ ̸= −1, the Ricci operator Q is given by

(3.9) Q = (2(1− n) + nµ)I + (2(n− 1) + µ)h+ (2(n− 1) + n(2κ− µ))η ⊗ ξ.
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For (2n+1)-dimensional paracontact (κ ̸= −1, µ)-manifolds, from (3.9), we have
the following:

S(X,Y ) = (2(1− n) + nµ)g(X,Y ) + (2(n− 1) + µ)g(hX, Y )

+(2(n− 1) + n(2κ− µ))η(X)η(Y ),(3.10)

S(ϕX, ϕY ) = S(X,Y )− 2(2(1− n) + nµ)g(X,Y )− 2(2(n− 1)

+n(κ− µ))η(X)η(Y ),(3.11)

S(X,hY ) = 2(n− 1)(1 + κ)g(X,Y ) + 2(1− n)g(X,hY )

−2(n− 1)(1 + κ)η(X)η(Y ),(3.12)

S(X, ξ) = 2nκη(X),(3.13)

r = 2n(2(1− n) + nµ+ κ),(3.14)

for all X,Y ∈ χ(M).

Proposition 3.1. For a (2n + 1)- dimensional paracontact metric (κ ̸= −1, µ)-
manifold, we have the followings

(3.15) (∇WR)(X,Y )ξ = µ[η(Y )(∇Wh)X − η(X)(∇Wh)Y ]

and

(3.16) g((∇WR)(ξ, Y )Z, ξ) = −µη(Z)g(∇WhY, ξ),

for all X,Y, Z ∈ χ(M).

Proof. Using (3.1) in

(∇WR)(X,Y )ξ = ∇WR(X,Y )ξ −R(∇WX,Y )ξ −R(X,∇WY )ξ −R(X,Y )∇W ξ,

we have

(∇WR)(X,Y )ξ = µ[η(Y )∇WhX − η(X)∇WhY + η(X)h∇WY − η(Y )h∇WX],

which gives (3.15). The proof of (3.16) is similar to (3.15).

4. Hyper-generalized ϕ-recurrent paracontact metric
(κ ̸= −1, µ)-manifold

Definition 4.1. [16] A (2n+1)-dimensional paracontact metric (κ, µ)-manifold is
said to be a hyper-generalized ϕ-recurrent if its curvature tensor R satisfies

(4.1) ϕ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )H(X,Y )Z

for all vector fields X,Y and Z, where A,B are two non-vanishing 1-forms such
that A(X) = g(X, ρ1), B(X) = g(X, ρ2) and the tensor H is defined by

(4.2) H(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY,
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for all X,Y, Z ∈ χ(M), where Q is the Ricci operator, ρ1 and ρ2 are vector fields
associated with 1-forms A and B, resp. If B = 0, then it reduces to ϕ-recurrent
manifold [11].

Theorem 4.1. In a (2n + 1)-dimensional hyper-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, the associated vector fields ρ1 and ρ2 correspond-
ing to 1-forms A and B satisfy the following relation

(4.3) [r − 4nκ]η(ρ1) + [2(2n− 1)(r − 2nk)]η(ρ2) = 0.

Proof. We consider a (2n+ 1)-dimensional hyper-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold. Then, from the equations (2.1) and (4.1), we
have

(4.4) (∇WR)(X,Y )Z−η((∇WR)(X,Y )Z)ξ = A(W )R(X,Y )Z+B(W )H(X,Y )Z.

Taking the inner product of (4.4) with the vector field U , we get

g((∇WR)(X,Y )Z,U)− η((∇WR)(X,Y )Z)η(U) = A(W )g(R(X,Y )Z,U)

+B(W )g(H(X,Y )Z,U).(4.5)

Changing X,Y, Z cyclically and using the second Bianchi’s identity in (4.5), we
derive

A(W )g(R(X,Y )Z,U) +B(W )g(H(X,Y )Z,U) +A(X)g(R(Y,W )Z,U)(4.6)

+B(X)g(H(Y,W )Z,U) +A(Y )g(R(W,X)Z,U) +B(Y )g(H(W,X)Z,U) = 0.

