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Abstract. In this article, we are acquainted with the notion of pointwise quasi bi-
slant (PQBS, in brief)submersions in complex geometry. We present the concept of
pointwise quasi bi-slant submersions from almost Hermitian manifolds onto Riemannian
manifolds as a generalization of pointwise hemi-slant submersions and pointwise semi-
slant submersions and specially, we study such submersions from Ké&hler manifolds
onto Riemannian manifolds. We explore the geometry of leaves of distribution which
are involved in the discussed submersions and furnished with a characterization theorem
for pointwise quasi bi-slant submersions to be totally umbilical fibers.

Keywords: Pointwise Riemannian submersions, Pointwise semi-invariant submersions,
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1. Introductions

The theory of smooth maps between Riemannian manifolds has been widely
studied in Riemannian geometry. This theory has several important applications in
both mathematics and physics.

Let N; be a Riemannian manifold endowed with a Riemannian metric gy, .
An almost Hermitian manifold is a subclass of almost complex manifold. Since
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the Riemannian submersions have many applications [4] in science and technology,
especially in the theory of relativity, robotics and cosmology, therefore it attracts
many researchers to do the research in this area.

The theory of Riemannian submersion was initiated and studied by O’ Neill [16]
and Gray [9] in 1966 — 67, respectively. The theory of Riemannian submersions
motivates the researchers to define and study the various types of Riemannian
submersions. Watson [30] firstly defined an almost complex type of Riemannian
submersions and studied almost Hermitian submersions between almost Hermitian
manifolds. In 1985, a new class of Riemannian submersions (almost contact metric
submersions) was discussed by D. Chinea [5] which was an extension of almost
Hermitian submersion.

B. Sahin introduced the notion of semi-invariant submersions [21] which was
a generalization of holomorphic submersions and anti-invariant submersions [20].
Additionally, he also defined slant submersions from almost Hermitian manifolds
onto arbitrary Riemannian manifolds [22]. Many geometers studied different types
of Riemannian submersions between Riemannian manifolds and found good results
in ([3], [8], [10], [11], [18], [19], [23], [28]). In 2013, Park and Prasad [17] defined
semi-slant submersions and in 2016, Tastan et al. [29] defined hemi-slant Rieman-
nian submersions from almost Hermitian manifolds onto Riemannian manifolds.
Hemi-slant Riemannian submersions from cosymplectic manifolds are also studied
in [14]. Akyol and others defined conformal anti-invariant submersions [1] and semi-
invariant £+ Riemannian submersions [2] in 2016 — 17.

The notion of pointwise slant submersions was introduced by Lee et al. [15] in
2014 and further studied by S. Kumar et al. ([12], [13]) between different Rieman-
nian manifolds in 2017 — 18. Recently, Sepet et al. introduced pointwise slant sub-
mersions [27] and pointwise semi-slant submersions [26] and on the other hand, C.
Sayer et al. introduced pointwise semi-slant submersions [24] whose total manifolds
are locally product Riemannian manifolds and Generic submersions from Kaehler
manifolds [25] . The above studies inspire us to introduce the notion of PQBS sub-
mersions from the almost Hermitian manifolds to the Riemannian manifolds and
characterize their geometrical properties. We exhibit our work as follows: after
introduction, in the second section, we mention some definitions and properties
related to the main topic. The third section deals with the definition of PQBS
submersions and some results satisfied by a PQBS submersion. The necessary and
sufficient conditions for PQBS submersions to be integrable and totally geodesic
are given in the fourth section. Finally, the last section is concerned with some
non-trivial examples of PQBS submersion from an almost Hermitian manifold.

2. Preliminaries

[31] An even-dimensional differentiable manifold N7 with a (1,1) tensor field .J
in such a manner

(2.1) J? =1,

(where T is identity operator) is called an an almost complex manifold with an
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almost complex structure J. It is well known that an almost complex manifold is
necessarily orientable. Nijenhuis tensor N of an almost complex structure is defined
as:

N(Vi, Vo) = [JVi, JVo] = [V, Vo] = J[JV1, Vo] = J[Vi, JVa), for all Vi, Va € I'(T'Ny).

If the Nijenhuis tensor field NV on an almost complex manifold Ny is zero, then the
almost complex manifold N; is called a complex manifold.

