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Abstract. We proposed algorithms for object clustering based on the self-organizing
Kohonen maps using various methods of extracting factors (factor analysis: Principal
Component Analysis, Maximum Likelihood Estimation, Principal Component Analysis
based on Singular Value Decomposition) for preliminary reduction of the dimensionality
of the initial data. The proposed algorithms reduce the error rate in automatic object
grouping compared to conventional k-means models and self-organizing maps. We per-
formed experiments with different distance measures (Mahalanobis, Euclidean, squared
Euclidean, Manhattan), and various ways of neuron weight initialization (random, with
a choice of weight coefficients from a dataset). The computational experiments showed
that the used methods for extracting factors in the self-organizing maps algorithm im-
prove the accuracy of clustering in most cases. Moreover, clustering accuracy decreases
with increasing homogeneous batches in a mixed lot.
Keywords: self-organizing Maps, factor analysis, clustering algorithms.

1. Introduction

Self-Organizing Maps (SOM) [18] is a type of artificial neural network with unsu-
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pervised learning that performs the task of visualization and clustering. SOM per-
forms vector quantization by dividing the continuous input space of n-dimensional
data vectors into a reduced subset of prototype vectors organized into a regular
grid (often two-dimensional). SOM provides several advantages over other clus-
tering methods. First, it projects multidimensional data into an ordered 2D map,
which makes it easier to detect hidden patterns in the input data [18]. Secondly,
SOM preserves the topology of the data, as a result of which close elements in the
input space are usually located in close neurons of the map [18]. Thirdly, SOM
clustering has the advantage of grouping several prototypes into a cluster, which
facilitates the description of complex cluster structures [22]. These functions can
help identify hidden patterns in the data, detect similarities or dissimilarities be-
tween data groups, and visualize their natural structure, which cannot be observed
using other clustering methods.

SOM has proved to be a very powerful and successful method of analyzing data
from a wide variety of fields, such as ecology, engineering, biomedicine, etc. In
[21], an analysis of the possibilities of clustering nodes of a wireless sensor network
(BSS) using a self-organizing Kohonen map is presented. In the course of the study,
a SOM model was synthesized with parameters adequate for the clustering of BSS
nodes. As a result, it was revealed that SOM is effective for clustering BSS nodes,
it informatively describes the distribution of BSS clusters in space.

In [30], an attempt was made to structure raw building materials by radioactivity
using self-organizing Kohonen maps. As a result of training the network on data
on the specific activity of raw materials, a cluster map with segmentation by the
effective specific activity of natural radionuclides was obtained. Based on the results
obtained, conclusions are drawn about the possibility and expediency of using the
applied algorithm for the classification and analysis of data on the radioactivity of
building materials.

SOM is widely used in the field of bioinformatics. For example, SOM was used in
combination with the Markov model to characterize local phylogenetic relationships
between aligned sequences [28], where it was found that a significant part of the
genome (∼ 3%) is associated with innate genomes. SOM was also used to analyze
the correlation of genes with samples using gene expression data [9].

Other applications of SOM include the classification of medicinal/non-medicinal
products [26] and the classification of bioanalysis of sediment toxicity [7].

SOM is also used for data analysis in sociology, culture and sports. In [23], using
SOM as a method of machine learning without a teacher, based on survey data on
individuals from 66 countries, individual cultural prototypes were identified around
the world, and prototypes dominating in individual countries were also identified.
Based on the data obtained using SOM, new measures have been developed to mea-
sure cultural heterogeneity within a country, cultural differences between countries,
and cultural isolation. The results obtained in [23] have not only shown the useful-
ness of machine learning algorithms in inductive research of international business
but also have managerial significance for international marketing and management.
In the article [38], the authors proved the possibility of using Kohonen maps to
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simulate the training process of athletes.

In addition to these areas, SOM is used for data analysis, investment and financ-
ing decision-making. In conditions where decisions are made based on the analysis
of stochastic, incomplete information, the use of methods of multidimensional sta-
tistical analysis and self-organizing Kohonen maps is not only justified but also
necessary. In [4], the authors carried out neural network clustering of enterprises of
the agricultural complex, based on the analysis of the groups obtained, conclusions
were drawn about the level of their investment attractiveness of these enterprises.

In addition to the great possibilities, using SOM comes with a number of diffi-
culties and limitations that should be taken into account. First, one of the most im-
portant factors is the choice of network architecture or, in other words, the number
of neurons in its outer layer in which data elements will be projected and grouped.
Depending on this decision, the resulting map and its interpretation will vary. There
are several measures that can help determine the best clustering of SOM among dif-
ferent sizes and, therefore, the most appropriate number of neurons to use. Some of
them are: the average quantization error [18], clustering confidence indices such as
the Davies-Bouldin index (DBI) [8], the Dunn index [10] or cluster silhouette [27],
as well as topographic error [17], topographic product [3], function Kaski-Lagusa
[16] or topographic function [36]. Several models of dynamic self-organization have
been proposed in the literature to overcome the static SOM architecture, such as
”Growing Neural Gas” [11] (Growing Neural Gas, GNG), ”growing Cell Structures”
[12] (Growing Cell Structures, GCS) or ”Growing hierarchical Bregman SOM” [20]
(Growing Hierarchical Bregman SOM, GHBSOM). All these models are united by
the fact that learning begins with a small number of units and new neurons are
inserted in the learning process until the stopping criterion is met. Although the
architecture of these methods is more flexible than that of SOM, it also assumes a
larger number of parameters and a greater complexity of their configuration (i.e.,
the criterion for determining the finite number of neurons). In addition, most of
them either do not provide a two-dimensional architecture of the output layer, or, if
there is one, it is not obvious how to embed it into a two-dimensional plane. There-
fore, they cannot be used to project multidimensional data onto two-dimensional
maps.

The second issue to take into account is that SOM has a certain stochastic
component. This is caused by the random initialization of prototypes representing
neurons on the map. For this reason, it is highly recommended to run multiple
SOMs of the same size and choose the best one by some measure or criterion.

