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Abstract. In this article, we examine dissipative singular quantum (q) Sturm–Liouville
operators (q > 1) acting in a suitable Hilbert space, where the extensions of a minimal
symmetric operator in limit-circle case (with deficiency indices (2, 2)) are presented.
We create a self-adjoint dilation of the dissipative operator along with its incoming
and outgoing spectral representations. These constructions enable us to find the scat-
tering matrix of the dilation using the Weyl–Titchmarsh function associated with a
self-adjoint q-Sturm–Liouville operator. Additionally, we establish a functional model
for the dissipative operator and derive its characteristic function using the scattering
matrix of the dilation (or the Weyl–Titchmarsh function). We prove theorems related
to the completeness of the system of eigenfunctions and associated functions (root func-
tions) for both dissipative and accumulative q-Sturm–Liouville operators.
Keywords: q-Sturm–Liouville equation, dissipative operator, self-adjoint dilation,
Weyl–Titchmarsh function, characteristic function, completeness of the root functions.

1. Introduction

Quantum calculus is analogous to traditional infinitesimal calculus, but does not
rely on the concept of limits. It has a lot of applications in several mathematical
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areas such as basic hypergeometric functions, combinatorics, fractal geometry, num-
ber theory, orthogonal polynomials, the calculus of variation, statistical physics and
theory of relativity ([1, 26, 34] and the references therein). The concept of the q-
derivative was introduced by Jackson in 1910 [20, 21]. Since then, the development
of quantum calculus gained momentum, and most of the published work has been
interested in problems of quantum calculus. Some q-analogues of definitions and
theorems from ordinary calculus have been introduced by Kac and Cheung, includ-
ing the q-derivative, q-integration, q-exponential function, q-trigonometric function,
q-Taylor formula, q-Beta and Gamma functions, Euler–Maclaurin formula, and oth-
ers [22]. Motivated by the formal research conducted by Exton [17], Annaby and
Mansour [10] managed an in-depth investigation into q-calculus. Their results are
expanded to encompass various versions of boundary value problems associated with
q-Sturm–Liouville operators [11, 13, 16, 9, 14, 23, 24, 6, 8, 19, 4, 5, 7, 12] and have
received a lot of attention in recent years.

In [11, 12], the authors developed the q-Titchmarsh–Weyl theory for singular
q-Sturm–Liouville problems. Additionally, they introduced the concepts of singu-
larities in q-limit-point and q-limit-circle cases. The q-Titchmarsh–Weyl theory is
an extension of the classical Titchmarsh–Weyl theory to the context of quantum
calculus. q-Titchmarsh–Weyl theory similarly focuses on the spectral properties of
certain self-adjoint operators and explores the behavior of these operators, includ-
ing their eigenvalues, eigenvectors, and associated spectral measures for q-Sturm–
Liouville problems. It is known that dissipative operators comprise an important
class of non-self-adjoint operators. We say that A (with dense domain D(A)) act-
ing on a Hilbert space H is dissipative if Im(Af, f) ≥ 0 for all f ∈ D(A) and A is
accumulative if Im(Af, f) ≤ 0 for all f ∈ D(A) [2, 3, 25, 30, 33, 32].

The spectral analysis of dissipative operators relies on the theory of self-adjoint
dilations and the utilization of functional models. The dilation theory given by
Sz. Nagy–Foiaş [30] and the scattering theory given by Lax–Phillips [27] are fun-
damental for constructing these functional models. Therefore, it is imperative to
incorporate the characteristic function as a crucial concept, as it plays a central
role in these theories for obtaining the spectral properties of dissipative operators.
In the papers [4, 5], the author examined dissipative singular q-Sturm–Liouville
problems for 0 < q < 1 in the limit-circle and limit-point cases by constructing self-
adjoint dilations for each dissipative operators and by using the scattering functions
of these dilations, the author gave their characteristic functions. In contrast to the
aforementioned studies on dissipative q-Sturm–Liouville operators with 0 < q < 1
[2, 3, 19, 4, 5, 8, 16], we focus on spectral problems associated with dissipative sin-
gular q-Sturm–Liouville operators in limit-circle case for q > 1 in this study. The
paper is structured as follows. Section 2 comprises some fundamental definitions
and a lemma to follow the paper. Section 3 deals with the construction of the
dissipative singular q-Sturm–Liouville operators in a suitable Hilbert space, where
the extensions of minimal symmetric operator are explored in Weyl’s limit-circle
case at singular end point ∞. We establish a self-adjoint dilation of the dissipative
operator in this section. In Section 4, we construct incoming and outgoing spec-
tral representations of the dilation which provide us to determine the scattering
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matrix of the dilation using the scheme of Lax and Phillips [27]. This determi-
nation is expressed in terms of the Weyl–Titchmarsh function associated with a
self-adjoint q-Sturm–Liouville operator. We establish a functional model for the
dissipative operator by using the incoming spectral representation and define its
characteristic function in relation to the Weyl–Titchmarsh function of a self-adjoint
q-Sturm–Liouville operator (or in terms of the scattering matrix of the self-adjoint
dilation) in this section. In conclusion, we also provide theorems on completeness
of the system of eigenfunctions and associated functions (or root functions) of the
dissipative and accumulative q-Sturm–Liouville operators in section 4 which rely on
the results derived for the characteristic function.

2. Preliminaries

In this section, we introduce some of the q-notations and we set forth some
fundamental definitions and equations needed for our subsequent discussion. We
also introduce the main problem in this section. We assume that the reader of this
paper is familiar with basic concepts of q-calculus, and for a review of the topic,
we refer to the standard notations given in [10, 13, 28]. For q ∈ R := (−∞,∞) a
set C ⊆ R is called a q-geometric set if, for every t ∈ C, qt ∈ C. If C ⊆ R is a
q-geometric set, then it contains all geometric sequences {qnt} (n = 0, 1, 2...), t ∈ C.
Let y be a real or complex-valued function defined on a q-geometric set C. The
q-difference operator is defined by

(2.1) Dqy(t) :=
y(t)− y(qt)

t(1− q)
, t ∈ C\{0}.

