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Abstract. Here we investigate the properties of 3-triangulation of polyhedra, when
possible. Namely, it is known that 3-triangulation of convex polyhedra is always possi-
ble, but this is not the case with all non-convex ones. This is the reason to consider the
decomposition of non-convex polyhedra into convex pieces if possible. After that, we
introduce the connection graph for the 3-triangulable polyhedron in such a way that
these pieces are represented by the nodes of the graph. First, our attention shall be
focused on toroids, a special class of non-convex polyhedra, and the minimal number
of tetrahedra necessary to 3-triangulate them. As another application of connection
graphs, we shall also consider those corresponding to convex polyhedra, especially to
conic triangulation of them.
Keywords: 3-triangulation, conic triangulation, non-convex polyhedra.

1. Introduction

Classical triangulation is defined as dividing a polygon with n vertices by n− 3
diagonals into n− 2 triangles without gaps and overlaps. By generalizing the term
polygon, in higher dimensions we get a polyhedron and a d-dimensional polytope.
The consequence is the generalization of the triangulation process to higher d ≥3
dimensions, which we can also call triangulation or more specific 3-triangulation, d-
triangulation. For this purpose, using only the original vertices, for 3-triangulation
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Corresponding Author: Milica Stojanović. E-mail addresses: milica.stojanovic@fon.bg.ac.rs
2020 Mathematics Subject Classification. Primary 52C17; Secondary 52B05, 05C62
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we divide a polyhedron into tetrahedra, and for d-triangulation a d-polytope into
d-simplices.

New problems arise within the higher dimensions. Thus, contrary to the 2-
triangulation that can be done for each polygon, it is known that we can 3-tri-
angulate each convex polyhedra, but this is not the case with non-convex ones.
The first example of a polyhedron whose interior cannot be triangulated without
new vertices was given by Lennes [3] an the most famous one by Schönhardt [6, 8].
Another problem is that different 3-triangulations of polyhedra can have different
numbers of tetrahedra [2,9,10]. In this sense, it is shown that the smallest and the
largest number of tetrahedra in a 3-triangulation (the minimal and the maximal
3-triangulation) depend linearly, i.e. squarely on the number of vertices.

As in the case of 2-triangulation, 3-triangulation problems have significant app-
lications in engineering and other fields of research [22]. Also, other types of poly-
hedron decomposition and space modeling have their role in applications [20,21].

Here we first consider 3-triangulation of p-toroids, a special class of polyhedra.
Then we consider other application of connection graph, connected also to some
problems in graph theory [4].

Namely, the term ’polyhedron’ usually means a simple polyhedron solid, topo-
logically equivalent to a ball. On the other hand, there are classes of polyhedra
topologically equivalent to torus or p-torus (ball with one or p handles). We call
such polyhedra 1-toroids and p-toroids, following Szilassi’s definition [18]. He called
torus-like polyhedra, toroids. Thus, we use the term p-toroid (p ∈ N is a given nat-
ural number) for p-torus-like polyhedron, and the term toroid as a common name
for any p-toroid (the Szilassi’s toroid would be 1-toroid).

Toroids are not convex, but under certain conditions it is possible to 3-triangu-
late them. A well-known example of a 1-toroid is the Császár polyhedron [1, 19]
which has 7 vertices and is triangulable with 7 tetrahedra. It is also discussed as
a polyhedron without diagonals [1, 16, 17]. Introducing the concept of connection
graph, the minimal 3-triangulations and other properties of 1-, 2- and p-toroids are
considered in [5, 11–14].

Some characteristic cases of polyhedra and some necessary terms from graph
theory are given in Section 2., while in Section 3. some necessary definitions and
properties of 3-triangulation are presented. Section 4. gives a proof of Theorem 4.3
on the minimal necessary number of tetrahedra for 3-triangulation of a p-toroid,
which differs from that in [11] and provides a different point of view, giving also
additional properties of the connection graph. In Section 5. we consider applications
of connection graph to 3-triangulation of convex polyhedra: besides examples of di-
fferent triangulations of icosahedron and forming corresponding connection graphs,
we shall especially consider the cone triangulation of convex polyhedra and prove
the Theorem 5.1.
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2. Preliminaries

2.1. Basic properties of 3-triangulations

The smallest number of tetrahedra in a 3-triangulation of a polyhedron with n
vertices is n − 3. For example, such a polyhedron is a pyramid Vn−1 with n − 1
vertices at the basis and the apex, which means a total of n vertices. We can 3-
triangulate it as follows: do any 2-triangulation of the basis into (n−1)−2 = n−3
triangles. The apex together with each of such triangles forms one of the tetrahedra
in 3-triangulation.