Finally, the number of clusters in the SOM does not have to be chosen a priori,
and the data elements are distributed over the neuron map. However, correctly
identifying groups of neurons corresponding to natural clusters in the input data
has always been a difficult task when using this method. Over the past few years,
many SOM clustering algorithms based on distance matrices have been proposed.
Using the distance between the SOM prototypes, the cluster centroids are identified.
Thus, the neurons that will become part of each cluster are selected through an
iterative process [35]. Some of these methods offer criteria for merging clusters,
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for example, using hierarchical clustering [37] or searching for depressions in the
distance matrix using gradient analysis [5], although some are very sensitive to
certain cluster shapes and some cr0itical SOM parameters, such as the number of
the grid node or the topology of the grid. AutoSOME [24] is another distance-based
method that applies a density equalization method to scale the SOM output lattice
and uses a minimal spanning tree approach based on graph theory to identify data
clusters and outliers. In [15], the author proposes a criterion of minimum variance
instead of minimum distance. However, when combining two clusters, the algorithm
needs to recalculate the new center, so it is adequate only when the clusters have a
hyperspherical or hyperellipsoidal shape. Another alternative is the one proposed
by Cabanes and Bennani in [6], where the data structure and segmentation are
studied simultaneously using distance and density information.

Another strategy that has produced successful results is the clustering of proto-
types. The idea is to be able to identify the true cluster of each prototype, making
it easier to find and visualize complex data structures. In [34], the authors use the
k-mean method and hierarchical clustering to accomplish this task and calculate the
DBI to select the best clustering among several partitions with different numbers of
clusters. Tasdemir and Mereni [31] follow a similar strategy. However, they propose
a new index for selecting the best number of clusters - Conn Index, which surpasses
the results of other classical confidence indices.

In addition to the above remarks, the authors in [1] showed that the SOM
learning algorithm is sensitive to the presence of noise and outliers. Due to the
influence of outliers in the learning process, some neurons of the ordered map turn
out to be far from most of the data, and therefore the network will not effectively
represent the topological structure of the data under study. In [2], a Robust SOM
(RSOM) learning algorithm was proposed, which is resistant to the presence of
outliers in the data and is resistant to these deviations.

The structure of this paper is as follows: Section 2 presents an algorithm for
automatic object grouping based on SOM using various distance measures, Section
3 describes the methods used to extract factors for preliminary reduction of the di-
mensionality of the initial data, and Section 4 presents the results of computational
experiments. Section 5 presents the conclusions.

2. SOM Algorithm

The algorithm of functioning of self-learning Kohonen maps [18] (Self Organizing
Maps, SOM) is one of the options for clustering multidimensional vectors. An
important difference of the SOM algorithm is that in it all neurons (nodes, class
centers) are ordered into some structure (usually a two-dimensional grid). At the
same time, during training, not only is the winning neuron modified, but, to a lesser
extent, its neighbors. Due to this, SOM can be considered one of the methods of
projecting a multidimensional space into a space with a lower dimension. When
using this algorithm, vectors that are similar in the original space turn out to be
next to each other on the resulting map.
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SOM implies the use of an ordered structure of neurons. One- and two-dimensi-
onal grids are usually used. In this case, each neuron is an n-dimensional vector,
where n is determined by the dimension of the original space. The use of one- and
two-dimensional grids is due to the fact that problems arise when displaying spatial
structures of higher dimensions.

Neurons are usually located in nodes of a two-dimensional grid with rectangular
or hexagonal cells. At the same time, as mentioned above, neurons also interact
with each other. The magnitude of this interaction is determined by the distance
between the neurons on the map. When implementing the SOM algorithm, the grid
configuration (rectangular or hexagonal) is preset, as well as the number of neurons
in the network.

First, SOM initializes the weights of each neuron. Then, going through the
input data for each training example, the winning neuron is determined (the weight
vector with the shortest distance (for example, Euclidean distance) from the training
example). After the winning neuron is found, the weights of the neural network are
adjusted. After training the SOM network, the trained weights are used to cluster
new examples. The new example falls into the group of winning vectors.

SOM algorithm

Step 0 Method of selection of informative features

If flag=1 then Run The methods of extracting factors, else Step 1.

Step 1 Initialization

Step 1.1 Set the initial dimension of the neuron grid. Width – width grid, height
– height grid, M – width · height, total number of neurons.

Step 1.2 Choose the topology of neurons.

Step 1.3 Randomly set the weights W = {w1, w2, . . . , wM} each neuron.

Step 1.4 Set the learning rate α0 and the radius of the neighborhood σ0. Default
α0 = 0.7,

σ0 =
max(width, height)

2
.(2.1)

Step 2 Learning algorithm

Step 2.1 Set the number of training epochs, t := 0.

Step 2.2 Select a training sample Xtrain = {x1, x2, . . . , xN}, where N is the
amount of data.

Step 2.3 Select a metric for calculating distances between neurons. Available
metrics are Euclidean Distance (EuD), Euclidean Distance Square (SEuD), Man-
hattan Distance (ManD) and Mahalanobis Distance (MahD).

Step 2.4 Calculate by the selected metric D(dNM , dNM ) – the distances between
neurons, where dN are the coordinates of the neurons.

Step 2.5 While t is less than epoch:

Step 2.5.1 Mix the training sample Xtrain.
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Step 2.5.2 If there are more elements in the training sample Xtrain, take the
input vector sequentially xi(t), otherwise, go to step 2.5.7.

Step 2.5.3 For the input vector xi(t) and the weights of the neuron wj(t) find
the winning neuron winnerc. To do this, we calculate the distance from the vector
to the neuron using formula (2.2):

winnerc = argmin(||xi(t)− wj(t)||2).(2.2)

Step 2.5.4 Let’s determine the neighbors for the winning neuron winnerc and
the neighborhood function hi(t). The neighborhood function hi(t) is calculated
using the formula (2.3):

hi(t) = α(t) · e−(
D(winnerc,dNM )

2σ(t)2
)
,(2.3)

where D(winnerc, dNM ) are the distance between the winning neuron and the neu-
rons.

Defining neighbors: if D(winnerc, dNM )i < σ(t), then the neuron is the neigh-
bor of the winning neuron.

Step 2.5.5 Recalculate the weights for all neurons using formula (2.4):

wj(t+ 1) = wj(t) + α(t) · hi(t) · (xi(t)− wj(t)).(2.4)

Step 2.5.6 Go to step 2.5.1.

Step 2.5.7 Calculate α(t) = α0 · e−( t
epoch ).