If 0 ∈ C, then the q-derivative of a function y at zero is defined as (0 < q < 1)

Dqy(0) := lim
n→∞

y(qnt)− y(0)

qnt
, t ∈ C,

if the limit exists and does not depend on t. It is important for us to give the defi-
nition of Dq−1 in the same manner for introducing the formulation of the extension
problems. It is given by

Dq−1y(t) :=


y(t)−y(q−1t)
t(1−q−1) , t ∈ C\{0},

Dqy(0), t = 0,

if Dqy(0) exists. It is well known that the following equations that we will use in
next sections can be found directly from the definition:

Dq−1y(t) = (Dqy)(q
−1t), D2

qy(q
−1t) = qDq[Dqy(q

−1t)] = Dq−1Dqy(t).

As a right inverse of the q-difference operator, Jackson’s q-integration is presented
[20] by ∫ t

0

y(s)dqs := t(1− q)

∞∑
n=0

qny(qnt), t ∈ C,
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if the series converges and in general, we have∫ b

a

y(s)dqs :=

∫ b

0

y(s)dqs−
∫ a

0

y(s)dqs, a, b ∈ C.

There is no unique canonical choice for the q-integration over [0,∞). Although
Matsuo defined q-integration on the interval [0,∞) by∫ b∞

0

y(s)dqs := b(1− q)

∞∑
n=−∞

qny(bqn), b > 0,

if the series converges [29], Hanh in [18] defined it for a function y on the same
interval as ∫ ∞

0

y(s)dqs := (1− q)
∞∑

n=−∞
qny(qn),

if the series converges. We say that y is q-integrable on a q-geometric set C if and

only if
∫ b∞
0

y(s)dqs exists for all t ∈ C. Let C∗ be a q-geometric set containing zero.
A function y defined on C∗ is called q-regular at zero if

lim
n→∞

y(qnt) = y(0)

satisfies for all t ∈ C∗. Functions that are q-regular at zero generate an important
class of functions because they consist of continuous functions. Because of this, we
are interested in these kinds of functions in this paper. If y and z are q-regular at
zero, there is a rule of q-integration by parts given as∫ a

0

z(t)Dqy(t)dqt = (yz)(a)− (yz)(0)−
∫ a

0

Dqz(t)y(qt)dqt

and the q-product rule is given by

Dq[y(t)z(t)] = y(qt)Dqz(t) + z(t)Dqy(t)

in [10].

Let’s denote a singular q-Sturm–Liouville expression as A

(2.2) (Af)(t) =
1

v(t)

(
−1

q
Dq−1 [w(t)Dqf(t)] + u(t)f(t)

)
, t ∈ R1+ := [1,∞),

where v, w and u are real-valued functions defined on R1+ such that w(t) ̸= 0,
v(t) > 0 for all t ∈ R1+, q > 1 as well as Dq is the q-difference operator defined
in (2.1). Throughout the paper, we will consider the operators related to (2.2)
by introducing the Hilbert space L2

v,q(R1+) which consists of all complex-valued
functions satisfying ∫ ∞

1

v(t) |f(t)|2 dqt <∞, f : R1+ → C
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and with the inner product

(f, g) =

∫ ∞

1

v(t)f(t)g(t)dqt, f, g : R1+ → C,

where v(t) > 0 for all t ∈ R1+.

Let Dmax denote a linear set of all functions f ∈ L2
v,q(R1+) such that Af ∈

L2
v,q(R1+). The maximal operator Qmax on Dmax is defined by Qmax f = Af. For

each f, g ∈ Dmax, the q-Wronski determinant (or q-Wronskian) is defined by

Wq[f, g](t) = f(t)Dqg(t)−Dqf(t)g(t), t ∈ R1+.

To get the results that we aimed for, we must present an essential definition which
is called q-Green’s formula (or q-Lagrange’s identity) [10, 13, 11] given by

(2.3)

∫ t

1

(Af)(s)g(s)dqs−
∫ t

1

f(s)(Ag)(s)dqs = [f, g] (t)− [f, g] (1), t ∈ R1+,

for arbitrary f, g ∈ Dmax, here [f, g](t) denotes the q-Lagrange bracket and written
by

[f, g] (t) := w(t)[f(t)Dq−1g(t)−Dq−1f(t)g(t)], t ∈ R1+.

It is readily apparent from (2.3) that

[f, g] (∞) := lim
t→∞

[f, g] (t)

exists and is finite for all f, g ∈ Dmax. Let us assume that Dmin is the linear dense
set in L2

v,q(R1+) of all vectors f ∈ Dmax satisfying the conditions

(2.4) f (1) = (wDq−1f) (1) = 0, [f, g] (∞) = 0,

for arbitrary g ∈ Dmax. Please note that the restriction of the operator Qmax to
Dmin is referred to as the minimal operator and is represented by Qmin. It is a
closed symmetric operator with deficiency indices (2, 2) or (1, 1) and is symmetric
from (2.4). Furthermore, the equality Qmax = Q∗

min holds [5, 10, 11, 15, 12, 31]. We
assume that Weyl’s limit-circle case satisfies the expression A, that is the symmetric
operator Qmin has deficiency indices (2, 2) in this study ([5, 10, 11, 15, 12, 31]). Let
us refer to τ and ϕ as the real-valued solutions of the equation Af = 0 with the
following initial conditions for t ∈ R1+.