But not all polyhedra have the same property to have a 3-triangulation with
n− 3 tetrahedra. For example, in Section 5. two triangulations of the icosahedron
(n = 12) are given. The first triangulation has 17 tetrahedra, while the second,
which is minimal for icosahedron [9], has 15 tetrahedra. This example also shows
that a polyhedron can have triangulations with different numbers of tetrahedra.

Although it is possible to 3-triangulate all convex polyhedra, this is not the case
for all non-convex ones. E.g. the famous example of a non-convex polyhedron given
by Schönhardt ( [8]) shows that it is not possible to triangulate all polyhedra.

On the other hand, the Császár polyhedron [1] is non-convex one for which in
Wolfram Demonstrations Project [19] Szilassi shows to be 3-triangulable with 7
tetrahedra. This polyhedron is an example of 1-toroid with the smallest number
of vertices. It has 7 vertices and no diagonals, i.e. each vertex is connected to six
others by edges.

According to Szilassi’s definition given in [18], in [11,14] we introduce the term
p-toroid (p ∈ N).

Definition 2.1. A polyhedron as a solid is called p-toroid, p ∈ N, if it is topologi-
cally equivalent to a ball with p handles (solid p-torus).

We use term toroid as a common name for all p-toroids.

Let us remind here that in the surface theory p-torus is a cyclic polygon with
paired sides. Any side s and its pair S are oppositely directed related to the
fixed orientation of the polygon, and then glued together. By a standard com-
binatorial procedure, the polygon can be divided and glued to a cyclic normal form
a1b1A1B1a2b2A2B2...apbpApBp, as a p-torus. This combinatorial procedure is in-
dependent of the future spatial placement of the surface. Thus, we can form a torus
from any spatial knot (as a topological circle in the space). Of course, its surface
can be 2-triangulated, to be the surface of a polyhedron.

2.2. Overview of concepts from graph theory

A graph is a couple G = (V,E) where V is a set of nodes (vertices) and E is a
set of edges connecting nodes from V . Degree of a node u is the number of edges
with u as one of its endpoints.
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Undirected graphs are used in this paper and will be called ’graphs’ for short.
These are graphs that have edges that have no direction. A path, a cycle and a loop
are defined as usual in graph theory.

A graph is connected if for each two distinct nodes u and v there exists at least
one path joining them. Otherwise, graph is disconnected with two or more connected
components.

A tree is a graph in which any two nodes are connected by exactly one path. This
means that a tree is a connected graph. A spanning tree is a subset of connected
graph G, which has all the nodes covered with minimum possible number of edges.
It is possible to conclude that every connected graph G has at least one spanning
tree.

For a spanning tree, we have to look for all edges which are present in the
graph but not in the tree. Adding one of the missing edges to the tree will form a
cycle which is called fundamental cycle ( [7]). All fundamental cycles form a cycle
basis. Note that a graph can have more different spanning trees. Consequently,
each spanning tree constructs its own cycle basis. We can also form a cycle basis
for any disconnected graph, using one spanning tree for each connected component.

However, the number of fundamental cycles is always the same and can be
calculated as follows. For any given undirected graph having V nodes, E edges and
r connected components, the number of fundamental cycles NFC is:

NFC = E − V + r

This number is also called cycle rank or circuit rank.

Two graphs G1 and G2 are said to be isomorphic if they have the same number
of vertices and edges, and their edge connectivity is preserved.

3. Decomposition of polyhedra to convex pieces

We consider 3-triangulations (when possible) of polyhedra by decomposing them
into convex pieces and forming a graph representing that decomposition. For this
reason, we need the following definitions.

Definition 3.1. A polyhedron is piecewise convex if it can be divided into finitely
many convex polyhedra Pi, i = 1, . . . ,m, with disjoint interiors. A pair of above
polyhedra Pi, Pj is said to be neighbouring if they have a common face called contact
face.

If the above polyhedra Pi and Pj are not neighbouring, they may have a common
edge e or a common vertex v. That is possible iff there is a sequence of neighbouring
polyhedra Pi, Pi+1, . . . , Pi+k ≡ Pj such that the edge e, or the vertex v belongs to
each contact face fl common to Pl and Pl+1, l ∈ {i, . . . , i + k − 1}. Otherwise,
polyhedra Pi and Pj do not have common points.
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Remark 3.1. A piecewise convex polyhedron, especially a piecewise convex toroid can
be 3-triangulated, because the same is true for its convex pieces. Namely, we can first
make a common 2-triangulation of the contact faces, and then, taking into account the
new triangular faces, 3-triangulate convex pieces.