Let gy, be a Riemannian metric on Nj such that

(22) gnN, (JZl,JZQ) =4gnN, (Zl,Zg)7 fO’I’ all Zl7Z2 S F(TNl)

Then gp, is called an almost Hermitian metric on N; and manifold N; with
Hermitian metric gy, is called almost Hermitian manifold. The Riemannian con-
nection V of the almost Hermitian manifold N7 can be extended to the whole tensor
algebra on Nj. Tensor fields (Vz, J) are defined as

(Vg J)Zy =N g, JZoy — IV 2,23,

for all Zy,Zs € T(T'Ny).
An almost Hermitian manifold (N, gn,,J) is called a Kahler manifold if

(2.3) (Vz,J) 22 =0,

for all Zy,Zs € T(T'Ny) ([6],[7]).

Let (N1,gn,) and (N2, gn,) be Riemannian manifolds, where gy, and gy, are
Riemannian metrics on C*°-manifolds N7 and Ns respectively. Let F : (N1,gn,) —
(N2, gn,) be a Riemannian submersions.

Define O’Neill’s tensors 7 and A by
(2.4) AgF = HVygVF + VVyeHF,
(2.5) TeF = HVyeVF + VVyEHF,

for any vector fields E, F' on Ny, where V is the Levi-Civita connection of gy, . It
is easy to see that Tp and Ag are skew-symmetric operators on the tangent bundle
of N; reversing the vertical and the horizontal distributions.

From equations (2.4) and (2.5), we have

(2.6) Vg, 2y =Tz,Z2+VV gz Zs,

(2.7) Vz, X1 =Tz X1+HVz Xy,
(2.8) Vx, 21 =Ax,Z1+VVx, 2y,
(2.9) Vx, Xo =HVx, Xo+ Ax, X,

for 21,7, € T'(kerf,) and X;,Xy € I(ker f.)*, where HVz X, = Ax, 7y, if
X1 is basic. It is not difficult to observe that 7 acts on the fibers as the second
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fundamental form, while A acts on the horizontal distribution and measures the
obstruction to the integrability of this distribution [4].

We recall that the notation of the second fundamental form of a map between
two Riemannian manifolds. Let (Ny, gn,) and (N2, gn,) be Riemannian manifolds
and F : (N1,gn,) = (N2, gn,) be a C* map, then the second fundamental form of
F is given by
(2.10) (VF)(Y1,Y2) = Vi, Fu(Ya) = Fo(Vy, Ya),
for Y1,Ys € T(TNy), where VF is the pullback connection and we denote for con-
venience by V the Riemannian connections of the metrics gy, and gn,.

Finally, we also recall that a differentiable map F between two Riemannian
manifolds is totally geodesic if

(2.11) (VF ) (Y1, Ys) =0, for all Y1,Ys € T(TNy).
Now, we can easily prove the following lemma as in [26].

Lemma 2.1. Let (N1, gn,) and (N2, gn,) are Riemannian manifolds. If F : Ny —
N5 be a Riemannian submersion, then for any horizontal vector fields W1, Wy and
vertical vector fields Z1, Zs, we have

(@) (VF &) (W1, Wy) =0,
(@) (VF)(Z1,Z2) = —F «(T2,22) = —F «(V2,22),
(@ii) (VF ) (W1, Z1) = —F «(Vw, Z1) = —F «(Aw, Z1).

3. PQBS Submersions

Definition 3.1. Let (N1, gn,,J) be an almost Hermitian manifold and (Na, gn,)
be a Riemannian manifold. A Riemannian submersion F : (N1, gn,,J) = (N2, gn,)
is called a PQBS submersion if there exists three mutually orthogonal distributions
D, Dy and D5 such that

(i) ker f « = D @& Dy @ Do,

(#4) J(D) = D i.e., D is invariant,

(iéi) J(D1) L Do,

(iv) for any non-zero vector field Y1 € (D1),, p € N1, the angle 61 between JY;
and (D7), is a slant function and is independent of the choice of point p and Y7 in

(Dl)IH

(v) for any non-zero vector field Y> € (Ds)y, ¢ € N1, the angle 65 between JY,
and (D2), is a slant function and is independent of the choice of point ¢ and Y5 in
(D 2)117

These angles 61 and 6, are called slant functions of the pointwise quasi-bi-slant
submersion.
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Let F be pointwise quasi bi-slant submersion from an almost Hermitian manifold
(N1, 9N, J) onto a Riemannian manifold (Na, gn,). Then, we have

(3.1) TN, =ker [, @ (ker f,)".

