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1. Introduction

In this paper, we study the impact of a semi-symmetric non-metric connection
(shortly, SSNMC) on a 3-dimensional Riemannian manifold admitting solitons.
Many years ago, on a differential manifold, Friedman and Schouten[14] presented
the concept of semi-symmetric linear connection. In 1932, Hayden [19] introduced
the notion of metric connection with torsion on the Riemannian manifold. Later,
in 1970 the idea of semi-symmetric metric connection on a Riemannian manifold
was further developed by Yano [23].
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Abstract. This article carries out the investigation of a 3-dimensional Riemannian 
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Let ▽ denote the Riemannian connection corresponding to the Riemannian
metric g on M3. A linear connection ▽̃ defined on M3 is said to be semi-symmetric
if the torsion tensor T̃ of ▽̃ defined by

T̃ (U1, V1) = ∇̃U1
V1 − ∇̃V1

U1 − [U1, V1](1.1)

satisfies
T̃ (U1, V1) = A(V1)U1 −A(U1)V1,(1.2)

for all vector fields U1 , V1 on M3, where A is a 1-form associated with the fixed
vector field ξ1 and satisfies A(U1) = g(U1, ξ1).

In the equation (1.2), if we replace the independent vector fields U1 and V1

respectively by ϕU1 and ϕV1 where ϕ is a (1,1) tensor field then the connection ▽̃
becomes a quarter-symmetric connection ([15], [20]).

Again, a linear connection ▽̃ on M3 is said to be a metric connection if ▽̃g=0
and if ▽̃g ̸= 0, then it is said to be non-metric [19]. Here,we consider SSNMC,
that is ▽̃g ̸= 0 and the connection satisfies the equation (1.2). Agache and Chafle
[1] introduced the idea of SSNMC on a Riemannian manifold. After that, several
researchers studied the properties of SSNMC on manifolds with different structures
([4],[5],[6], [9], [12],[13],[22]).

In 1982, the notion of Ricci flow was introduced by Hamilton [17] to find the
canonical metric on a smooth manifold. The Ricci flow is an evolution equation for
metrics on a Riemannian manifold M3 defined as: ∂

∂tg = −2S,
where S and g are the Ricci tensor and the metric tensor respectively.

A Ricci soliton [18] on a Riemannian manifold ( M3, g ), is defined as a triple
(g,W1,λ), satisfying

LW1
g + 2λg + 2S = 0,(1.3)

where λ a real constant, W1 is a potential vector field, L is the Lie derivative,
S is the Ricci tensor of the manifold.If W1 is a Killing vector field or zero, then the
Ricci soliton becomes trivial or reduces to an Einstein manifold respectively. The
Ricci soliton is steady, expanding, or shrinking according to λ = 0,λ>0, or λ<0.

If W1 = Df , where D indicates the gradient operator and f is a smooth function
onM3, then g is called gradient Ricci soliton and in such case equation (1.3) becomes

∇2 f + S + λg = 0.(1.4)

Cho and Kimura [3] introduced a more general notion of Ricci soliton, named
η-Ricci soliton. An η-Ricci soliton is a Riemannian manifold (M3,g ) together with
a vector field W1 and two real constants λ , µ such that

LW1g + 2S + 2λg + 2µη ⊗ η = 0,(1.5)

where η is a g dual 1-form of W1 and it is closed.

Again if W1 = Df , then it is a gradient η-Ricci soliton and (1.5) takes the form
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∇2 f + S + λg + µη ⊗ η = 0.(1.6)

If λ and µ are smooth functions on M3,then η-Ricci soliton is called almost
η-Ricci soliton.

If µ = 0 , then η-Ricci soliton(or gradient η-Ricci soliton ) turns into Ricci
soliton (or gradient Ricci soliton ) respectively.

Hamilton [17] proposed the idea of Yamabe flow, defined as follows:

∂

∂t
g(t) + rg(t) = 0, g0 = g(t),(1.7)

where t indicates the time and r being the scalar curvature of M3.

On M3, a Riemannian manifold equipped with a Riemannian metric g is named
a Yamabe soliton if it satisfies,

LW1
g − 2(r − λ)g = 0,(1.8)

where λ is a real constant, r is the scalar curvature of the manifold .Here W1

is the potential vector field. The Ricci soliton and Yamabe soliton are the same in
2-dimensional manifolds, but they are basically different in higher dimensions.