Step 2.5.8 Calculate σ(t) = σ0 · e−( t
epoch ).

Step 2.5.9 Shuffle the training sample Xtrain.

Step 2.5.10 t := t+ 1.

Step 3 The algorithm of SOM operation

Step 3.1 While there are still items in the test sample Xtest = {x1, x2, . . . , xN},
where N is the amount of data, select sequentially xi, otherwise, terminate the
algorithm.

Step 3.2 For the input vector xi and the weights of the neuron wj find the
winning neuron winnerc. To do this, we calculate the distance from the vector to
the neuron using formula (2.2).

Step 3.3 Refer xi to the cluster corresponding to the neuron winnerc.

Step 3.4 Go to step 3.1.

3. Methods of Extracting Factors

When solving the tasks of the automatic grouping of objects, one has to deal with
the data of a fairly large dimension-up to several thousand signs. Moreover, some
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Fig. 3.1: An example of correlation between some characteristics of industrial
products (Microchips 1526IE10 002) [29]

of these features are uninformative, and their inclusion in the automatic grouping
model only worsens the accuracy of solving the problem. There are often obvious
correlation dependencies between some of the characteristics (Figure 3.1).

The methods of extracting of factors can reduce the dimension of data by using
these dependencies. Our approach based on SOM in combination with the selection
of informative features will improve the accuracy of the solution for the problem
of automatic object grouping. In our work to reduce the dimension of the data,
we used Factor Analysis (Principal Component Analysis [25], Maximum Likelihood
Estimation [33, 13]) and Principal Components Analysis based on Singular Value
Decomposition [19].

Factor Analysis (Principal Component Analysis). The method of factor analy-
sis, which is used to highlight the most important factors from a large number of
variables. It is based on the search for linear combinations of variables that explain
the largest share of data variability. These linear combinations are called the main
components.

Factor Analysis (Maximum Likelihood Estimation). The method is aimed at
evaluating the parameters of the statistical model based on the available data. It
allows you to determine the value of the parameters that most likely corresponds
to the observed data.

Principal Components Analysis based on Singular Value Decomposition. Sin-
gular value decomposition is a way of representing any matrix as the product of
three other matrices: a left singular matrix U , a diagonal singular value matrix S,
and a right singular matrix V , where the singular values are the square roots of
the eigenvalues of the covariance matrix of the data (which is what this is for in
this case pre-centering of the data is performed), the right singular matrix V will
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correspond to the eigenvectors of the covariance matrix of the data, and the left U
will be the projection of the original data onto the principal components defined by
the matrix V . Thus, the singular value decomposition also allows us to isolate the
principal components, but without the need for calculation covariance matrix. In
addition to being more efficient, this solution is considered more numerically stable
because it does not require directly calculating the covariance matrix, which can be
poorly conditioned in the case of strong feature correlation.

4. Computational Experiments

For the experiments, we considered the sample of industrial products (Mi-
crochips 1526IE10 002) [29] and Synthetic (artificial) datasets (with cluster labels)
[14].

Microchips are set of results of test effects on electrical and radio products (ERI)
for monitoring the current-voltage characteristics of input and output circuits of
microcircuits (3987 data points, 67 dimensions, 7 clusters). Various combinations
of batches were considered: full mixed lot (3987 data points, 67 dimensions, 7
clusters), four-batch mixed lot (446 data points, 62 dimensions, 4 clusters), three-
batch mixed lot (300 data points, 41 dimensions, 3 clusters) and two-batch mixed
lot (187 data points, 41 dimensions, 2 clusters). The complexity of the sample
consists in the fact that the number of parameters in it is quite large in relation to
the number of sample elements.

Various synthetic (artificial) datasets were considered: cure-t0-2000n-2D (2000
data points, 2 dimensions, 3 clusters) (Figure 4.1a), ds4c2sc8 (486 data points, 2
dimensions, 8 clusters) (Figure 4.1b), jain (373 data points, 2 dimensions, 2 clusters)
(Figure 4.1c), sizes4 (1000 data points, 2 dimensions, 4 clusters) (Figure 4.1d),
triangle1 (1000 data points, 2 dimensions, 4 clusters) (Figure 4.1e), zelnik3 (256
data points, 2 dimensions, 3 clusters) (Figure 4.1f).

We used various types of distance measures in the experiments: Mahalanobis
distance (MahD), Euclidean distance (Eud), Square Euclidean distance (SEuD), and
Manhattan distance (ManD). The choice of the method for initializing the weight
coefficients was also different: random and with a choice of weight coefficients from
the dataset (WCD). Also, various methods of reducing the dimension of data were
applied to various combinations of batches. Each experiment was run 30 times.

The algorithm was implemented in Python. The following test system was used
for computational experiments: AMD Radeon 9-7900X 12 C/24 T 4700MHz CPU,
32 GB RAM. Each experiment took an average of 10 minutes of machine time.

The initial initialization of the map was selected for each experiment: the grid
configuration is hexagonal, the number of neurons in the grid for two batches is
81 neurons (9x9), for three batches – 100 neurons (10x10), for four batches – 121
neurons (11x11). The size of the map was determined by calculating the number of
neurons based on the number of observations in the training data 5N1/2 [32].
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Fig. 4.1: Synthetic datasets

4.1. SOM and the choice of the method for initializing the weight
coefficients

In this section, we compare the results of the experiment performed with k-
means and SOM algorithm with the choice of the method for initializing the weight
coefficients. Experiments with initial random initialization of weight coefficients is
marked as SOM (random). Experiments with a choice of weight coefficients from
the dataset (WCD) is marked as SOM (WCD).

Microchips 1526IE10 002

Computational experiments showed that the use of methods for initializing the
weight coefficients in the SOM algorithm, in most cases, improves the accuracy
of batch separation. Moreover, clustering accuracy decreases with an increasing
number of homogeneous batches in a mixed lot (Table 4.1).

For the Mahalanobis distance, the best clustering accuracy was achieved with
SOM (random) and SOM (WSD) algorithms for two batches in a mixed lot and a
full mixed lot. For a three-batch mixed lot, the clustering accuracy shows the best
result with SOM (random). For a four-batch mixed lot, the clustering accuracy
shows the best result with SOM (WSD).