Now, for any vector field Z; € I'(ker F ), we put
(3.2) Zy=PZ1 +QZ1 + RZy,

where P, and R are projection morphisms of ker f , onto D, Dy and Ds, respec-
tively.

For Y7 € (Tker F ), we set

(33) JY1 = ¢Y1 + WY,

where ¢Y; € (Tker f ) and wY; € (Cker F )L
From equations (3.2) and (3.3), we have

JZy = J(PZy)+ J(QZy)+ J(RZy),
= ¢(PZ1)+w(PZ1)+ ¢(QZ1) +w(QZ1) + ¢(RZ1) + w(RZy).

Since JD = D, we get wPZ; = 0.

Hence above equation reduces to
(3.4) JZy = ¢(PZ1) + dQZ1 + wQZy + ¢RZy + wRZ;.
Thus, we have the following decomposition
(3.5) Jker F ) =D & (¢pD1 & ¢D3) & (wD1 G wDy),

where & denotes orthogonal direct sum.
Further, let Z; € I'(D4) and Z; € T'(Ds). Then, gn,(Z1, Z2) = 0.

From definition (3.1), we have
gNl(JZh ZQ) =gnN, (Zla JZQ) =0.

Now, consider

N, (921, 22) = gn,(JZ1 —wZy, Zs),
= gn(JZ1, Z),
0.

Similarly, we have

an, (Z1,0Z5) = 0.
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Let X; € I'(D) and X, € I'(D1). Then we have

N, (X2, X1) = gn, (J X2 —wXs, X1),
= gN1(JX27X1)a
= _g(X27JX1)7
0,

as D is invariant i.e., JX; € T'(D).
Similarly, for Y1 € I'(D) and Y, € I'(Ds), we obtain

gN, (¢}/2a Yl) =0.

From above equations, we have gy, (¢Y1, ¢Y2) = 0, and gn, (wY1,wYs) = 0, for
all Y7 € F(Dl) and Ys € F(DQ)

So, we can write
oD N @Dy = {0},OJD1 NwDy = {0}

If ; = 5, then ¢R = 0 and D, is anti-invariant, i.e., J(Ds) C (ker F.)*. In this
case we denote Dy by D+,

We also have
(3.6) J(kerf,)=D®¢D, ®wD, ® JD*.

Since wD; C (ker F ,)*, wDy C (ker f ,)*. So we can write
(ker F*)J‘ =wD1 ®wDy BV,

where V is an orthogonal complement of (wD; @ wDs) in (ker f ,)*+.

Also for any non-zero vector field V; € I'(ker f )", we have

(3.7) JVi =BV +CWp,
where BV} € D'(ker f ) and CV; € ['(ker F,)*.

Lemma 3.1. Let F be a PQBS submersion from an almost Hermitian manifold
(N1,9n,,J) onto a Riemannian manifold (N2, gn,). Then, we have

$?Z) + BwZ, = —Z1,wpZ, + CwZ; =0,

wBU, + C?U, = —U,, $BU, + BCU, = 0,

for all Z; € T'(ker f ) and U € T'(ker [ ).
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Proof. Using equations (2.1), (3.3) and (3.7), we have Lemma 3.1. O

Lemma 3.2. Let F be a PQBS submersion from an almost Hermitian manifold
(N1,9n,,J) onto a Riemannian manifold (Na, gn,). Then, we have

(i) ¢*Zy = —(cos® 01)Z;

(i) gn, (0Z1, 0 Z2) = (cos® O1)gn, (21, Z2),
(ii1) gn, (WZ1,wZs) = (sin® 01)gn, (Z1, Zo),
for all Z1, Z, € T(Dy).