Let {ei} (1 6 i 6 2n + 1) be an orthonormal basis. Taking the summation over i
for Y = Z = ei and using (3.1) and (4.2) in the last equation, we obtain

0 = A(W )S(X,U) +B(W )[rg(X,U) + (2n− 1)S(X,U)]

−A(X)S(W,U)−B(X)[rg(W,U) + (2n− 1)S(W,U)]

+
∑2n+1

i=1 εi{g(ei, ρ1)[κ(g(X, ei)g(W,U)− g(W, ei)g(X,U))

µ(g(X, ei)g(hW,U)− g(W, ei)g(hX,U))]}
+
∑2n+1

i=1 εi{g(ei, ρ2)[S(X, ei)g(W,U)− S(W, ei)g(X,U)

+g(X, ei)S(W,U)− g(W, ei)S(X,U)]}.(4.7)

From the above equation, we derive

A(W )S(X,U) +B(W )[rg(X,U) + (2n− 1)S(X,U)]−A(X)S(W,U)

−B(X)[rg(W,U) + (2n− 1)S(W,U)] + κA(X)g(W,U)− κA(W )g(X,U)

+µA(hX)g(W,U)− µA(hW )g(X,U) +B(QX)g(W,U)

−B(QW )g(X,U) +B(X)S(W,U)−B(W )S(X,U) = 0.(4.8)

Contracting over X and U in (4.8), we have

(4.9) (r−2nκ)A(W )−A(QW )+[4nr−2r]B(W )−2nµA(hW )+(2−4n)B(QW ) = 0.

Putting W = ξ and using (3.5) in (4.9), we get (4.3).
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Definition 4.2. Two vector fields P and N are said to be co-directional if P =
FN , where F is a non-zero scalar, that is, g(P,X) = Fg(N,X).

Theorem 4.2. A (2n+ 1)-dimensional hyper-generalized ϕ-recurrent paracontact

metric (κ ̸= −1, µ)-manifold is either a paracontact metric ( r+4n2−4n
2n , 0)-manifold

or characteristic vector field ξ and ρ1 (is vector field associated with 1-form A) are
co-directional.

Proof. Letting Y = Z = ei and taking the summation over i in the following
equation

(4.10) A(Y )g(R(W,X)Z,U) = −A(Y )g(R(W,X)U,Z)

we have

2n+1∑
i=1

εiA(ei)g(R(W,X)ei, U) = −
2n+1∑
i=1

εiA(ei)g(R(W,X)U, ei).(4.11)

Using (3.1), we compute the left hand side of the equation (4.11) as follows∑2n+1
i=1 εiA(ei)g(R(W,X)ei, U)

=
∑2n+1

i=1 εi{g(ei, ρ1)[κ(g(X, ei)g(W,U)− g(W, ei)g(X,U))]

+µ[g(X, ei)g(hW,U)− g(W, ei)g(hX,U)]}.
= κ[A(X)g(W,U)−A(W )g(X,U)]

+µ[A(X)g(hW,U)−A(W )g(hX,U)].(4.12)

For the right hand side, we obtain

2n+1∑
i=1

εiA(ei)g(R(W,X)U, ei) = κ[A(W )g(X,U)−A(X)g(W,U)]

+µ[A(hW )g(X,U)−A(hX)g(W,U)].(4.13)

In the view of (4.12) and (4.13), from (4.11), we get

(4.14) µ[A(X)g(hW,U)−A(W )g(hX,U)] = µ[A(hX)g(W,U)−A(hW )g(X,U)].

Contracting (4.14) over X and U , we derive

−µg(hX, ρ1) = µ[(2n+ 1)A(hX)− g(hρ1, X)],

which implies

(4.15) µ(2n+ 1)A(hW ) = 0.

From the above equation, two cases occur.

Case I: If µ = 0, then from (3.14) we have κ = r+4n2−4n
2n .

Case II: If A(hW ) = 0, then A(h2W ) = 0. Using (3.4) in the last equation, we
obtain (1 + κ)A(ϕ2W ) = 0. Since κ ̸= −1, we have A(W ) − η(W )A(ξ) = 0. This
completes the proof.
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Theorem 4.3. A (2n+ 1)-dimensional hyper-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold is

(i) Generalized Ricci-recurrent, if the scalar curvature is non-zero and A(W ) ̸=
(1− 2n)B(W ),

(ii) Ricci-recurrent, if r = 0 and A(W ) ̸= (1− 2n)B(W ).

Proof. The equation (4.5) holds for a (2n + 1)-dimensional hyper-generalized ϕ-
recurrent paracontact metric (κ ̸= −1, µ)-manifold. Contracting over X and U in
(4.5), we obtain∑2n+1

i=1 εi[g((∇WR)(ei, Y )Z, ei)− η((∇WR)(ei, Y )Z)η(ei)]

=
∑2n+1

i=1 εi[A(W )g(R(ei, Y )Z, ei) +B(W )g(H(ei, Y )Z, ei)].(4.16)

Using (4.2) in (4.16), we get

(∇WS)(Y,Z)− η((∇WR)(ξ, Y )Z) = [A(W ) + (2n− 1)B(W )]S(Y,Z)

+rB(W )g(Y, Z).(4.17)

Then the proof follows from (3.16).