(2.5) τ(1) = 1, (wDq−1τ) (1) = 0, ϕ(1) = 0, (wDq−1ϕ) (1) = 1.

The Wronskian of the two solutions of the equation Af = 0 is independent of t,
and the two solutions of this equation are linearly independent if and only if their
Wronskian is non-zero [10, 12, 13]. From conditions (2.5) and the constancy of the
Wronskian, we can deduce that

Wq[τ, ϕ](t) = Wq[τ, ϕ](t) = 1, t ∈ R1+.

It gives that τ and ϕ form a fundamental system of solutions of the equation Af = 0.
Given that Qmin has deficiency indices (2, 2), both τ and ϕ are in L2

v,q(R1+), and
moreover, they are in Dmax.
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Lemma 2.1. For any arbitrary functions f, g ∈ Dmax, the following equality (the
Plücker identity) holds true

(2.6) [f, g] (t) = [f, τ ] (t) [g, ϕ] (t)− [f, ϕ] (t) [g, τ ] (t), t ∈ R1+∪{∞}.

Proof. We know that the functions τ and ϕ are real-valued functions and [τ, ϕ] (t) =
1 (t ∈ R1+∪{∞}) , by considering these properties, we obtain

[f, τ ] (t) [g, ϕ] (t)− [f, ϕ] (t) [g, τ ] (t)

= r(q−1t)(fDq−1τ −Dq−1fτ)(t)r(q−1t)(gDq−1ϕ−Dq−1gϕ)(t)

−r(q−1t)(fDq−1ϕ−Dq−1fϕ)(t)r(t)(gDq−1τ −Dq−1gτ)(t)

= (r(q−1t))2(fDq−1τgDq−1ϕ− fDq−1τDq−1gϕ−Dq−1fτgDq−1ϕ

+Dq−1fτDq−1gϕ− fDq−1ϕgDq−1τ + fDq−1ϕDq−1gτ

+Dq−1fϕgDq−1τ −Dq−1fϕDq−1gτ)(t)

= r(q−1t)(−fDq−1g +Dq−1fg)(t)r(q−1t)(Dq−1τϕ− τDq−1ϕ)(t) = [f, g] (t).

It gives the proof of Lemma 2.1.

Now, we will give brief information about Lax–Phillips method [27]. Because
it is necessary for us to establish functional model and to examine the scattering
properties of the dilation in the last section. The Lax–Phillips method is an im-
portant result in functional analysis for the study of existence and uniqueness of
solutions in functional spaces. Let Θ(λ) be an arbitrary non-constant inner func-
tion ([2, 3, 25, 30, 33]) defined on the upper half-plane (we recall that a function
Θ analytic in the upper half-plane C+ is called inner function on C+ if |Θ(λ)| ≤ 1
for λ ∈ C+, and |Θ(λ)| = 1 for almost all λ ∈ R). The symbols H2

± refer to the
Hardy classes [30, 33] in L2(R) consisting of the functions analytically extendable
to the upper and lower half-planes, respectively. Here L2(R) is the Hilbert space
consisting of all complex-valued functions f such that∫ ∞

−∞
|f(t)|2 dt <∞.

Let us consider the nontrivial subspace N = H2
+⊖ΘH2

+. Then N ̸= 0 is a subspace
of the Hilbert space H2

+. We consider the semigroup of the operators X (s) (s ≥ 0),
X (s)τ = P

[
eiλsτ

]
, τ := τ(λ) ∈ N , where P is the orthogonal projection from H2

+

onto N , acts in the subspace N . The generator of the semigroup {X (s)} is denoted
by Q :

Qτ = lim
s→+0

[(is)−1(X (s)τ − τ)],

which is a dissipative operator acting in N with domain D(Q) which consists of
all functions τ ∈ N such that the limit exists. The operator Q is called a model
dissipative operator. This model dissipative operator, which is associated with the
names of Lax and Phillips [27], is a special case of a more general model dissipative
operator constructed by Sz.-Nagy and Foiaş [30]. The basic assertion is that Θ is
the characteristic function of the operator Q [2, 3, 25, 30, 33, 32].
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3. Dissipative q-Sturm–Liouville operator and its self-adjoint dilation

In this section, we deal with a q-dissipative operator and obtain self-adjoint
dilation of the dissipative operator. Let’s examine the operator Qαβ , defined over
D(Qαβ), comprising vectors y ∈ Dmax which satisfy the boundary conditions

(3.1) (wDq−1)y (1)− αy (1) = 0, α ∈ C,

(3.2) [y, τ ](∞)− β[y, ϕ](∞) = 0, Imβ = 0 or β = ∞.

It is clear that condition (3.2) becomes [y, ϕ](∞) = 0 whenever β = ∞.

Theorem 3.1. The operator Qαβ is dissipative in L2
v,q(R1+) whenever Imα ≥ 0,

Imβ = 0 or β = ∞.

Proof. Assume that y ∈ D(Qαβ) is arbitrary, then we write

(3.3) (Qαβy, y)− (y,Qαβy) = [y, y](∞)− [y, y](1).

It follows from Lemma (2.1) and condition (3.2) that

(3.4) [y, y](∞) = 0.

On the other hand, we get from the condition (3.1) that

(3.5) [y, y](0) = −2i Imα |y(1)|2 .

For the next step, we obtain

(3.6) Im(Qαβy, y) = Imα |y (1)|2 ≥ 0 for Imα ≥ 0,

by considering (3.4) and (3.5) in (3.3). It completes the proof by the definition of
dissipative operator. Note that, we come through from (3.6) that all eigenvalues of
dissipative operator Qαβ lie in the closed upper half plane.

Theorem 3.2. The dissipative operator Qαβ does not have any real eigenvalue
whenever Imα > 0, Imβ = 0 or β = ∞.