Proof. (i) Let F be a PQBS submersion from an almost Hermitian manifold (N1, gy, , J)
onto a Riemannian manifold (N, gy) with the quasi bi-slant function 6;. Then for
a non-vanishing vector field Z; € T'(D;), we have

| 921 |
| JZ1 |

(3.8) cosby =

and

cosfr — an (JZ1,0Z4)
AN

By using equation (3.3), we have

cos ) — gN1(¢Zl7¢Zl)
YT IZ | 92 |

9N, (Z1,¢°Z1)
3.9 cosby = —T—————
(39 AR
From equations (3.8) and (3.9), we get

#*Zy = —(cos? 01) 71, forZ, € T(Dy).
(i4) For all Z1, Zs € T'(Dy), using equations (3.3) and Lemma 3(i), we have

gN, (@21, 072) = gn (@21 +wZy, ¢ Zs),
—9gN, (Zla ¢QZ2)7
= cos? O19n,(Z1, Z3).

(7i1) Using equations (3.3) and Lemma 3(¢), (i¢), we have Lemma 3(4i7). O

In a similar way to above, we obtain the following Lemma:
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Lemma 3.3. Let F be a PQBS submersion from an almost Hermitian manifold
(N1,9n,,J) onto a Riemannian manifold (N2, gn,). Then, we have

(i) ¢* X1 = —(cos? 62) X,

(i1) gn, (¢X1,¢X2) = (cos® O2)gn, (X1, X2),
(ii1) gn, (wX1,wX32) = (sin? 6) g, (X1, X2),
for all X, X € T'(D5).

Lemma 3.4. Let [ be a PQBS submersion from a Kdhler manifold (N1, gn,,J)
onto a Riemannian manifold (N2, gn,). Then, we have

(3.10) VV 2, 0Vi + Tz,wVi = ¢VV 2, Vi + BTz, WA,

(3.11) T, dVi + HV 7,0Vi = wVV 2, Vi + CTz, VA,

(3.12) VVy, BY; + Ay, CYs = ¢ Ay, Ya + BHVy, Yz,
(3.13) Ay, BY; + HVy, CYs = wAy,Ys + CHVy, Ya,
(3.14) VV 2, BY + T2,CYy = ¢T7, Y1 + BHV 2,1,
(3.15) T2, BY: + HV 2,0V, = w7y, Vi + CHV 2, Y1,
(3.16) VVy, 07y + Ay,wZy = $VVy, Z1 + BAy, 71,
(3.17) Ay, 671 + HVy,wZy = wVVy, Z1 + C Ay, 73

for any Z;,V; € D(ker F ) and Yy, Ys € T(ker f,)*.
Proof. Using equations (2.6)-(2.9), (3.3) and (3.7), we get equations (3.10)-(3.17). O

Now, we define

(3.18) (Vz,0)V1 =VV z,0Vi — pVV 7, V1,
(3.19) (V2,0)Vi = HV 7,wVi — wVV 2, Vi,
(3.20) (Vy,C)Ya = HVy, CYs — CHVy, Ya,
(3.21) (Vy, B)Yz = YWy, BYs — BHVy, Ya,

for any Z;,V; € D(ker F ) and Yy, Ys € T(ker £ ,)*.

Lemma 3.5. Let [ be a PQBS submersion from a Kdhler manifold (N1, gn,,J)
onto a Riemannian manifold (N2, gn,). Then, we have

(Vz,0)Vi = BTz, Vi — Tz,wVi,
(Vz,w)Vi = CTz, Vi — Tz, 0V,
(Vyl C)Y2 = wAleg - AleYQ,

(VY1 B)YQ = ¢AY1Y2 - 'AY1 OYQa
for any vectors Zy,Vy € T'(ker F,) and Y1,Ys € T'(ker F,)*.
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Proof. Using equations (3.10)-(3.13) and (3.18)-(3.21), we get all equations of Lemma
3.5. O

If the tensors ¢ and w are parallel with respect to the linear connection V on
N1, respectively, then

B'TZ1 V1 = TZIth C’7'ZIV1 — TZl ¢Vl

for any Z1,V; € T'(T'Ny).

Theorem 3.1. Let [ be a pointwise proper quasi bi-slant submersion from a
Kahler manifold (N1, gn,,J) onto a Riemannian manifold (Na2,gn,). Then, the
invariant distribution D is integrable if and only if

(cos? 01)gn, ([Ur, U], QW1) + (cos® O2)gn, (U1, Ua], RW1)
= gn (T, Uz — Tu, Ur, wpQW1 + woRWh ) + gn, (Tu, JUL — To, JUz,wWh),

for Uy, Uy € T(D), and Wy € T'(Dy @ D).