In recent years, the theory of geometric flows such as Ricci flow and Yamabe
flow and their solitons have been the focus of attraction of many geometers. In
2019, Guler and Crasmareanu [16] introduced a new geometric flow which is a
scalar combination of Ricci and Yamabe flow. This is additionally named (α, β)
type Ricci-Yamabe flow. The Ricci-Yamabe flow is defined as follows:[16]

∂

∂t
g(t) = βr(t)g(t)− 2αS(t), g0 = g(0),(1.9)

where S is the Ricci tensor, r denotes the scalar curvature and λ, α, β ∈ R.
A Ricci-Yamabe soliton on (M3, g) satisfies

£W1
g = −2αS − (2λ− βr)g.(1.10)

If W1 = Df , then the Ricci-Yamabe soliton is called a gradient Ricci-Yamabe
soliton and the equation becomes

∇2f = −αS − (λ− 1

2
βr)g.(1.11)

The Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton) is said to be ex-
panding for λ > 0, steady for λ = 0 and shrinking when λ < 0. If λ, β and α are
smooth functions on M3, then a Ricci-Yamabe soliton (or gradient Ricci-Yamabe
soliton) is called an almost Ricci-Yamabe soliton (or gradient Ricci-Yamabe soli-
ton). If β = 0, α = 1, then Ricci-Yamabe soliton (or gradient Ricci-Yamabe soliton)
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becomes Ricci soliton (or gradient Ricci soliton). Similarly, it becomes Yamabe soli-
ton (or gradient Yamabe soliton) if β = 1 , α = 0. In this connection, we mention
the works of Blaga [2], Özgür [21] and De et. al.([7],[8], [11]).

In the present paper after the introduction in section 2, we provide the basic
properties of SSNMC.Then in the next section, we characterize gradient η-Ricci
solitons on M3. Finally, we study gradient Ricci-Yamabe solitons on M3.

2. Semi-symmetric non-metric connection

A linear connection ∇̃ on M3, defined by

∇̃U1
V1 = ∇U1

V1 +A(V1)U1,(2.1)

where ∇ is the Riemannian connection on M3, is a semi-symmetric non-metric
connection. It satisfies [1]

(∇̃U1
g)(V1, Y1) = −A(V1)g(U1, Y1)−A(Y1)g(U1, V1).(2.2)

Let R̃ and R denote the curvature tensor with respect to the semi-symmetric non-
metric connection ∇̃ and Riemannian connection ∇ respectively. Then R̃ and R
are connected by [1]

R̃(U1, V1)Y1 = R(U1, V1)Y1 − α∗(V1, Y1)U1 + α∗(U1, Y1)V1,(2.3)

for all U1, V1, Y1 on M3, where α∗ is a (0, 2)- tensor field defined as follows:

α∗(U1, V1) = (∇U1A)(V1)−A(U1)A(V1).(2.4)

Throughout this article, we consider the vector field ξ1 is a unit parallel vector field
with respect to the Levi-Civita connection ∇. Then ∇U1ξ1 = 0, which implies

R(U1, V1)ξ1 = 0(2.5)

and
S(U1, ξ1) = 0.(2.6)

Also, using ∇U1ξ1 = 0, we get

(∇U1
A)V1 = 0.(2.7)

Using (2.7) in (2.4) infers α∗(U1, V1) = −A(U1)A(V1). Then using the above equa-
tion in ( 2.3) we obtain ,

R̃(U1, V1)Y1 = R(U1, V1)Y1 +A(Y1)[A(V1)U1 −A(U1)V1].(2.8)

From the foregoing equation, we have

S̃(U1, V1) = S(U1, V1) + 2A(U1)A(V1),(2.9)
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where S̃ and S denote the Ricci tensor of ∇̃ and ∇ respectively.

Contracting the above equation, we provide

r̃ = r + 2,(2.10)

r̃ and r are the scalar curvature of ∇̃ and ∇ respectively, since A(ξ1) = g(ξ1, ξ1) = 1.

Using (2.5), we have from (2.8)

R̃(U1, V1)ξ1 = A(V1)U1 −A(U1)V1.(2.11)

So, we get relations
A(R̃(U1, V1)Y1) = 0,(2.12)

and
S̃(U1, ξ1) = 2A(U1), Q̃ξ1 = 2ξ1.(2.13)

where Q̃ is the Ricci operator with respect to the semi-symmetric non-metric con-
nection ∇̃ defined by g(Q̃U1, V1) = S̃(U1, V1).