Proof. Assume that λ1 is a real eigenvalue of the operator Qαβ and y1(t) :=
y(t, λ1) is the eigenfunction of the Qαβ corresponding to the eigenvalue λ1. Since

(Qαβy1, y1) = λ1 ∥y1∥2, we write

Imα |y1 (1)|2 = Imλ1 ∥y1∥2 = 0

and y1 (1) = 0 by using (3.6). It gives (wDq−1)y1 (1) = 0 from the boundary
condition (3.1) and it follows from the uniqueness theorem of the Cauchy problem
for the equation Ay = λy, t ∈ R1+, that y1(t) ≡ 0. It completes the proof.
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It is pleasant that the equality (3.6) also presents that the operator Qαβ becomes
an accumulative (self-adjoint) operator in L2

v,q(R1+) if Imα ≤ 0, Imβ = 0 or β =
∞, (Imα = 0 or α = ∞, Imβ = 0 or β = ∞). In the case where α = ∞, the
condition (3.1) should be altered to y(1) = 0. As a result of this, we present the
following theorem which is analogous to the Theorem 3.2.

Corollary 3.1. If Imα < 0, Imβ = 0 or β = ∞, then the accumulative operator
Qαβ has no real eigenvalues.

For the next step of this section, we investigate the dissipative operators Qαβ

(Imα > 0, Imβ = 0 or β = ∞) generated by the expression (2.2) and the bound-
ary conditions (3.1) and (3.2). We consider the Hilbert spaces denoted as L2(R1−)
(R1− := (−∞, 1]) and L2(R1+) (R1+ := [1,∞]) comprising all functions ρ− and ρ+,
respectively, satisfying∫ 1

−∞
|ρ−(t)|2 dt <∞,

∫ ∞

1

|ρ+(t)|2 dt <∞

with the inner product

(ρ−, γ−)L2(R1−) =

∫ 1

−∞
ρ−(t)γ−(t)dt, (ρ+, γ+)L2(R1+) =

∫ ∞

1

ρ+(t)γ+(t)dt.

We create another Hilbert space by adding the above two Hilbert spaces to the our
main Hilbert space H := L2

v,q(R1+), then we find an orthogonal sum of Hilbert
space as H = L2(R1−)⊕H ⊕ L2(R1+), and we call it as the main Hilbert space of
the dilation. In the space H, we call the operator Bαβ generated by the expression

(3.7) B⟨ρ−, y, ρ+⟩ = ⟨idρ−
dξ

,Ay, i
dρ+
dς

⟩

on the set D (Bαβ) of vectors ⟨ρ−, y, ρ+⟩ satisfying the conditions y ∈ Dmax, ρ∓ ∈
W1

2 (R1±) and

(3.8) (wDq−1y)(1)− αy (1) = δρ− (1) , (wDq−1y)(1)− αy (1) = δρ+ (1) ,

(3.9) [y, τ ](∞)− β[y, ϕ](∞) = 0,

where δ2 := 2 Imα, δ > 0, and W1
2 (R1±) is the Sobolev space consisting of all

functions f ∈ L2(R1±) such that f are locally absolutely continuous functions on
R± and f ′ ∈ L2(R1±). Based on this information, we present the following theorem.

Theorem 3.3. The operator Bαβ is self-adjoint in H.

Proof. Let assume that f, h ∈ D (Bαβ) , f = ⟨ρ−, y, ρ+⟩ and h = ⟨γ−, z, γ+⟩. Then,
integrating by parts and using (2.3), we obtain that

(3.10) (Bαβf, h)H =

1∫
−∞

iρ′−γ−dξ + (Ay, z)H +

∞∫
1

iρ′+γ+dς
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= iρ− (1) γ− (1)− iρ+ (1) γ+ (1) + [y, z] (∞)− [y, z] (1) + (f,Bαβh)H .

If we consider Lemma 2.1 by using the conditions (3.8), (3.9) for the components
of the vectors f and h, we find

iρ− (1) γ− (1) − iρ+ (1) γ+ (1) + [y, z] (∞)− [y, z] (1) = 0.

It gives that (Bαβf, h)H = (f,Bαβh)H, that is Bαβ is symmetric and it means that
if we show that B∗

αβ ⊆ Bαβ , we get the selfadjointness of Bαβ . Let us take h =
⟨γ−, z, γ+⟩ ∈ D(B∗

αβ). From this, we write B∗
αβh = h∗ whenever h∗ = ⟨γ∗−, z∗, γ∗+⟩ ∈

H. It follows from that

(3.11) (Bαβf, h)H = (f, h∗)H , ∀f ∈ D (Bαβ) .

By considering the definition of the operator B defined in (3.7), it is easy for us
to show γ∓ ∈ W1

2 (R±), z ∈ Dmax and h∗ = Bh with appropriate selection of
components for f ∈ (Bαβ) in (3.11). After that the equation (3.11) becomes
(Bf, h)H = (f,Bh)H , ∀f ∈ D (Bαβ) and so that the sum of the integral terms
in the bilinear form (Bf, h)H is equal to zero, it implies

(3.12) iρ− (1) γ− (1)− iρ+ (1) γ+ (1) + [y, z] (∞)− [y, z] (1) = 0

for all f = ⟨ρ−, y, ρ+⟩ ∈ D (Bαβ) . On the other hand, we obtain

y (1) = − i

δ
(ρ+ (1)− ρ− (1)),

(wDq−1y)(1) = δρ− (1)− iα

δ
(ρ+ (1)− ρ− (1)).

by choosing the y (1) and (wDq−1y)(1) in the boundary conditions (3.8). Then if
we take in consideration these equations in (3.12), we write

iρ− (1) γ− (1)− iρ+ (1) γ+ (1) = [y, z] (1)− [y, z] (∞)

= − i

δ
(ρ+(1)− ρ−(1))(wz′)(1)− δ[ρ−(1)−

iα

δ2
(ρ+(1)− ρ−(1))]z(1)

−[y, τ ](∞)[z, τ ](∞) + [y, ϕ](∞)[z, ϕ](∞) = − i

δ
(ρ+(1)− ρ−(1))(wz′)(1)

−δ[ρ−(1)−
iα

δ2
(ρ+(1)− ρ−(1))]z(1)− ([z, τ ](∞)− β[z, ϕ](∞))[y, ϕ](∞).