Theorem 4.4. In a (2n + 1)-dimensional hyper-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, the 1-forms A and B satisfy the following relation

(4.18) κA(W ) + [n(2κ− 2 + µ) + 2]B(W ) = 0.

Proof. We know that for a (2n+1)-dimensional hyper-generalized ϕ-recurrent para-
contact metric (κ ̸= −1, µ)-manifold, (4.17) is valid. Letting Z = ξ and using (3.13)
in (4.17), we have

(∇WS)(Y, ξ)− η((∇WR)(ξ, Y )ξ)

= 2nκA(W )η(Y ) +B(W )[(2n− 1)2nκ+ r]η(Y ).
(4.19)

Putting Y = ξ in (4.19) and using (3.16), we obtain

(4.20) 2nκ[A(W ) + (2n− 1)B(W )] + rB(W ) = 0.

Using (3.14) in the above equation, we get the relation (4.18).

Corollary 4.1. In a (2n+ 1)-dimensional hyper-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, if the scalar curvature of the manifold vanishes,
then either

(i) 1-forms A and B are co-directional or

(ii) it is (0, 2(n−1)
n )-paracontact metric manifold.
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Proof. If the scalar curvature r is vanishes, then from (4.20), we have

(4.21) 2nκ[A(W ) + (2n− 1)B(W )] = 0.

From the above equation, either κ = 0 or A(W ) = (1 − 2n)B(W ). If A(W ) =
(1− 2n)B(W ), then the 1 forms A and B are co-directional. In the case of κ = 0,

since r vanishes, from (3.14) we get µ = 2(n−1)
n .

By virtue of (3.14) and (4.20), we get the following result:

Corollary 4.2. In a hyper-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0)-
manifold, if the scalar curvature of the manifold vanishes, then either

(i) The dimension of the manifold is three and it is flat or

(ii) 1-forms A and B are co-directional.

Theorem 4.5. In a (2n + 1)-dimensional hyper-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, if the scalar curvature of the manifold is a non-
zero constant, then

(4.22) A(W ) = −4nB(W ),

for any vector field W .

Proof. Taking the summation over i (1 6 i 6 2n+ 1) for Y = Z = ei in (4.17) and
using (3.16), we obtain

(4.23) dr(W ) = r[A(W ) + 4nB(W )].

Then (4.22) follows from (4.23).

Theorem 4.6. A (2n+ 1)-dimensional hyper-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold is an η-Einstein manifold if κ = 1−n

n .

Proof. In order to find (∇WS)(Y, ξ), we use (2.4) and (3.13) in the following equa-
tion

(4.24) (∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Hence, we obtain

(4.25) (∇WS)(Y, ξ) = 2nκg(Y,−ϕW + ϕhW )− S(Y,−ϕW + ϕhW ).

If we use (3.16) in (4.19), then compare the obtained equation with (4.25), we get

{2nκA(W ) +B(W )[(2n− 1)2nκ+ r]}η(Y ) = 2nκg(Y,−ϕW + ϕhW )

−S(Y,−ϕW + ϕhW ).(4.26)
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On the other hand, by letting Y = ϕY in (4.26), we have

(4.27) 2nκg(ϕY,−ϕW + ϕhW )− S(ϕY,−ϕW + ϕhW ) = 0.

In the view of (2.2), (3.4) and (3.11), the equation (4.27) becomes

S(Y,W )− S(Y, hW ) = 2(2(1− n)− nκ)g(Y,W )− 2(2(1− n)− nκ)g(Y, hW )

+2(2(n− 1) + 2nκ)η(Y )η(W ).(4.28)

Using (3.12) in (4.28), we derive

(4.29) S(Y,W ) = αg(Y,W ) + βg(Y, hW ) + γη(Y )η(W ),

where α = 2− 2n− 2κ, β = 2nκ− 2(1− n) and γ = 2nκ+ 2n+ 2κ− 2. If β = 0,
then κ = 1−n

n .

Theorem 4.7. There does not exist any Einstein hyper-generalized ϕ-recurrent
paracontact metric (κ ̸= −1, 0)-manifold of dimension 2n + 1, where n > 1. For
dimension 3, the manifold is Ricci flat.