Proof. For Uy,Us € T(D), and Wy € T'(D1®D5), using equations (2.2), (2.6), (3.2), (3.3)
and Lemmas 3.2 and 3.3, we have

gn, (Ur, Us], W)
= gn, (JVy,Us, JQW1 + JRWY) — gn, (JV 0, U, JQWy + JRWY),
= (cos?01)gn, (Vu, Uz, QW1) + (cos? 02)gn, (Vi Uz, RW;) —
N, (Vo Uz, wpQWy + wpRW1) — (cos® 01)gn, (Vu, U, QW7) —
(cos? 02)gn, (Vu,Ur, RWh) + gn, (Vu, Uz, wpQW, + wpRW;) +
gny Vo, JUa,wWy) = g, (Vo JUL, wW),
= (cos?61)gn, (U1, Us], QW1) + (cos? 02)gn, ([Ur, Us], RW7) —
gn, (’TU1 U — TU2U1,W¢QW1 + w¢RW1) —
gnN, (TUzJUl — TU1 JUg,wW1>,

which completes the proof. [

Theorem 3.2. Let [ be a PQBS submersion from a Kahler manifold (N1, gn,, J)

onto a Riemannian manifold (Na, gn,). Then, the slant distribution D is integrable
if and only if

N, (Tx,wdQXo — Tx,wdpQX1, Y1)
= gn (Tx,wQX2 — Tx,wQX1, JPY, + ¢RY1) +
gn, (HV x,wQX3 — HV x,wQX1, wRY1),

for all X1, X, € I'(Dy) and Y7 € T(D @ Ds).
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Proof. For X1, X5 € I'(D;y) and Y; € T'(D®Dy), using equations (2.2), (2.7), (3.2), (3.3), (3.7)

and Lemma 3.2, we have

(X1, Xo], 1)

Vx,J X2, JY1) — gn, (Vx,J X1, JY7),

Vx,0QX2, JY1) + gn, (Vx,wQX2, JY1) — gn, (Vx,0Q X1, JY1) —
an, (Vx,wQX1, JY1),

= (cos?Oh)gn, (Vx,Xo — Vx, X1,Y1) — gn, (Vx,wpQXo — Vx,wpQX1,Y:) —
gn, (Vx,wQXse — Vx,wQXy, JPY] + ¢RY7)
+9n, (Vx,wQXs — Vx,wQX;,wRY7).

gn,
= g~

gn,

Now, we have

(sin? 01)gn, ([X1, Xo], Y1)

= —gn (Tx,wpQ X — Tx,wpQ X1, Y1) +
g, (Tx,wQXo — Tx,wQX1, JPY1 4+ ¢RY1) +
gn, (HV x,wQXs — HV x,wQX1,wRY?),

which completes the proof. [

Theorem 3.3. Let F be a PQBS submersion from a Kdihler manifold (N1, gn,, J)
onto a Riemannian manifold (Na, gn,). Then, the slant distribution Dy is integrable
if and only if

gnN, (7}1W¢QZ2 - EQW¢QZ17 Wl)
= g~ (TzleZQ — TZszZl, JPW; + ¢RW1) +
gn, (HV 2,wQZo — HV z,wQZ1,wRW1),

for Z1,Z5 € T(D3) and Wy € I'(D @& Ds).

Theorem 3.4. Let F be a PQBS submersion from a Kdihler manifold (N1, gn,, J)
onto a Riemannian manifold (Na, gn,). Then the horizontal distribution (ker F )
defines a totally geodesic foliation on Ny if and only if

gNl([Ula W1], Uz)
= gn,(VVw, PUL,Us) + gn, (Aw,wopPU,, Us) —
(cos? 01)gn, (VVw, QU1, Us) + sin 20, W1[01]gn, (QU, Us) +
gn, (Aw,wpQU,, Us) — (cos? 02)gn, (VVw, RU, Us) +
sin 26, W1 [01]gn, (QU1, Us) + gn, (Aw,wdRU1, Usy) —
gn, (HVw,wUr,wUs) — gn, (Aw,wRUy, ¢Us),