Since the values ρ±(1) can be arbitrary complex numbers, by comparing the co-
efficient of ρ±(1) on the left and right sides of the last equality, we find that
h = ⟨γ−, z, γ+⟩ satisfies the following boundary conditions

(wDq−1)z (1)− αz(1) = δγ−(1),

(wDq−1)z (1)− αz(1) = δγ+(1)

and
[z, τ ](∞)− β[z, ϕ](∞) = 0.

It gives the inclusion B∗
αβ ⊆ Bαβ , and hence Bαβ = B∗

αβ .



606 B. P. Allahverdiev and Y. Aygar

To give the relation between the operators Bαβ and Qαβ , it is necessary to
emphasize the following brief information. The self-adjoint operator Bαβ generates
a unitary group Y(s) = exp[iBαβs] in H for s ∈ R. Assume that P1 : H →L2

v,q(R1+)
and P2 : L2

v,q(R1+) → H are two mappings with P1 : ⟨ρ−, y, ρ+⟩ → y and P2 :
y → ⟨0, y, 0⟩, respectively. Furthermore, if we assume that X (s) = P1Y(s)P2 for
(s ≥ 0), the family {X (s) = P1Y(s)P2} (s ≥ 0) of operators is a strongly continuous
semigroup of non-unitary contractions on L2

v,q(R1+). Let us consider the generator
of this semigroup given byMαβ withMαβ = lims→1+(is)

−1(X (s)y−y). The domain
of Mαβ consists of all the vectors for which the limit exists. The operator Mαβ is
dissipative and the operator Bαβ is called the self-adjoint dilation of Mβγ [31, 32].

Theorem 3.4. The operator Bαβ is a self-adjoint dilation of the dissipative oper-
ator Qαβ .

Proof. In order to obtain the result, we need to show Qαβ = Mαβ and to get this
equation we must prove

(3.13) P1(Bαβ − λI)−1P2y = (Qαβ − λI)−1y, y ∈ H, Imλ < 0.

With this aim, let us assume (Bαβ − λI)−1P2y = h = ⟨γ−, z, γ+⟩. Then it gives
(Bαβ−λI)h = P2y, the equation (3.12) is also equivalent to the equation Az−λz =
y, and

γ−(ξ) = γ−(1)e
−iλξ, γ+(ς) = γ+(1)e

−iλς .

Since h ∈ D(Bαβ), and hence γ− ∈ L2(R1−). It follows from that γ−(1) = 0 and z
satisfies the boundary conditions

(wDq−1y)(1)− αy(1) = 0, [z, τ ]∞ − [z, ϕ]1 = 0.

Therefore, z ∈ D(Qαβ), and since a point λ with Imλ < 0 cannot be an eigenvalue
of a dissipative operator, we write z = (Qαβ − λI)−1y. Then, we rewrite γ+(1)
as γ+(1) = δ−1((wDq−1)z (1)− αz(1)). From this equality, the assumption (Bαβ −
λI)−1P2y = h = ⟨γ−, z, γ+⟩ becomes

(Bαβ − λI)−1P2y = ⟨1, (Qαβ − λI)−1y, δ−1[(wDq−1)z (1)− αz(1)]e−iλς⟩,

for y ∈ H and Imλ < 0. Then, we obtain (3.13) by applying the mapping P1 to
the last equality and by considering (3.13) for Imλ < 0, we find

(Qαβ − λI)−1 = P1(Bαβ − λI)−1P2 = −iP1

∞∫
1

Y(s)e−iλsdsP2

= −i
∞∫
1

X (s)e−iλsds = (Mαβ − λI)−1 .

It follows from that Qαβ =Mαβ and it completes the proof.
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4. Scattering theory of the dilation, functional model of the
dissipative operator and completeness theorems for the dissipative

and accumulative operators

In this section, we determine the scattering function of the dilation in terms of
the Weyl–Titchmarsh function of the self-adjoint operator according to Lax–Phillips
method [27]. Furthermore, we formulate a functional model by using incoming spec-
tral representation and we define its characteristic function using either the Weyl–
Titchmarsh function of a self-adjoint q-Sturm–Liouville operator or the scattering
matrix of the self-adjoint dilation. Finally, we prove the completeness theorem of the
system of eigenfunctions and associated functions (or root functions) of the dissipa-
tive and accumulative q-Sturm–Liouville operators. Let us begin with the properties
of ’incoming’ and ’outgoing’ subspaces. This implies that the unitary group {Y(s)}
(s ∈ R) has a crucial characteristic which enables us to apply the Lax–Phillips
scheme [27] to it. Let us take D− :=

〈
L2(R1−), 0, 0

〉
and D+ :=

〈
0, 0,L2(R1+)

〉
.

The following lemma gives their properties.

Lemma 4.1. D− :=
〈
L2(R1−), 0, 0

〉
and D+ :=

〈
0, 0,L2(R1+)

〉
satisfy the follow-

ing properties:

(i) Y(s)D− ⊂ D−, s ≤ 0, and Y(s)D+ ⊂ D+, s ≥ 0

(ii)
⋂
s≤0

Y(s)D− =
⋂
s≥0

Y(s)D+ = {0}

(iii)
⋃
s≥0

Y(s)D− =
⋃
s≤0

Y(s)D+ = H

(iv) D−⊥D+.