For Euclidean distance (Eud), the best clustering accuracy was achieved for all
algorithms for two batches in a mixed lot. The clustering accuracy has maximal
values with the SOM (WCD) algorithm for three-batch mixed lot and four-batch
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Table 4.1: Accuracy of ERI clustering for k-means, SOM(random) and
SOM(WCD)

Algorithm MahD EuD SEuD ManD
Two-batch mixed lot
k-means 0.677 1.000 1.000 1.000
SOM (random) 1.000 1.000 1.000 1.000
SOM (WCD) 1.000 1.000 1.000 1.000
Three-batch mixed lot
k-means 0.416 0.982 0.982 0.985
SOM (random) 0.989 0.978 0.989 0.989
SOM (WCD) 0.985 0.988 0.985 0.997
Four-batch mixed lot
k-means 0.461 0.748 0.748 0.741
SOM (random) 0.978 0.978 0.970 0.978
SOM (WCD) 0.986 0.994 0.990 0.994
Full mixed lot
k-means 0.358 0.418 0.180 0.527
SOM (random) 0.476 0.369 0.452 0.514
SOM (WCD) 0.476 0.369 0.452 0.514

mixed lot. For a full mixed lot, the clustering accuracy has maximal values with
the k-means algorithm.

For Square Euclidean distance (SEuD), the best clustering accuracy was achieved
for all algorithms for two batches in a mixed lot. The clustering accuracy has max-
imal values with the SOM (random) algorithm for a three-batch mixed lot. For a
four-batch mixed lot, the clustering accuracy has maximal values with the SOM
(SWD) algorithm. For full mixed lot, the clustering accuracy has maximal values
with SOM (random) and SOM (SWD) algorithms.

For Manhattan distance (ManD), the best clustering accuracy was achieved for
all algorithms for two batches in a mixed lot. The clustering accuracy has maximal
values with the SOM (WCD) algorithm for three-batch mixed lot and four-batch
mixed lot. For a full mixed lot, the clustering accuracy has maximal values with
the k-means algorithm.

Also, for various combinations of batches, the minimum (Min), maximum (Max),
mean (Mean), standard deviation (σ), coefficient of variation (V), and span (R) of
the objective function are calculated (Table 4.2, Table 4.3).

For all distances, the coefficient of variation and span factor have minimal values
with SOM (random) algorithm (Figure 4.2 - Figure 4.4) for two, three and four
batches in a mixed lot. In the case of the full mixed lot, the coefficient of variation
and span factor have same values.

Synthetic datasets

A layer of neurons of SOM can be represented, in the form of a flexible grid,
which is stretched over the space of the input vectors. Figure 4.5 show how neurons
were distributed to the space of artificial data sets.

Computational experiment showed that the use methods for initializing the
weight coefficients in SOM algorithm, in most cases, increases the accuracy in syn-
thetic datasets (Table 4.4).
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Table 4.2: The total value of the target function after 30 launch attempts for
SOM(random) and SOM(WCD) algorithms. Microchips 1526IE10 002. MahD,

EuD

Parameter MahD MahD EuD EuD
random WCD random WCD

Two-batch mixed lot
Min 47.06 140.17 38.70 44.94
Max 52.14 154.64 40.71 50.37
Mean 49.60 146.80 39.78 47.34
σ 1.31 3.96 0.47 1.31
V 2.65 2.70 1.19 2.76
R 5.08 14.47 2.01 5.43
Three-batch mixed lot
Min 53.18 193.85 32.49 99.22
Max 66.70 245.39 34.37 105.47
Mean 58.85 212.90 33.51 102.31
σ 2.86 12.37 0.46 1.74
V 4.86 5.81 1.37 1.70
R 13.52 51.54 1.88 6.25
Four-batch mixed lot
Min 177.26 669.56 123.81 402.22
Max 214.62 837.89 130.31 423.17
Mean 193.87 748.56 126.86 412.95
σ 9.50 45.11 1.41 4.49
V 4.90 6.03 1.11 1.09
R 37.36 168.33 6.50 20.94
Full mixed lot
Min 4786.71 4786.71 1420.00 1420.00
Max 7676.67 7676.67 1525.33 1525.33
Mean 6217.95 6217.95 1457.12 1457.12
σ 771.09 771.09 23.37 23.37
V 12.40 12.40 1.60 1.60
R 2889.96 2889.96 105.33 105.3

For Mahalanobis distance (MahD), the best clustering accuracy was achieved
with SOM (WSD) algorithm for the synthetic dataset “cure-t0-2000n-2D”. For
synthetic datasets “ds4c2sc8”, “triangle1” and “sizes4”, the clustering accuracy
shows the best result with k-means. For synthetic datasets “jain” and “zelnik3”,
the clustering accuracy shows best result with SOM (random).

For Euclidean distance (Eud), the best clustering accuracy was achieved with
SOM (WSD) algorithm for the synthetic dataset “cure-t0-2000n-2D”. For synthetic
datasets “ds4c2sc8”, “sizes4” and “zelnik3”, the clustering accuracy shows the best
result with SOM (random) and SOM (SWD) algorithms. For synthetic dataset
“jain”, the clustering accuracy shows the best result with SOM (random). For the
synthetic dataset “triangle1”, the clustering accuracy shows the best result with
SOM (WCD).

For Square Euclidean distance (SEuD), the best clustering accuracy was achieved
with the SOM (random) algorithm for the synthetic dataset “cure-t0-2000n-2D”.
For synthetic datasets “ds4c2sc8”, “jain” and “zelnik3”, the clustering accuracy
shows the best result with SOM (random) and SOM (WCD) algorithms. For the
synthetic dataset “triangle1”, the clustering accuracy shows the best result with k-
means and SOM (random) algorithms. For synthetic dataset “sizes4”, the clustering
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Table 4.3: The total value of the target function after 30 launch attempts for
SOM(random) and SOM(WCD) algorithms. Microchips 1526IE10 002. SEuD,