On the other hand, each 3-triangulable polyhedron is a collection of connected tetra-
hedra and so it is piecewise convex.

Definition 3.2. If a polyhedron P is piecewise convex, its connection graph (or
its graph of connection) is a graph whose nodes represent convex polyhedra Pi,
i = 1, . . . ,m, the pieces of P , and edges represent contact faces between them.

It is obvious that connection graphs are connected and undirected. Some special
types of connection graphs will be useful for our further consideration.

Definition 3.3. An m-division of a polyhedron is a division in which the tetrahe-
dra participating in the minimal 3-triangulations of the pieces are at the same time
participating in the minimal 3-triangulation of the whole polyhedron. A connection
graph of a given polyhedron is an m-graph if it represents an m-division of that
polyhedron.

Remark 3.2. Note that the m-division and thus the m-graph of a polyhedron is not
unique. The convex pieces of the m-division can be either separate tetrahedra or their
different collections. Besides that, more possibilities for minimal 3-triangulation of the
same polyhedron may appear.

On the other hand, it is obvious that there exists at least one m-division of a given
3-triangulable polyhedron. It is its partition into tetrahedra that participate in minimal
3-triangulation.

In order to have the same number of handles for the considered toroid P and
number of basic cycles of the corresponding connection graph G we introduce term
optimized graph of connection. If G has some of the cycles which do not correspond
to some handle of P , such situation can interfere us in proving the theorem. We
call such a cycle false. An example of a toroid P with connection graph that has
false cycle is given in [11].

Let us consider a toroid P and its connection graph G that have one or more
false cycles. For each of the false cycles, note all the nodes that belong to it and
the corresponding convex pieces of P . The union of such convex pieces for each
false cycle builds a new node of optimized graph Ĝ. The other nodes of the graph
G remain in Ĝ and we call them the old ones. The edges between the old nodes
remain in Ĝ. The edges of G between some old node and some node belonging to a
false cycle are converted to the edge of Ĝ between that old node and the new one.

The optimized graph Ĝ has the same number of basic cycles as the number of
handles of the starting toroid P . Note that it is not necessary that the new nodes
of the optimized graph to correspond to convex polyhedra, they only correspond to
simple piecewise convex polyhedra. Also, if the graph G is an m-graph, the same
property holds for the graph Ĝ.
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4. The minimal number of tetrahedra in 3-triangulation of toroids

In [12] the next theorem for 1-toroids is proved:

Theorem 4.1. If a 1-toroid with n ≥ 7 vertices can be 3-triangulated, then the
minimal number of tetrahedra in that triangulation is Tmin ≥ n.

The corresponding theorem for 2-toroids is given in [13].

Theorem 4.2. If it is possible to 3-triangulate a 2-toroid with n ≥ 10 vertices,
then the minimal number of tetrahedra for that triangulation is Tmin ≥ n+ 3.

Using the previous two Theorems in [11] the Theorem 4.3 is proved.

Theorem 4.3. If a p-toroid with n vertices can be 3-triangulated, then the minimal
number of tetrahedra necessary for its 3-triangulation is Tmin ≥ n+ 3(p− 1).

Here, we give the second proof of the same theorem. As it was mentioned before,
this proof provides a different point of view, showing also additional properties of
the connection graph.

Proof. As in the first proof, here we also use the mathematical induction for
this purpose. Theorems 4.1 and 4.2 are again the starting steps, which guarantee
that the statement is true for k = 1, 2. Note that statement is also true for a simple
polyhedron, where we can assume that k = 0, because it holds Tmin ≥ n− 3.

Let us suppose that statement is true for any h ≤ k, (k ∈ N ∪ {0}) i.e.

If a h-toroid (h ≤ k ∈ N ∪ {0}) with n vertices can be 3-triangulated, then
the minimal number of tetrahedra necessary for its 3-triangulation is Tmin ≥
n+ 3(h− 1).

In the optimized m-graph G of the (k + 1)-toroid P with n vertices, observe a
node d that belongs to some of the cycles (Figure 4.1). Let us denote by c degree
of the node d.