Proof. The proof of item (i) is obvious from the definitions. We will demonstrate
property (ii) exclusively for D+ since the proof for D− follows a similar approach.
Let us define Rλ = (Bαβ − λI)−1, for all λ with Imλ < 0, firstly. Then, for any
f = ⟨0, 0, ρ+⟩ ∈ D+, we obtain

Rλf = ⟨0, 0,−ie−iλξ

ξ∫
1

eiλsρ+(s)ds⟩.

It implies Rλf ∈ D+. Hence, if h⊥D+, then it gives

(Rλf, h)H = −i
∞∫
1

e−iλs(Y(s)f, h)Hds = 0, Imλ < 0

and it means that for all s ≥ 0, (Y(s)f, h)H = 0. Hence, Y(s)D+ ⊂ D+ for
s ≥ 0, and it completes the property (i). To prove property (ii), we write mappings
P+
1 : H → L2 (R1+) and P+

2 : L2(R1+) → D+ with the rule P+
1 : ⟨ρ−, y, ρ+⟩ → ρ+
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and P+
2 : ρ→ ⟨0, 0, ρ⟩ , respectively. Note that the semigroup of isometries Y+(s) =

P+
1 Y(s)P+

2 , s ≥ 0, is a one-sided shift in L2 (R1+). Moreover, the generator of
the semigroup of the one-sided shift U(s) in L2 (R1+) is the differential operator
i d
dξ with the boundary condition ρ (1) = 0. On the other hand, the generator B

of the semigroup of isometries Y+(s), s ≥ 0, is the operator Bρ = P+
1 BαβP+

2 ρ

= P+
1 Bαβ ⟨0, 0, ρ⟩ = P+

1 ⟨0, 0, idρdξ ⟩ = idρdξ , where ρ ∈ W1
2 (R1+) and ρ (1) = 0. Since

a semigroup is uniquely determined by its generator, we obtain Y+(s) = U(s), and
gives, ⋂

s≥0

Y(s)D+ = ⟨0, 0,
⋂
s≥0

U(s)L2 (R1+)⟩ = {0}.

It completes the proof of (ii). It is known that the scattering matrix is defined by
using the spectral representation theory with respect to the Lax-Phillips scattering
theory. Because of this, we will go on by their constructions and we also give the
proof of (iii) of the incoming and outgoing subspaces, but to do this proof, we
need auxiliary lemmas. Firstly, let us recall the definition of the completely non-
self-adjoint operator and then we give these auxiliary lemmas to prove property
(iii).

Definition 4.1. The linear operator T with the domain D(T ) acting in a Hilbert
space H is called completely non-self-adjoint or simple if there is no invariant sub-
space D(T ) ⊇ N (N ̸= {0}) of the operator T , where the restriction of T to N is
self-adjoint [2, 25, 33].

Lemma 4.2. The dissipative operator Qαβ is completely non-self-adjoint, that is,
simple.

Proof. Let us suppose that H∼ ⊂ H be a non-trivial subspace where Qαβ has a
self-adjoint operator part Q∼

αβ with domain

D(Q∼
αβ) = H∼ ∩D(Qαβ).

If f ∈ D(Q∼
αβ), then f ∈ D(Q∼∗

αβ), as well as (wDq−1y)(1)−αy (1) = 0, (wDq−1y)(1)−
αy (1) = 0 and [y, τ ](∞)−β[y, ϕ](∞) = 0. From this, for the eigenfunctions y(t, λ) of
the operator Qαβ that lies in H∼ and is an eigenvector of Q∼

αβ , we have y(1, λ) = 0,
(wDq−1)(1, λ) = 0, and then by the uniqueness theorem of the Cauchy problem
for the equation Ay = λy, t ∈ R1+, we have y(t, λ) ≡ 0. Since all solutions of
Ay = λy (t ∈ R1+) belong to L2

w,q(R1+), it can be concluded that the resolvent
Rλ(Qαβ) of the operator Qαβ is a Hilbert-Schmidt operator, and hence the spec-
trum of Qαβ is purely discrete. Hence, by the theorem on expansion in eigenvectors
of the self-adjoint operator Q∼

αβ , we write H∼ = {0} , it gives that Qαβ is simple.
The lemma is proved.

Lemma 4.3. Assume

K− =
⋃
s≥0

Y(s)D−, K+ =
⋃
s≤0

Y(s)D+.
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Then, the equality K− +K+ = H is true.

Proof. Considering property (i) of Lemma 4.1 for the subspace D+, it is straight-
forward to demonstrate that the subspace H∼ = H⊖ (H + K+) remains invariant
under the action of the group {Y(s)} and takes the form H∼ = ⟨0, H∼, 0⟩, where
H∼ is a subspace within H. Therefore, if the subspace H∼ (and hence, also H∼)
were non-trivial, then the unitary group {Y∼(s)}, restricted to this subspace, would
be a unitary part of the group {Y(s)}, and hence the restriction Q∼

αβ of Qαβ to H∼

would be a self-adjoint operator in H∼. But, this is a contradiction from the pre-
vious lemma, i.e, from the simplicity of the operator Qαβ . As a result of this, we
have H∼ = {0}. It completes the proof.