ManD

Parameter SEuD SEuD ManD ManD
random WCD random WCD

Two-batch mixed lot
Min 38.70 40.39 39.43 42.41
Max 40.71 48.59 42.03 47.73
Mean 39.78 43.07 40.49 45.24
σ 0.47 1.73 0.60 1.30
V 1.19 4.01 1.47 2.87
R 2.01 8.20 2.60 5.32
Three-batch mixed lot
Min 33.37 49.02 32.11 74.92
Max 35.35 54.73 33.77 78.72
Mean 34.23 52.18 33.04 76.55
σ 0.42 1.66 0.41 0.97
V 1.24 3.18 1.24 1.27
R 1.98 5.71 1.66 3.81
Four-batch mixed lot
Min 124.43 194.41 122.05 307.15
Max 135.37 226.54 129.95 328.36
Mean 129.44 213.92 126.20 314.94
σ 2.22 6.78 1.79 4.63
V 1.71 3.17 1.42 1.47
R 10.94 32.13 7.90 21.21
Full mixed lot
Min 1221.51 1221.51 1316.54 1316.54
Max 1286.37 1286.37 1389.70 1389.70
Mean 1253.82 1253.82 1345.18 1345.18
σ 13.76 13.76 15.97 15.97
V 1.10 1.10 1.19 1.19
R 64.86 64.86 73.16 73.16

accuracy shows the best result with the SOM (random) algorithm.

For Manhattan distance (ManD), the best clustering accuracy was achieved
with k- the means algorithm for synthetic datasets “cure-t0-2000n-2D”, “ds4c2sc8”,
“jain”. For the synthetic dataset “sizes4”, the clustering accuracy shows the best
result with the SOM (WCD) algorithm. For the synthetic dataset “zelnik3”, the
clustering accuracy shows the best result with SOM (random). For the synthetic
dataset “triangle1”, the clustering accuracy shows best result with SOM (random)
and SOM (WCD) algorithms.

Also, for various combinations of batches, the minimum (Min), maximum (Max),
mean (Mean), standard deviation (σ), coefficient of variation (V) and span (R) of
the objective function is calculated (Table 4.5, Figure 4.6 - Figure 4.7).

For Mahalanobis distance (MAhD), SOM (WCD) algorithm gives minimal val-
ues of the coefficient of variation and span factor for synthetic datasets “cure-t0-
2000n-2D”, “sizes4”, “triangle1”. SOM (random) algorithm gives minimal values of
the coefficient of variation and span factor for synthetic datasets “ds4c2sc8”, “jain”,
“zelnik3”.

For Euclidean distance (Eud), SOM (WCD) algorithm gives minimal values of
the coefficient of variation and span factor for synthetic dataset “cure-t0-2000n-2D”.
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Fig. 4.2: Coefficient of variation (V) of the objective function value for two-batch
mixed lot, three-batch mixed lot, four-batch mixed lot, full mixed lot

Table 4.4: Accuracy of Synthetic datasets clustering for k-means, SOM(random)
and SOM(WCD)

Algorithm MahD EuD SEuD ManD
cure-t0-2000n-2D (2000 data point)
k-means 0.489 0.839 0.839 0.850
SOM (random) 0.753 0.832 0.848 0.835
SOM (WCD) 0.840 0.855 0.829 0.836
ds4c2sc8 (486 data point)
k-means 0.945 0.837 0.837 0.952
SOM (random) 0.741 0.874 0.849 0.849
SOM (WCD) 0.741 0.874 0.849 0.849
jain (373 data point)
k-means 0.917 0.917 0.917 0.912
SOM (random) 0.983 0.935 0.935 0.903
SOM (WCD) 0.928 0.930 0.935 0.900
sizes4 (1000 data point)
k-means 0.986 0.985 0.985 0.988
SOM (random) 0.903 0.989 0.991 0.985
SOM (WCD) 0.900 0.989 0.988 0.986
triangle1 (1000 data point)
k-means 0.990 0.992 0.992 0.995
SOM (random) 0.964 0.998 0.992 0.999
SOM (WCD) 0.980 1.000 0.991 0.999
zelnik3 (256 data point)
k-means 0.845 0.853 0.853 0.853
SOM (random) 0.918 0.864 0.862 0.867
SOM (WCD) 0.890 0.864 0.862 0.862

For synthetic dataset “ds4c2sc8”, SOM (random) and SOM (WCD) algorithms give
same values of coefficient of variation. SOM (random) algorithm gives minimal val-
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Fig. 4.3: The span coefficient (R) of the objective function value for two-batch
mixed lot, three-batch mixed lot, four-batch mixed lot

ues of the coefficient of variation and span factor for synthetic datasets “ds4c2sc8”,
“jain”, “size”, “triangle1”. For synthetic dataset “zelnik3”, SOM (random) al-
gorithm gives minimal values of the coefficient of variation, while SOM (WCD)
algorithm gives minimal values of the span factor.

For Square Euclidean distance (SEuD), SOM (WCD) algorithm gives minimal
values of the coefficient of variation for synthetic datasets “cure-t0-2000n-2D”,
“ds4c2sc8” “sizes4”, while SOM (random) algorithm gives minimal values of the
span factor. For synthetic dataset “jain”, SOM (random) algorithm gives mini-
mal values of the coefficient of variation, but SOM (random) and SOM (WCD)
algorithms give the same values of span factor. For synthetic datasets “triangle1”,
“zelnik”, SOM (random) algorithm gives minimal values of the coefficient of varia-
tion and the SOM (WCD) algorithm gives minimal values of the span factor.

For Manhattan distance (ManD), SOM (random) algorithm gives minimal val-
ues of the coefficient of variation and span factor for synthetic datasets “cure-t0-
2000n-2D”, “jain”, “sizes4”, “triangle1”. Also, SOM (random) and SOM (WCD)
algorithms give the same values of span factor for the synthetic dataset “jain”. For
synthetic dataset “ds4c2sc8”, SOM (WCD) algorithm gives minimal values of the
coefficient of variation, while SOM (random) and SOM (WCD) algorithms give the
same values of span factor. For synthetic dataset “zelnik3”, SOM (random) algo-
rithm gives minimal values of the coefficient of variation and SOM (WCD) algorithm
gives minimal values of the span factor.

Computational experiments showed that the coefficient of variation for any type
of mixed lot composition was higher (worse) with SOM (WCD) initialization. For
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the next computational experiments, we used SOM with the initial random initial-
ization of weight coefficients.