for Uy, Uy € T(ker [ ) and Wy € (ker F,)*.
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Proof. For Uy,Us € T'(ker F ) and Wi € (ker f )+, using equations (2.2), (2.6), (2.9), (3.2), (3.3)
and Lemmas 3.2 and 3.3 we have
gn, (Vu, Uz, Wh)
= —gn (Vu, W1, Us),
—gn, ([Ur, W1],Uz2) = gn, (Vw, U1, Uz),
= —gn, ([U1, W1],U2) — gn, (Vw, PU1, JUs) — (cos® 1) gn, (Vw, QU1, Us) +
sin 26, W1 [01]gn, (QU1, Us) + gn, (Vw,wdQU1, Us) —
gn, (Vi wQUy, JUs) — (cos? 02)gn, (Vw, RU1, Us) +
sin 261 W1 [01]gn, (QU1, Us) + gn, (Vw, wpRU1, Us) —
9N, (Vw,wRUy, JUs),
= —gn ([U, W1],Uz2) + gn, (VVw, PUL, Uz) + gn, (Aw,wpPUL, Uz) —
(cos? 01)gn, (VVw, QU1, Us) + sin 20, W1[0:]gn, (QU1, Us) +
gn, (Aw,wdQUy, Us) — (cos? 02)gn, (VVw, RU1, Us) +
sin 261 W1 [01]gn, (QU1, Us) + gn, (Aw,wdRU;, Us) —
gn, (HVw,wU, wUz2) — gn, (Aw, wRU1, ¢U3).

O
Theorem 3.5. Let F be a PQBS submersion from a Kdihler manifold (N1, gn,, J)

onto a Riemannian manifold (Na,gn,). Then the vertical distribution (ker f )+
defines a totally geodesic foliation on Ny if and only if
gN, (HV x,wZy + HV x,wZ1 + HV x,wZ1, X3)
gn, (Ax,PZ; + cos? 1 Ax, QZy + cos® 03 Ax, RZ1, Xo) +
g, (HV x,wZ1,CXs) 4+ gn, (Ax,wZ1, BX3),
for X1,Xs € (ker [ )+ and Z; € (ker [ ,).
Proof. For X1, X5 € (ker F )t and Z; € (ker f ), using equations (2.2), (2.8), (2.9), (3.2), (3.3)
and Lemmas 3.2 and 3.3 we have
9N, (Vx, X2, Z1)
= —9n(Vx, 21, X2),
—gn, (Vx, JZ1, JX5),
= —gn,(Vx,PZ; +cos® 01V x,QZ; + cos® 0V x, RZ1, Xo) —
gn, (Vx,wZy,JX2) + gn, (Vx,wZ1 + Vx,wZh + Vx,wZy, Xo),
= —gn,(Ax,PZ; + cos® 01 Ax, QZy + cos® 0 Ax, RZ1, X5) —
9N, (HVXlel, CXQ) —aN; (Axlwzl, BXQ) +
gn: (HV x,wpPZy + HV x,wdQZ1 + HV x,wpRZ1, X2),
= —gn,(Ax,PZ; + cos® 1 Ax, QZy + cos® 0y Ax, RZ1, Xo) —
gn, (HV x,wZ1,CXs) — gn, (Ax,wZ1, BX5) +
InN, (Hvxlel, CXQ) + gn, (AXIle, B)(Q)7
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which completes the proof. O

Theorem 3.6. Let [ be a PQBS submersion from a Kdihler manifold (N1, gn,, J)
onto a Riemannian manifold (Na, gn,). Then, the invariant distribution D defines
a totally geodesic foliation on Ny if and only if

gn, WV, Us, (cos? 01)QY7 + (cos? 05) RY?)
= g, (To, U2, wpQY1 + woRY1) + g, (Ty, J PU2, QY1),

gn, (VVu, BYs, JPUs) = —gn, (Ty, CYa, JPU,),

for Uy,Uy € T(D),Y; € T(Dy @ D3) and Y € T'(ker F,)*.

Proof. For Uy, Uy € T(D),Y; € T(D1 @ D3) and Y € T'(ker F,)*, using equations
(2.2),(2.6),(3.2),(3.3) and Lemmas 3.2 and 3.3, we have

gn, (Vu, Uz, Y1)
= gn,(JVy, Uz, JY7),
= gn,(VVy, Us, (cos? 01)QY7 + (cos® Bo)RY;) —
gn, ('TU1 Us, wpQY7 + w¢RY1) + 9N, (TU1 JPU,, QYl).