To present other two lemmas, let us use some notations. We will denote the
self-adjoint operator generated from the expression A and the boundary conditions
y(1) = 0, [y, τ ](∞) − β[y, ϕ](∞) = 0 for y ∈ Dmax by Q∞β and let ψ(t, λ) and
υ(t, λ) be the solutions of the equation A(y) = λy (t ∈ R1+) satisfying the condi-
tions ψ(1, λ) = 0, (wDq−1ψ)(1, λ) = 1 as well as υ(1, λ) = 1, (wDq−1υ)(1, λ) = 0.
Moreover, the Weyl–Titchmarch function which is represented by m∞β(λ) of the
self-adjoint operator Q∞γ is determined by the condition [υ+m∞βψ, τ ](∞)−β[υ+
m∞βψ, ϕ](∞) = 0. It follows from that

(4.1) m∞β(λ) = − [υ, τ ](∞)− β[υ, ϕ](∞)

[ψ, τ ](∞)− β[ψ, ϕ](∞)
.

It can be said from (4.1) that m∞β(λ) is a meromorphic function on the complex
plane C with a countable number of poles lying along the real axis, which align
precisely with the eigenvalues of the operator Q∞β [11, 12]. Furthermore, the
function m∞β has the following properties:

Imλ Im(m∞β)(λ) > 0

for Imλ ̸= 0 and m∞β(λ) = m∞β(λ̄) for λ ∈ C, except the reel poles of m∞β(λ).
On the other hand, let us introduce the following notations: a(t, λ) := υ(t, λ) +
m∞β(λ)ψ(t, λ),

(4.2) Θαβ(λ) :=
m∞β(λ)− α

m∞β(λ)− α
.

If we introduce the vectors

Υ−
λ (t, ξ, ς) = ⟨e−iλξ, (m∞β(λ)− α)−1δa(t, λ),×αβ(λ)e

−iλς⟩,

these vectors do not belong to the space H for real λ. But, Υ−
λ (t, ξ, ς) satisfies

the equation AΥ = λΥ and the corresponding boundary conditions for the oper-
ator Bαβ . Using these vectors, we can define transformation Ψ− : f → f̃−(λ) by

(Ψ−f)(λ) := f̃−(λ) := 1√
2π

(f,Υ−
λ )H on the vector f = ⟨ρ−, y, ρ+⟩, where ρ−, ρ+

and y are smooth, compactly supported functions.



610 B. P. Allahverdiev and Y. Aygar

Lemma 4.4. The isometric transformation Ψ− maps K− onto L2(R). For all
vectors f, h ∈ K−, the Parseval equality and the inversion formula are valid as

(f, h)H = (f̃−, h̃−)L2 =

∞∫
−∞

f̃−(λ)h̃−(λ)dλ, f =
1√
2π

∞∫
−∞

f̃−(λ)Υ
−
λ dλ,

where f̃−(λ) = (Ψ−f)(λ) and h̃−(λ) = (Ψ−h)(λ).

Proof. For f, h ∈ D−, f = ⟨ρ−, 0, 0⟩, h = ⟨ρ−, 0, 0⟩, write

f̃−(λ) :=
1√
2π

(f,Υ−
λ )H =

1√
2π

1∫
−∞

ρ−(ξ)e
iλξdξ ∈ H2

−,

and, from Parseval equality for Fourier integrals, it becomes

(f, h)H =

1∫
−∞

ρ−(ξ)γ−(ξ)dξ =

∞∫
−∞

f̃−(λ)h̃−(λ)dλ = (Ψ−f,Ψ−g)L2 .

Now, our aim is to extend the Parseval equality to the whole of K−. For this
purpose, we consider in K− the dense set H∼

− of vectors obtained from the smooth,
compactly supported functions in D− : f ∈ H∼

− if f = Y(l)f0, f0 = ⟨ρ−, 0, 0⟩,
ρ− ∈ C∞

0 (R1−), where l = lf is a non-negative number (depending on f). In this
case, if f, h ∈ K−, then for l > lf and l > lh, we obtain Y(−l)f,Y(−l)h ∈ D− and
moreover, the first components of these vectors belong to C∞

0 (R1−). Therefore,
since the operators Y(s) (s ∈ R) are unitary, the equality

Ψ−Y(−l)f = (Y(−l)f, U−
λ )H = e−iλl(f, U−

λ )H = e−iλlΦ−f,

implies that

(f, h)H = (Y(−l)f,Y(−l)h)H = (Ψ−Y(−l)f,Ψ−Y(−l)h)L2

(4.3) = (e−iλlΨ−f, e
−iλlΨ−h)L2 = (Ψ−f,Ψ−h)L2 .

If we take closure in (4.3), we get the Parseval equality for the whole space K−.
The inversion formula follows from the Parseval equality if all integrals are taken
as limits in the mean of integrals over finite intervals. Finally, we find

Ψ−K− =
⋃
s≥0

Ψ−Y(s)D− =
⋃
s≥0

e−iλsH2
− = L2(R),

it means that Ψ− maps K− onto the whole of L2(R). The lemma is proved.
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Similarly, let us set

Υ+
λ (t, ξ, ς) = ⟨Θαβ(λ)e

−iλξ, (m∞β(λ)− α)−1δa(t, λ), e−iλς⟩.

Note that the vectors Υ+
λ (t, ξ, ς) for real λ do not belong to the space H. However,

Υ+
λ (t, ξ, ς) satisfies the equation BΥ = λΥ (λ ∈ R) and the boundary conditions

(3.8) and (3.9). Using Υ+
λ (t, ξ, ς), we define the transformation Ψ+ : f → f̃+(λ)

on vectors f = ⟨ρ−, y, ρ+⟩, where ρ−, ρ+, and y are smooth, compactly supported
functions by setting

(Ψ+f)(λ) := f̃+(λ) :=
1√
2π

(f,Υ+
λ )H.

The proof of the next result is analogous to that of Lemma 4.4.

Lemma 4.5. The transformation Ψ+ isometrically maps K+ onto L2(R). For all
vectors f, h ∈ K+, the Parseval equality and the inversion formula hold:

(f, h)H = (f̃+, h̃+)L2 =

∫ ∞

−∞
f̃+(λ)h̃+(λ)dλ, f =

1√
2π

∫ ∞

−∞
f̃+(λ)U

+
λ dλ,

where f̃+(λ) = (Ψ+f)(λ) and h̃+(λ) = (Ψ+h)(λ).