4.2. SOM and methods of extracting factors

In this section, we compare the results of the experiment performed with k-means
and SOM algorithm with various methods of extracting factors. Various combina-
tions of batches were subjected to factor analysis (Principal Component Analysis,
Maximum Likelihood Estimation) and Principal components analysis based on Sin-
gular Value Decomposition. Experiments with the factor analysis (Principal com-
ponent analysis) is marked as FA PA+SOM. Experiments with the factor analysis
(Maximum Likelihood Estimation) is marked as FA ML+SOM. Experiments with
the principal components analysis based on Singular Value Decomposition is marked
as PCA+SOM.

In this work, the number of factors was determined by the Kaiser criterion, and
the total proportion of variance reproduced by these factors should be at least 70%
(Figure 4.8).

Computational experiment showed that the use methods of extracting factors in
SOM algorithm, in most cases, improves the accuracy of batch separation. More-
over, clustering accuracy decreases with increasing number of homogeneous batches
in a mixed lot (Table 4.6).

For two-batch mixed lot (Figure 4.9), the best clustering accuracy was achieved
for all algorithms, except k-means with Mahalanobis distance (MahD). k-means
algorithm showed worse result for Mahalanobis distance (MahD).
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Table 4.5: The total value of the target function after 30 launch attempts for
SOM(random) and SOM(WCD) algorithms. Synthetic datasets

Parameter MahD MahD EuD EuD SEuD SEuD ManD ManD
random WCD random WCD random WCD random WCD

cure-t0-2000n-2D
Min 35.37 29.78 1.23 1.35 0.62 0.63 1.23 1.24
Max 92.46 81.49 1.60 1.61 0.68 0.69 1.40 1.52
Mean 57.25 56.30 1.32 1.43 0.65 0.65 1.31 1.41
σ 13.41 12.72 0.07 0.06 0.02 0.02 0.04 0.07
V 23.42 22.60 5.04 4.06 2.59 2.39 3.34 4.71
R 57.08 51.71 0.37 0.27 0.06 0.07 0.17 0.28
ds4c2sc8
Min 6.14 6.19 6.14 6.19 6.14 6.19 0.54 0.60
Max 15.42 16.50 15.42 16.50 15.42 16.50 0.64 0.70
Mean 10.15 10.57 10.15 10.57 10.15 10.57 0.59 0.64
σ 2.09 2.46 0.03 0.03 0.01 0.01 0.03 0.02
V 20.56 23.24 0.26 0.26 0.10 0.08 4.73 3.73
R 9.28 10.31 9.28 10.31 9.28 10.31 0.10 0.10
jain
Min 3.18 3.11 0.35 0.37 0.13 0.13 0.23 0.24
Max 6.44 7.62 0.45 0.51 0.16 0.17 0.29 0.31
Mean 4.82 5.23 0.40 0.44 0.15 0.14 0.27 0.27
σ 0.91 1.21 0.02 0.03 0.01 0.01 0.01 0.01
V 18.84 23.21 5.64 7.81 6.70 6.79 4.82 5.36
R 3.25 4.50 0.09 0.14 0.04 0.04 0.06 0.06
sizes4
Min 11.18 13.03 0.92 0.98 0.34 0.32 0.89 0.93
Max 38.16 33.18 1.12 1.25 0.42 0.42 1.11 1.23
Mean 22.87 22.91 1.00 1.09 0.37 0.35 0.98 1.05
σ 6.85 5.29 0.04 0.06 0.02 0.02 0.04 0.06
V 29.93 23.08 4.18 5.35 6.15 5.13 4.54 5.92
R 26.98 20.15 0.19 0.26 0.08 0.10 0.22 0.30
triangle1
Min 4.23 4.04 0.38 0.41 0.14 0.14 0.41 0.42
Max 44.54 28.18 0.50 0.61 0.17 0.16 0.49 0.58
Mean 13.32 11.89 0.45 0.47 0.15 0.15 0.45 0.47
σ 7.84 6.78 0.03 0.04 0.01 0.01 0.02 0.03
V 58.88 57.05 6.29 8.42 3.44 3.48 3.83 7.41
R 40.31 24.15 0.12 0.20 0.03 0.02 0.08 0.16
zelnik3
Min 53.18 4.04 32.49 0.41 33.37 0.14 32.11 0.42
Max 66.70 28.18 34.37 0.61 35.35 0.16 33.77 0.58
Mean 58.85 11.89 33.51 0.47 34.23 0.15 33.04 0.47
σ 2.86 6.78 0.46 0.04 0.42 0.01 0.41 0.03
V 4.86 57.05 1.37 8.42 1.24 3.48 1.24 7.41
R 13.52 24.15 1.88 0.20 1.98 0.02 1.66 0.16

For three-batch mixed lot (Figure 4.10), the best clustering accuracy was achieved
for SOM algorithm for Mahalanobis distance (MahD), Square Euclidean distance
(SEuD), Manhattan distance (ManD) and k-means algorithm for Euclidean distance
(Eud).

For four-batch mixed lot (Figure 4.11), the best clustering accuracy was achieved
for FA ML+SOM algorithm for all distances.

For full mixed lot (Figure 4.12), the best clustering accuracy was achieved for
SOM algorithm for Mahalanobis distance (MahD) and Square Euclidean distance
(SEuD) and FA ML+SOM algorithm for Euclidean distance (Eud) and Manhattan
distance (ManD).
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Table 4.6: Accuracy of ERI clustering in homogeneous batches

Algorithm MahD EuD SEuD ManD
Two-batch mixed lot
k-means 0.677 1 1 1
SOM 1 1 1 1
PCA+SOM 1 1 1 1
FA PA+SOM 1 1 1 1
FA ML+SOM 1 1 1 1
Three-batch mixed lot
k-means 0.416 0.982 0.982 0.985
SOM 0.989 0.978 0.989 0.989
PCA+SOM 0.985 0.979 0.973 0.981
FA PA+SOM 0.959 0.971 0.968 0.968
FA ML+SOM 0.948 0.905 0.908 0.902
Four-batch mixed lot
k-means 0.461 0.748 0.748 0.741
SOM 0.978 0.978 0.97 0.978
PCA+SOM 0.976 0.979 0.977 0.979
FA PA+SOM 0.985 0.983 0.985 0.99
FA ML+SOM 0.985 0.998 0.998 1
Full mixed lot
k-means 0.358 0.418 0.18 0.527
SOM 0.476 0.369 0.452 0.514
PCA+SOM 0.34900000 0.35100000 0.41300000 0.36700000
FA PA+SOM 0.351 0.421 0.422 0.424
FA ML+SOM 0.42 0.516 0.423 0.657

Also, for various combinations of batches, the minimum (Min), maximum (Max),
mean (Mean), standard deviation (σ), coefficient of variation (V) and span (R) of
the objective function are calculated (Table 4.7 - Table 4.10).