Now, again using equations (2.2), (2.6), (2.7), (3.2), (3.7) and (3.7), we have

gn, (Vu, Uz, Ya)
= —gn,(Vu, Yo, Us),
= —gn,(Vu, JY2, JUs),
= —gn,(VVu,BY3, JPUy) — gn, (Tu, CYa, JPUy),

which completes the proof. [

Theorem 3.7. Let [ be a PQBS submersion from a Kahler manifold (N1, gn,, J)
onto a Riemannian manifold (N2, gn,). Then, the slant distribution Dy defines a
totally geodesic foliation on Ny if and only if

N, (Tx, wpQX2, Z1)
= gn (Tx,woXe, JPZ1 + ¢RZ1) + gn, (Hx, wQX2,wRZ1),

gn, ([X1, 23], X2)
= (sin 291)Z2[91}9N1 (X1, XQ) + gnN, (Azzu.Kle, X2) —
9N, (AZ2WX1a d)XZ) — g~ (HVZz)WXla WXQ))

fO’F X1, X5 € F(Dl), Z1 € F(D (5) Dg) and Zs € F(kerF*)L.
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Proof. For X1, X, € I'(Dy),Z; € T(D @ D) and Zy € T'(ker f )+, using equations
(2.2),(2.7),(3.2),(3.3) and Lemma 3.2, we have

gn, (Vx, Xo, Z7)

gnN, (VXIJAXQ7 JZl),

(cos?01)gn, (Vx,QX2, Z1) — gn, (Vx,wdQX2, Z1) +

+gn, (Vx,wdXo, JPZ1 + ¢RZ1) + gn, (Vx,wQX2,wRZy).

Now, we have

Sin2 919]\[1 (VXIXQ,Zl)
= _gNl(TX1w¢QX27zl)+gN1(TX1w¢X27JPZ1 +¢RZ1)
+gn, (Hx,wQ X2, wRZy)

Next, from equations (2.2), (2.9),(3.2),(3.3) and Lemma 3.2, we have

an, (Vx, X2, Z3)

—9n, (Vx, 22, Xo),

—gn, ([X1, Z2], X2) — gn, (V 2, X1, X3),

—gn, ([ X1, Zo], X2) — (cos? 01)gn, (Vz, X1, X2) +
(sin261)Z3[01)gn, (QX1, X2) + gy (Vz,wdQ X1, Xo) —
In, (V2,wQX1, 0QX2) — gn, (V 2,wQ X1, wQX2).

Now, we have

(sin® 01)gn, (Vx, X2, Z2)
= —gn, ([X1, Z2], X2) + (5in 201) Z2[01]gn, (X1, X2) + gn, (Az,wp X1, X2) —
9N, (AZ2wX1? ¢X2) — 9N, (HVZQWX17WX2).

O

Theorem 3.8. Let f be a PQBS submersion from a Kdihler manifold (N1, gn,, J)
onto a Riemannian manifold (N2, gn,). Then, the slant distribution Do defines a
totally geodesic foliation on Ny if and only if

gnN, (TY1W¢Q)/27 Ul)
= gn, (Ty,woYs, JPUL + ¢RUY) + gn, (Hy,wQY2, wRUY),

gn ([Y1,U2], Y2)
= (Sin 291)U2 [al]gNl (Yl, }/2) + 9N, (AU2W¢Y1, Yg) —
gNl (AUngla (b}/é) - gNl (HVU2WY1,W}6),

forY1.Y5 € F(Dg),Ul S F(D@Dl) and Uy € F(kerF*)l.
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Theorem 3.9. Let F be a PQBS submersion from a Kdihler manifold (N1, gn,, J)
onto a Riemannian manifold (N2, gn,). Then, F is a totally geodesic map if and

only if

—gn, ([X1, U], X2)