For λ ∈ R, the function Θαβ(λ) satisfies |Θαβ(λ)| = 1 from (4.2). Hence, it
follows from the explicit formula for the vectors Υ+

λ and Υ−
λ that for λ ∈ R

(4.4) Υ−
λ = Θαβ(λ)Υ

+
λ .

It follows from Lemmas 4.4 and 4.5 that K− = K+. Together with Lemma 4.3, this
gives H = K− = K+, and property (iii) above has been established for the incoming
and outgoing subspaces, that is, it completes the proof of item (iii) of Lemma 4.1.

Because of these results, we can say that the transformation Ψ− isometrically
maps onto L2(R) with the subspace D− mapped onto H2

− and the operators Y(s)
are transformed into the operators of multiplication by eiλs. In other words, Ψ−
is the incoming spectral representation for the group {Y(s)}. Similarly, Ψ+ is
the outgoing spectral representation for {Y(s)}. It follows from (4.4) that the
passage from the Ψ+-representation of a vector f ∈ H to its Ψ−-representation is
realized by multiplication of the function Θαβ(λ) : f̃−(λ) = Θαβ(λ)f̃+(λ). With
respect to [27], the scattering function (matrix) of the group {Y(s)} according to the
subspaces D− and D+, is the coefficient by which the Ψ−-representation of a vector
f ∈ H must be multiplied in order to get the corresponding Ψ+-representation:
f̃+(λ) = Θαβ(λ)f̃−(λ) and thus we directly give the following theorem.

Theorem 4.1. The function Θαβ(λ) is the scattering matrix of the group {Y(s)}
(of the self-adjoint operator Bαβ). Let suppose that N = ⟨0, H, 0⟩, it brings H =
D− ⊕N⊕D+. It follows from the explicit form of the unitary transformation Ψ−

(4.5) H → L2(R), f → f̃−(λ) = (Ψ−f)(λ), D− → H2
−, D+ → ΘαβH2

+,

(4.6) N → H2
+ ⊖ΘαβH2

+, Y(s)f → (Ψ−Y(s)Ψ−1
− f̃−)(λ) = eiλsf̃−(λ).
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The formulae (4.5) and (4.6) show that our operator Qαβ is a unitary equivalent
to the model dissipative operator with the characteristic function Θαβ(λ). Since
the characteristic functions of unitary equivalent dissipative operators are the same
(see [33, 32, 30]), we present the next theorem.

Theorem 4.2. The characteristic function of the dissipative operator Qαβ aligns
with the function Θαβ(λ) defined in (4.2).

The characteristic function is highly beneficial in determining whether all eigen-
functions and associated functions of a dissipative operator Qαβ span the whole
space or not. This analysis can be conducted by verifying the absence of the sin-
gular factor s(λ) in the factorization Θαβ(λ) = s(λ)B(λ), where B(λ) represents a
Blaschke product [5, 3, 33, 32, 30].

Theorem 4.3. For all values of α with Imα > 0, except possibly for a single
value β = β0, and for fixed β with Imβ = 0 or β = 0, the characteristic function
Θαβof the dissipative operator Qαβ is a Blaschke product. The spectrum of Qαβ is
purely discrete and lies in the open upper half-plane. The operator Qαβ (α ̸= α0)
has a countable number of isolated eigenvalues with finite multiplicities and limit
points at infinity. The system of all eigenfunctions and associated functions (or
root functions) of the dissipative operator Qαβ (α ̸= α0) is complete in the space
L2
v,q(R1+).

Proof. It can be easily seen from (4.2) that Θαβ is an inner function in the upper
half-plane and it is meromorphic in the whole λ-plane. We have the factorization

(4.7) Θαβ(λ) = eiλdBαβ(λ),

where Bαβ(λ) is the Blaschke product and d = d(α) ≥ 0. Because of this from
(4.7), we write

(4.8) |Θαβ(λ)| =
∣∣eiλd∣∣ |Bαβ(λ)| ≤ e−d(α) Imλ, Imλ ≥ 0.

On the other hand, if we express m∞β(λ) in terms of Θαβ(λ), we obtain

(4.9) m∞γ(λ) =
βΘβγ(λ)− β

Θβγ(λ)− 1

from (4.4). If d(α) > 0 for a given value α (Imα > 0), then (4.8) gives us that

lim
s→+∞

Θαβ(is) = 0,

and then (4.9) leads to
lim

s→+∞
m∞β(is) = −α.

Since m∞β(λ) is independent of α, d(α) can be non-zero at not more than a single
point α = α0 and, further d(α) can be non-zero at not more then a single point α =
α0 (and, further, α0 = − lims→+∞m∞β(is)). Therefore, the proof is completed.
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It is well-known that a linear operator Q acting in the Hilbert space H is accu-
mulative if and only if −Q is dissipative. So that all results concerning dissipative
operators can also be valid for accumulative operators. Then, the Theorem 4.3
yields the following result.

Corollary 4.1. For all values of α with Imα < 0, except possibly for a single value
α = α1, and for fixed β with Imβ = 0 or β = 0, the characteristic function Θαβ of
the accumulative operator Qαβ is a Blaschke product. The spectrum of Qαβ is purely
discrete and lies in the open lower half-plane. The operator Qαβ (β ̸= β1) has a
countable number of isolated eigenvalues with finite multiplicities and limit points at
infinity. The system of all eigenvectors and associated functions (or root functions)
of the accumulative operator Qαβ (α ̸= α1) is complete in the space L2

v,q(R1+).
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