Table 4.7: The total value of the target function after 30 launch attempts.
Two-batch mixed lot

Parameter MahD EuD SEuD ManD
k-means
Min 1176.07 186.08 198.28 864.67
Max 1177.60 186.08 198.28 864.67
Mean 1176.8 2 186.08 198.28 864.67
σ 0.39 0.00 0.00 0.00
V 0.03 0.00 0.00 0.00
R 1.52 0.00 0.00 0.00
SOM, PCA+SOM, FA PA+SOM, FA ML+SOM
Min 47.06 38.70 39.43 39.06
Max 52.14 40.71 42.03 41.74
Mean 49.60 39.78 40.49 40.25
σ 1.31 0.47 0.60 0.73
V 2.65 1.19 1.47 1.81
R 5.08 2.01 2.60 2.68

For two-batch mixed lot, the coefficient of variation and span factor have minimal
values with k-means algorithm (Figure 4.13 - Figure 4.14) for all distances.

For three-batch mixed lot, the coefficient of variation has minimal values with
k-means algorithm (Figure 4.15) for Mahalanobis distance (MahD) and Manhattan
distance (ManD). In this case, the span factor has minimal values with FA ML+SOM
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Table 4.8: The total value of the target function after 30 launch attempts.
Three-batch mixed lot

Parameter MahD EuD SEuD ManD
k-means
Min 1872.21 241.88 227.47 1165.06
Max 1876.46 309.03 327.71 1165.06
Mean 1874.90 244.12 230.81 1165.06
σ 0.84 12.05 17.99 0.00
V 0.04 4.94 7.80 0.00
R 4.25 67.16 100.25 0.00
SOM
Min 53.18 32.49 33.37 32.11
Max 66.70 34.37 35.35 33.77
Mean 58.85 33.51 34.23 33.04
σ 2.86 0.46 0.42 0.41
V 4.86 1.37 1.24 1.24
R 13.52 1.88 1.98 1.66
PCA+SOM
Min 4.03 0.68 0.20 0.39
Max 9.05 0.93 0.37 0.53
Mean 6.68 0.78 0.24 0.45
σ 1.34 0.05 0.03 0.03
V 20.07 6.53 11.89 6.78
R 5.02 0.24 0.18 0.14
FA PA+SOM
Min 4.92 0.80 0.22 0.46
Max 10.40 1.37 0.35 0.56
Mean 7.10 0.92 0.27 0.50
σ 1.17 0.14 0.05 0.03
V 16.43 14.80 18.18 6.54
R 5.48 0.57 0.13 0.10
FA ML+SOM
Min 5.86 1.01 0.30 0.60
Max 8.78 1.33 0.45 0.80
Mean 7.47 1.15 0.37 0.68
σ 0.85 0.06 0.05 0.05
V 11.37 5.36 14.68 6.97
R 2.92 0.32 0.15 0.20

algorithm for Mahalanobis distance (MahD), PCA+SOM algorithm for Euclidean
distance (Eud), FA PA+SOM algorithm for Square Euclidean distance (SEuD) and
Manhattan distance (ManD) (Figure 4.16).

For four-batch mixed lot, the coefficient of variation has minimal values with
k-means algorithm (Figure 4.17) for Mahalanobis distance (MahD) and SOM algo-
rithm for Euclidean distance (Eud), Square Euclidean distance (SEuD) and Man-
hattan distance (ManD). In this case, the span factor has minimal values with
PCA+SOM algorithm for Mahalanobis distance (MahD), PCA+SOM, FA PA+SOM
algorithms for Euclidean distance (Eud), PCA+SOM, FA PA+SOM, FA ML+SOM
algorithms for Square Euclidean distance (SEuD) and PCA+SOM, FA ML+SOM
algorithms for Manhattan distance (ManD) (Figure 4.18).

For full mixed lot, the coefficient of variation has minimal values with k-means al-
gorithm (Figure 4.19) for Mahalanobis distance (MahD) and SOM algorithm for Eu-
clidean distance (Eud), Square Euclidean distance (SEuD) and Manhattan distance
(ManD). In this case, the span factor has minimal values with FA PA+SOM algo-
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Table 4.9: The total value of the target function after 30 launch attempts.
Four-batch mixed lot

Parameter MahD EuD SEuD ManD
k-means
Min 3355.59 554.55 791.65 2865.33
Max 3361.44 673.27 1170.43 3653.22
Mean 3359.36 569.59 841.71 2938.36
σ 1.27 35.30 112.97 219.55
V 0.04 6.20 13.42 7.47
R 5.85 118.72 378.79 787.90
SOM
Min 177.26 123.81 124.43 122.05
Max 214.62 130.31 135.37 129.95
Mean 193.87 126.86 129.44 126.20
σ 9.50 1.41 2.22 1.79
V 4.90 1.11 1.71 1.42
R 37.36 6.50 10.94 7.90
PCA+SOM
Min 7.07 1.07 0.26 0.53
Max 12.55 1.35 0.37 0.75
Mean 8.76 1.19 0.30 0.65
σ 1.35 0.06 0.04 0.06
V 15.47 5.35 12.37 8.85
R 5.49 0.28 0.11 0.22
FA PA+SOM
Min 6.37 1.09 0.27 0.55
Max 12.65 1.36 0.38 0.85
Mean 9.18 1.21 0.34 0.67
σ 1.63 0.07 0.04 0.06
V 17.74 5.81 10.97 8.34
R 6.28 0.27 0.11 0.31
FA ML+SOM
Min 8.45 1.30 0.38 0.76
Max 22.59 1.80 0.49 1.00
Mean 11.53 1.50 0.42 0.86
σ 3.13 0.12 0.03 0.06
V 27.18 7.74 7.59 6.60
R 14.14 0.50 0.11 0.23

rithm for Mahalanobis distance (MahD) and Euclidean distance (Eud), FA ML+SOM
algorithm for Square Euclidean distance (SEuD) and for Manhattan distance (ManD)
(Figure 4.20).