Proof. The Ricci tensor of a (2n + 1)-dimensional hyper-generalized ϕ-recurrent
paracontact metric (κ ̸= −1, 0)-manifold is given in (4.29). For the manifold to be
Einstein, β and γ must vanish. If γ = 0, then nκ + n + κ − 1 = 0. Again, β = 0,
then κ = 1−n

n . Comparing the last two equations, we obtain n = 1, which implies
κ = 0. This completes the proof of the theorem.

5. Quasi-generalized ϕ-recurrent paracontact metric
(κ ̸= −1, µ)-manifold

Definition 5.1. [16] A (2n + 1)-dimensional paracontact metric (κ, µ)-manifold
is said to be quasi-generalized ϕ-recurrent if its curvature tensor R satisfies

(5.1) ϕ2((∇WR)(X,Y )Z) = D(W )R(X,Y )Z + E(W )F (X,Y )Z

for all vector fields X,Y and Z, where D,E are two non-vanishing 1-forms such
that D(X) = g(X, ρ3), E(X) = g(X, ρ4) and the tensor F is defined by

F (X,Y )Z = g(Y, Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y

−g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ,(5.2)

for all vector fields X,Y, Z ∈ χ(M), where ρ3 and ρ4 are vector fields associated
with 1-forms D and E resp.

Theorem 5.1. In a (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, the associated vector fields ρ3 and ρ4 correspond-
ing to 1-forms D and E satisfy the following relation

(5.3) (r − 4nκ)η(ρ3) + 2(2n2 − n)η(ρ4) = 0.
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Proof. We consider a (2n+1)-dimensional quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, µ)-manifold. Using (2.2) in (5.1), we obtain

(5.4) (∇WR)(X,Y )Z−η((∇WR)(X,Y )Z)ξ = D(W )R(X,Y )Z+E(W )F (X,Y )Z.

Using the second Bianchi’s identity in (5.4), we get

0 = D(W )R(X,Y )Z + E(W )F (X,Y )Z +D(X)R(Y,W )Z

+E(X)F (Y,W )Z +D(Y )R(W,X)Z + E(Y )F (W,X)Z.(5.5)

Contracting over X in (5.5) and using (3.1), we have

0 = D(W )S(Y, Z)−D(Y )S(W,Z) + E(W )[(2n+ 1)g(Y, Z) + (2n− 1)η(Y )η(Z)]

−E(Y )[(2n+ 1)g(W,Z) + (2n− 1)η(W )η(Z)] + E(Y )g(W,Z)− E(W )g(Y, Z)

+µ[D(hY )g(W,Z)−D(hW )g(Y, Z)] + κ[D(Y )g(W,Z)−D(W )g(Y,Z)]

+E(Y )η(W )η(Z)− E(W )η(Y )η(Z) + g(W,Z)η(ρ4)η(Y )

−g(Y, Z)η(ρ4)η(W ).(5.6)

Let {ei} (1 6 i 6 2n+1) be a local orthonormal basis. Putting Y = Z = ei in (5.6)
and taking the summation over i, we derive

0 = (r − 2nκ)D(W )−D(QW ) + (µ− 2n− 1)D(hW ) + 2(2n2 + n− 1)E(W )

−2(2n− 1)η(ρ4)η(W ).(5.7)

Putting W = ξ and using (2.3) and (3.5) in (5.7), we have the relation (5.3).

Since the proof of the following theorem is quite similar to the Theorem (4.2),
so we do not give the proof it.

Theorem 5.2. A (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracontact

metric (κ ̸= −1, µ)-manifold is either a paracontact metric ( r+4n2−4n
2n , 0)-manifold

or characteristic vector field ξ and ρ3 (is a vector field associated with 1-form D)
are co-directional.

Theorem 5.3. A (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold is a super generalized Ricci-recurrent manifold.