We first establish the subsequent Lemma:

Lemma 2.1. Let M3 be a Riemannian manifold with a semi-symmetric non-
metric connection ∇̃. Then we have

ξ1r̃ = 0.(2.14)

Proof: In M3, the Riemannian curvature tensor can be written as

R(U1, V1)Y1 = g(V1, Y1)QU1 − g(U1, Y1)QV1 + S(V1, Y1)U1(2.15)

−S(U1, Y1)V1 −
r

2
[g(V1, Y1)U1 − g(U1, Y1)V1],

Using (2.9) and (2.8), we get

R̃(U1, V1)Y1 −A(Y1)[A(V1)U1 −A(U1)V1] = g(V1, Y1)[Q̃U1 − 2ξ1A(U1)]

−g(U1, Y1)[Q̃V1 − 2ξ1A(V1)] + [S̃(V1, Y1)− 2A(V1)A(Y1)]U1

−[S̃(U1, Y1)− 2A(U1)A(Y1)]V1 −
r

2
[g(V1, Y1)U1 − g(U1, Y1)V1],(2.16)

Put V1 = Y1 = ξ1, in the above equation we get

Q̃U1 =

(
r̃

2
+ 1

)
U1 −

(
r̃

2
− 1

)
A(U1)ξ1.(2.17)

Taking covariant derivative along V1, we infer

(∇V1
Q̃)U1 =

(V1r̃)

2
[U1 −A(U1)ξ1].(2.18)

Contracting the above equation we obtain the required result.
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3. Gradient η−Ricci solitons

The soliton equation ( 1.6) can be written as

∇̃U1
Df = −Q̃U1 − λU1 − µη(U1)ξ1,(3.1)

for all U1 ∈ X(M3). Using (3.1) and the definition

R̃(U1, V1)Df = ∇̃U1
∇̃V1

Df − ∇̃V1
∇̃U1

Df − ∇̃[U1,V1]Df(3.2)

we reveal

R̃(U1, V1)Df = −(∇̃U1
Q̃)(V1) + (∇̃V1

Q̃)(U1)− µ[η(V1)U1 − η(U1)V1].(3.3)

Contracting the above equation, we have

S̃(V1, Df) =
1

2
(V1r̃)− 2µη(V1).(3.4)

Again, from (2.17) we obtain,

S̃(V1, Df) =

(
r̃

2
+ 1

)
(V1f)−

(
r̃

2
− 1

)
A(V1)(ξ1f).(3.5)

Comparing the equations (3.4) and (3.5) we get(
r̃

2
+ 1

)
(V1f)−

(
r̃

2
− 1

)
A(V1)(ξ1f) =

1

2
(V1r̃)− 2µ(V1f).(3.6)

Now, putting V1 = ξ1 in (3.6) and using ξ1r̃ = 0 and A(ξ1) = 1, we find

(µ+ 1)ξ1f = 0,(3.7)

which implies ξ1f = 0, provided µ+ 1 ̸= 0.

From (2.11), we find

g(R̃(U1, V1)ξ1, Df) = A(V1)g(U1, Df)−A(U1)g(V1, Df).(3.8)

Again from (3.3)

g(R̃(U1, V1)ξ1, Df) = µ[(V1f)A(U1)− (U1f)A(V1)].(3.9)

Combining the equation (3.8) and (3.9) we get

A(V1)(U1f)−A(U1)(V1f) = µ[(V1f)A(U1)− (U1f)A(V1)].(3.10)

Setting V1 = ξ1 and using ξ1f = 0, A(ξ1) = 1 we find

(µ+ 1)U1f = 0,(3.11)

For µ ̸= −1, f is constant. Using f = constant the equation (3.1)) infers that the
manifold reduces to a generalized Quasi-Einstein manifold [10].

Thus we can state the following:
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Theorem 3.1. If M3 with a SSNMC admits the gradient η-Ricci soliton with
µ ̸= −1, then M3 reduces to a generalized Quasi-Einstein manifold.

If µ = 0, then the gradient η-Ricci soliton becomes gradient Ricci soliton. Then
(3.11) gives f = constant and hence the manifold becomes an Einstein manifold.
Therefore, M3 is of constant sectional curvature, since the manifold is of dimension
3.

Corollary 3.1. A 3-dimensional Riemannian manifold with a SSNMC admitting
gradient Ricci soliton is a manifold of constant sectional curvature.