= gn,(VVy, PX1,JX5) + (cos® 01)gn, VVu, QX1, Xo) —
(sin201)Up [01]gn, (QRX1, X2) — gn, (A, wopQ X1, Xa) +
cos? Oagn, (Vu, RX1, X2) — gn, (Vu,wdRX 1, X3) —
(sin 202)U1[02]gn, (RX1, X2) + g, (HVy,wRX1,CXo) +
gn, (Ay,wRX1, BX3),

gn, (Ay, PX1 + cos® 0, Ay, QX1 + cos® 0.V, RX1, Us)
= gn,(HVy,woPX) + HVy, wpQX) + HVy,wpRX1,Us) —
9N, (AUIQJXl, BUQ) —gn, (HVU1WX17 CUQ)a

for X1, Xs € T'(ker F,) and Uy, Uy € T(ker F )+

Proof. Since F is a Riemannian submersion, we have
(VF.)(U1,U2) =0,

for Uy, Uy € T(ker F )+t

For X1, X2 € T'(ker F ) and Uy, U, € T'(ker [ )+, using equations (2.2), (2.10),
(2.8),(2.9),(3.2),(3.3) and Lemmas 3.2 and 3.3, we have

gn. (VF L) (X1, X2), F«(Uh))
= —gn (Vx, X2, U1)
gn, ([X1, U], X2) + gn, (Vx, U1, X2),
= gn, ([X1,U1], X2) + gn, (Vu, PX1, JX5) + (cos® 01)gn, (Vu, QX1, Xo) —
(sin260,)U1[01]gn, (QX1, X2) — gn, (Vu,wepQX1, Xo) +
an, (V,wQX1, JX3) + cos? agn, (Vu, RX1, X3) —
gn, (Vi wopRXy, Xo) — (sin 202) U [02]gn, (RX1, X2) +
(
(

gn, Vi, wRXq, JXs),
= gy ([X1,U1], X2) + gn, (WY, PX1, JXo) + (cos? 01)gn, (VV, QX1, Xa) —
(sin201)U1[01]gn, (QX1, X2) — gn, (Ay, wdpQX 1, Xo) +
cos® agn, (Vu, RX1, X3) — g, (Vu,wpRX1, X5) —
(sin 265)U1 [02]gn, (RX1, X2) +
g, (HVu,wRX1,OX2) + gy, (Au, wRX1, BX5).

Next, using equations (2.2), (2.10), (3.2), (3.3), (3.7) and Lemma 3.2 and 3.3, we
have
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Note that given an Euclidean space R?" with coordinates (y1, ¥,
we can canonically choose an almost complex structure J on R?" as follows:

where a1, ao, ..

............

N, (VF ) (Ur, X1), F «(Uz))
—gn, (Vu, X1, Ua),
—gnN, (le ']X17 JUQ)a

- — gNl(VUIJPXl + JQXl + JRXq, UQ),
—gn, (Vu, PX1 + cos? 0, Vy, QX1 + cos® 0.V, RX1, Us) +
gn, (VU1W¢PX1 + VU1w¢QX1 + VU1W¢RX1, UQ) —

gn, (VU1WX17 JUQ)

—gn, (Ay, PX1 + cos? 01 Ay, QX1 + cos? 03V, RX1,Us) +
an, (HVy,wéP X1 + HVy,woQX, + HVy,wpRX,, Us) —
gn, (Av,wXy, BUs) — gn, (HVy,wXy, CUs).

4. Example

T2t a2+ +a 9
a 28y2 ........... Qn_layzn .
0
7&2@ + al@ F s — A2n 8y2n_1

tion, we will use this notation.

Example 4.1.

F Y1, Y1y eeeeenee ,y10) = (sinys — cos ys, Ye, Sin y7 — oS Y9, Y10),

Define a map f : R'® — R* by

which is a PQBS submersion such that

where

1o} 1o} g
X = —. X J X3 =
! By T Byt T WGy,
Xy = 8?/4 X5_cosygaa + sinyr —
ker f« =D @ Dy @ Da,
1o} 1o}
D = X = — X5 =
< X1 T 2 9y >,
9]
D1 = < Xs=cosys— +sinys—, X4 =
8 8y5
0
Dy = < Xs=cosyg— +sinyr—,X¢ = —
8 8y9

+ sinys —

0
, X6 = —
ayg

559

) y2n—1,y2n)

asy are C™ functions defined on R?". Throughout this sec-
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(ker [ .)*
= <sin ifcos —, —,siny;—— —cosyg— >
vs Oys v Jys’ Oys’ v Oyr Yo dys ~

Thus F is a PQBS submersion with slant functions ys and ys.
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