Proof. Taking the inner product of (5.4) with U , we get

g((∇WR)(X,Y )Z,U)− η((∇WR)(X,Y )Z)η(U) = D(W )g(R(X,Y )Z,U)

+E(W )g(F (X,Y )Z,U).(5.8)

Contracting (5.8) over X and U , we get∑2n+1
i=1 εi[g((∇WR)(ei, Y )Z, ei)− η((∇WR)(ei, Y )Z)η(ei)]

=
∑2n+1

i=1 εi[D(W )g(R(ei, Y )Z, ei) + E(W )g(F (ei, Y )Z, ei)].(5.9)
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Using (5.2) in (5.9), we obtain

(∇WS)(Y,Z)− η((∇WR)(ξ, Y )Z) = E(W )[(2n+ 1)g(Y,Z) + (2n− 1)η(Y )η(Z)]

+D(W )S(Y, Z).(5.10)

Since µ = 0, using (3.16) in (5.10), we derive

(∇WS)(Y, Z) = D(W )S(Y, Z) + Π1(W )g(Y,Z) + Π2(W )η(Y )η(Z),(5.11)

where, Π1(W ) = (2n + 1)E(W ) and Π2(W ) = (2n − 1)E(W ). Thus the proof of
the theorem is completed from (1.1)

From (5.11), we can give the following result:

Corollary 5.1. A (2n+1)-dimensional quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold can never be a quasi-generalized Ricci-recurrent mani-
fold.

Theorem 5.4. A (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, µ)-manifold the 1-forms D and E satisfy the following relation

(5.12) κD(W ) + 2E(W ) = 0.

Proof. Letting Z = ξ in (5.10), we obtain

(5.13) (∇WS)(Y, ξ)− η((∇WR)(ξ, Y )ξ) = D(W )S(Y, ξ) + 4nE(W )η(Y ).

Putting Y = ξ in the above equation and using (3.13) and (3.16), we get (5.12).

Theorem 5.5. In a (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, the scalar curvature r can never be zero and the
following equation holds

(5.14) rD(W ) + 2n(2n+ 3)E(W ) = 0.

Proof. Letting Y = Z = ei in (5.10) and taking the summation over i, we have

(5.15) dr(W ) = rD(W ) + 2n(2n+ 3)E(W ).

Since E is a non-vanishing 1-form, r can not be zero from (5.15). From (3.14), since
r is constant we get (5.14).

Corollary 5.2. In a (2n+ 1)-dimensional quasi-generalized ϕ-recurrent paracon-
tact metric (κ ̸= −1, µ)-manifold, the scalar curvature can be given by r = (2n +
3)nκ and also for a quasi-generalized ϕ-recurrent paracontact metric (κ ̸= −1, 0)-

manifold, κ = 4(1−n)
2n+1 .
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Proof. From (5.12), we have E(W ) = −κ
2D(W ). Using this in (5.14), we get

(5.16) (r − nκ(2n+ 3))D(W ) = 0.

Since D is a non-vanishing 1-form, the equation (5.16) implies

(5.17) r − nκ(2n+ 3) = 0.

For a (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracontact metric (κ ̸=
−1, 0)-manifold, using (5.17) in (3.14), we derive κ = 4(1−n)

2n+1 .

From Theorem 5.5, the scalar curvature can not be vanish in a quasi-generalized
paracontact metric (κ ̸= −1, µ)-manifold. With the help of this, we observe that κ
can not be zero from (5.17). Therefore, we can state the following theorem.

Theorem 5.6. There does not exist any (2n + 1)-dimensional quasi-generalized
ϕ-recurrent paracontact metric (0, µ)-manifold.

Theorem 5.7. A (2n + 1)-dimensional quasi-generalized ϕ-recurrent paracontact
metric (κ ̸= −1, 0)-manifold is an η-Einstein manifold of dimension 2n + 1 if κ =
1−n
n , where n > 1.

Proof. The equation (4.25) also holds for a (2n+ 1)-dimensional quasi-generalized
ϕ-recurrent paracontact metric (κ ̸= −1, 0)-manifold. Then comparing (4.25) and
(5.10), we obtain

(5.18) 2nκg(Y,−ϕW +ϕhW )−S(Y,−ϕW +ϕhW ) = [2nκD(W )+4nE(W )]η(Y ).

Letting Y = ϕY and using (2.2) and (3.11) in (5.18), we have

S(Y,W )− S(Y, hW ) = 2[2(1− n)− nk]g(Y,W )− 2[2(1− n)− nκ]g(Y, hW )

2[2(n− 1) + 2nκ]η(Y )η(W ).(5.19)

Using (3.12) in (5.19), the Ricci tensor becomes

(5.20) S(Y,W ) = αg(Y,W ) + βg(Y, hW ) + γη(Y )η(W ),

where α = −2n− 2κ+ 2, β = 2nκ+ 2n− 2 and γ = 2nκ+ 2n+ 2κ− 2. If β = 0,
then κ = 1−n

n .

Theorem 5.8. There does not exist any Einstein quasi-generalized ϕ-recurrent
paracontact metric (κ ̸= −1, 0)-manifold.
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