4. Gradient Ricci-Yamabe solitons

Let M3 admit a gradient Ricci-Yamabe soliton.Then (1.11) implies

∇̃U1
Df = −αQ̃U1 − (λ− β

2
r̃)U1.(4.1)

Taking covariant derivative of (4.1) along the vector field V1, we obtain

∇̃V1∇̃U1Df = −α∇̃V1Q̃U1 +
β

2
(V1r̃)U1 − (λ− β

2
r̃)∇̃V1U1.(4.2)

Interchanging U1 and V1 in the above equation we get

∇̃U1∇̃V1Df = −α∇̃U1Q̃V1 +
β

2
(U1r̃)V1 − (λ− β

2
r̃)∇̃U1V1,(4.3)

and equation (4.1) yields

∇̃[U1,V1] = −αQ̃([U1, V1])− (λ− β

2
r̃)[U1, V1].(4.4)

Using (4.2), (4.3) and (4.4) we have

R̃(U1, V1)Df = −α(∇̃U1
Q̃)V1 + α(∇̃V1

Q̃)U1 +
β

2
[(U1r̃)V1 − (V1r̃)U1].(4.5)

Contracting the previous equation over U1, we get

S̃(V1, Df) = (
α

2
− β)(V1r̃).(4.6)

Again from (2.17) we have

S̃(U1, Df) = (
r̃

2
+ 1)U1f − (

r̃

2
− 1)A(U1)ξ1f.(4.7)

Combining (4.6) and (4.7), we infer

(
α

2
− β)(U1r̃) = (

r̃

2
+ 1)U1f − (

r̃

2
− 1)A(U1)ξ1f.(4.8)
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Setting U1 = ξ1 and using ξ1r̃ = 0 and A(ξ1) = 1 in the foregoing equation, we have

ξ1f = 0.(4.9)

Thus from (4.8), we obtain

(
α

2
− β)(U1r̃) = (

r̃

2
+ 1)U1f.(4.10)

Now, from equation (4.5) we find that

g(R̃(U1, V1)ξ1, Df) = −β

2
[(U1r̃)A(V1)− (V1r̃)A(U1)].(4.11)

Again from equation (2.11), we have

g(R̃(U1, V1)ξ1, Df) = A(V1)(U1f)−A(U1)(V1f).(4.12)

Combining the equation (4.11) and (4.12) we get

−β

2
[(U1r̃)A(V1)− (V1r̃)A(U1)] = A(V1)(U1f)−A(U1)(V1f).(4.13)

Setting V1 = ξ1 in the previous equation and using (4.9) gives

β

2
[(U1r̃) = −(U1f).(4.14)

Utilizing (4.14) in (4.10) we infer that

(2α− 2β + βr̃)U1r̃ = 0,(4.15)

which entails that either (U1r̃) = 0 or (U1r̃) ̸= 0.

In both the cases r̃ = constant, since α, β are non-zero constants. Hence from
(2.10), we infer that r = constant i.e M3 is of constant scalar curvature. Again,
using the fact r̃ = constant, equation (4.14) gives f is a constant and hence the
gradient Ricci-Yamabe soliton becomes trivial.

Hence, we state the result as:

Theorem 4.1. Let M3 be a 3-dimensional Riemannian manifold with a SSNMC
admitting gradient Ricci-Yamabe solitons.

Then the following cases occur :

(i) The scalar curvature is constant in M3.

(ii) The soliton becomes trivial.

If α = 1, β = 0, then the gradient Ricci-Yamabe soliton becomes gradient
Ricci soliton.Then (4.15) gives r̃ = constant and the equation (4.14) infers that
f = constant.Using this fact equation (4.1) leads that M3 is an Einstein manifold.
Therefore M3 is of constant sectional curvature.
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Corollary 4.1. A 3-dimensional Riemannian manifold with a SSNMC admitting
gradient Ricci soliton is a manifold of constant sectional curvature.

If α = 0, β = 1, then the gradient Ricci-Yamabe soliton becomes gradient
Yamabe soliton.Then equation (4.15) gives r̃ = 2 and hence from (2.10), we obtain
r = 0 i.e the scalar curvature vanishes in M3.

Corollary 4.2. If a 3-dimensional Riemannian manifold with a SSNMC admit-
ting gradient Yamabe soliton, then the scalar curvature of the manifold vanishes.
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22. C. Özgür and S. Sular: Warped products with a semi-symmetric non-metric con-
nection. Arab J. Math. Sci. 36 (2011), 461–473.

23. K. Yano: On semi-symmetric metric connection. Revue Roumaine de Math. Pures
et Appliques. 15 (1970), 1579–1586.