Figures 4.21 - 4.23 show how neurons were distributed to the space of ERI and a
visual representation of the algorithms for three-batch mixed lot, four-batch mixed
lot and full mixed lot.
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Table 4.10: The total value of the target function after 30 launch attempts. Full
mixed lot

Parameter MahD EuD SEuD ManD
k-means
Min 28605.72 2786.10 2714.11 14669.07
Max 28851.14 3146.37 3275.19 21356.05
Mean 28710.57 2851.43 2873.83 16243.14
σ 63.83 90.53 168.74 1316.66
V 0.22 3.17 5.87 8.11
R 245.42 360.27 561.08 6686.98
SOM
Min 4786.7 1 1420.00 1221.51 1316.54
Max 7676.67 1525.33 1286.37 1389.70
Mean 6217.95 1457.12 1253.82 1345.18
σ 771.09 23.37 13.76 15.97
V 12.40 1.60 1.10 1.19
R 2889.96 105.33 64.86 73.16
PCA+SOM
Min 332.41 47.95 37.22 41.12
Max 485.19 56.82 42.25 46.89
Mean 376.89 52.13 39.03 44.08
σ 29.39 1.85 1.07 1.38
V 7.80 3.55 2.74 3.12
R 152.78 8.87 5.03 5.77
FA PA+SOM
Min 336.03 45.11 34.75 38.91
Max 406.30 52.84 39.04 45.15
Mean 372.28 48.78 36.29 40.90
σ 19.26 2.28 1.04 1.32
V 5.17 4.67 2.86 3.23
R 70.27 7.72 4.29 6.24
FA ML+SOM
Min 392.72 53.64 42.39 46.82
Max 548.58 63.11 46.18 52.51
Mean 483.81 58.41 44.27 50.16
σ 35.30 1.99 0.86 1.37
V 7.30 3.41 1.94 2.73
R 155.86 9.48 3.79 5.68
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Fig. 4.5: Distribution of neurons over the space of artificial data sets
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Fig. 4.6: Coefficient of variation (V) of the objective function value for Synthetic
datasets
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Fig. 4.7: The span coefficient (R) of the objective function value for Synthetic
datasets
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Fig. 4.8: Scree plots
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Fig. 4.9: Accuracy of ERI clustering. A mixed sample consisting of two batches
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Fig. 4.10: Accuracy of ERI clustering. A mixed sample consisting of three batches
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Fig. 4.11: Accuracy of ERI clustering. A mixed sample consisting of four batches
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Fig. 4.12: Accuracy of ERI clustering. Total sample
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Fig. 4.13: Coefficient of variation (V) of the value of the objective function for
two-batch mixed lot
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Fig. 4.14: The span coefficient (R) of the value of the objective function for
two-batch mixed lot
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Fig. 4.15: Coefficient of variation (V) of the value of the objective function for
three-batch mixed lot
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Fig. 4.16: The span coefficient (R) of the value of the objective function for
three-batch mixed lot
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Fig. 4.17: Coefficient of variation (V) of the value of the objective function for
four-batch mixed lot
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Fig. 4.18: The span coefficient (R) of the value of the objective function for
four-batch mixed lot
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Fig. 4.19: Coefficient of variation (V) of the value of the objective function for full
mixed lot
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Fig. 4.20: The span coefficient (R) of the value of the objective function for full
mixed lot

Fig. 4.21: Graph of the placement of scales. Three-batch mixed lot
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Fig. 4.22: Graph of the placement of scales. Four-batch mixed lot
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Fig. 4.23: Graph of the placement of scales. Full mixed lot
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5. Conclusions

In our work, we proposed algorithms for clustering of industrial products based
on self-organizing Kohonen maps using various methods of extracting factors (factor
analysis: Principal Component Analysis, Maximum Likelihood Estimation, Princi-
pal Component Analysis based on Singular Value Decomposition). We performed
experiments with various distance measures (Mahalanobis, Euclidean, squared Eu-
clidean, Manhattan), and different ways of neuron weight initialization (random,
with a choice of weight coefficients from the dataset).

Our studies have shown that the used distance measure, in most cases, does not
significantly affect the clustering accuracy.

The way neuron weights initialization plays a role in the stability of the objective
function: the coefficient of variation for any type of mixed lot composition was
higher (worse) with SOM (WCD) initialization.

The computational experiments showed that the use of methods of extracting
factors in the SOM algorithm improves the accuracy of batch separation in most
cases. Moreover, clustering accuracy decreases with an increasing number of homo-
geneous batches in a mixed lot.
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7. E. Coz, B. Art́ıñano, A. L. Robinson, G. S. Casuccio, T. L. Lersch and S. N.
Pandis: Individual Particle Morphology and Acidity. Aerosol Science and Technology.
42(3) (2008), 224–232.

8. D. L. Davies and D. W. Bouldin: A Cluster Separation Measure. IEEE Transactions
on Pattern Analysis and Machine Intelligence. 1(2) (1979), 224–227.

9. S. C. Dinger, M. A. Van Wyk and S. Carmona: Clustering gene expression data
using a diffraction-inspired framework. BioMed Eng OnLine. 11 (2012), 85.

10. J. C. Dunn: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting
Compact Well-Separated Clusters. Journal of Cybernetics. 3 (1973), 32–57.



The Study of Objects Clustering Algorithms . . . 595

11. B. Fritzke: A Growing Neural Gas Network Learns Topologies. Neural Information
Processing Systems. 7 (1994), 625–632.

12. B. Fritzke: Growing cell structures—a self-organizing network for unsupervised and
supervised learning. Neural networks. 7(9) (1994), 1441–1460.

13. H. Harman: Modern factor analysis. The university of Chicago press, Chicago, 1967.

14. https://github.com/milaan9/Clustering-Datasets (last access: 14.06.2024).

15. S. Kaski, T. Honkela, K. Lagus and T. Kohonen: WEBSOM – Self-organizing
maps of document collections. Neurocomputing. 21(1-3) (1998), 101–117.

16. S. Kaski and K. Lagus: Comparing self-organizing maps. In: Partificial Neural Net-
works — ICANN 1996. Lecture Notes in Computer Science (C. von der Malsburg, W.
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