We introduce a subgraph G̃ of G that contains only the node d, and subgraph
Ḡ a of G obtained after excluding the node d and all c edges of G with d as an
endpoint.

The graph Ḡ can have more components, say r ≥ 1. We can assume that edges
with d as an endpoint are arranged into r groups, one for each component. So we’ll
mark the graph components of Ḡ with Gj , 1 ≤ j ≤ r, and edges connecting node
d with this component with ej,ij , 1 ≤ ij ≤ cj , where cj is the number of edges in
group j. In some groups there may be only one edge ej,1 (i.e. cj = 1), but not in
all of them, since d belongs to some cycles. Moreover, as node d belongs to cycle(s),
it follows that r < c. Each subgraph Gj have at least cj nodes, and (if cj ≥ 2) the
edges connecting them.
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Fig. 4.1: Graph G and node d, where k + 1 = 11, c = 9, r = 5, q = 7

Let us first consider groups with cj ≥ 2. After the eventual change of the cycle
base, edges ej,1, ej,2, . . . , ej,cj , belong to cj − 1 basic cycles, placed between ej,ij
and ej,ij+1, 1 ≤ ij ≤ cj − 1 (see also Remark 4.1). After excluding the edges
ej,1, ej,2, . . . , ej,cj , the number of basic cycles in the rest of graph G would decrease
by cj − 1.

If ej,1 is the only one edge in the group, i.e. cj = 1 , its exclusion would keep
the number of basic cycles, so again cj − 1 = 0. The corresponding disconnected
component Gj of Ḡ consists of at least another node of ej,1, opposite to the node d.

As excluding the edges ej,1, ej,2, . . . , ej,cj reduces the number of basic cycles, the
sum of the basic cycles of all components of Ḡ is q ≤ k. More precisely,

q = k + 1−
r∑

j=1

(cj − 1) = k + 1−
r∑

j=1

cj + r = k + 1− c+ r.

The observed subgraphs G̃ and G1, G2, . . . Gr are the connection graphs for some
subpolyhedra of the polyhedron P . Moreover, the polyhedron S̃ obtained from G̃ is
simple, while the components G1, G2, . . . Gr lead to toroids or simple polyhedra (i.e.
0-toroids) P1, P2, . . . Pr, with resp. q1, q2, . . . qr handles where q1 + q2 + . . . + qr =
q(≤ k).

Denote by nS the number of vertices of S̃ and by n1, n2, . . . nr those of P1, P2, . . . ,
Pr. These pieces are connected by c contact faces, one for each of the edges ej,ij ,
1 ≤ ij ≤ cj , 1 ≤ j ≤ r. Contact faces have resp. t1, t2, . . . , tc (t1, t2, . . . , tc ≥ 3)

vertices. Taking into account that the separation of S̃ from the toroids Pj , 1 ≤ j ≤ r,
duplicates the contact faces, we conclude

n = nS + n1 + n2 + . . .+ nr − (t1 + t2 + . . .+ tc).
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Then using the induction hypothesis

Tmin(P ) = Tmin(P1) + Tmin(P2) + . . .+ Tmin(Pr) + Tmin(S̃) ≥
≥ (n1 + 3(q1 − 1)) + . . .+ (nr + 3(qr − 1)) + (nS − 3) =

= n1 + n2 + . . .+ nr + nS + 3(q − r − 1) =

= n+ t1 + t2 + . . .+ tc + 3(q − r − 1) ≥
≥ n+ 3(c+ q − r − 1) =

= n+ 3(c+ (k + 1− c+ r)− r − 1) =

= n+ 3 ((k + 1)− 1) .

Thus the statement is proved.

Remark 4.1. Note that if, for example, the edges ej,1, ej,2, . . . , ej,cj , 1 ≤ j ≤ r, cj ≥ 2
belong to cj cycles: cj − 1 of them between ej,ij and ej,ij+1, 1 ≤ ij ≤ cj − 1 and one of
them between ej,cj and ej,1, then after excluding (node d and) the edges ej,1, ej,2, . . . , ej,cj ,
the previous cj cycles would merge into a new one and the number of basic cycles would
decrease by cj −1. So, in the initial cycle basis, we can replace the cycle between ej,cj and
ej,1 with the merged cycle and the situation would be the same as the one mentioned in
the proof of the Theorem 4.3.

Using graph theory, we can conclude that if we exclude (one) node d with c edges and
if after that process r connected components remain in the graph, then the number of
fundamental cycles after these removals would be

q = (k + 1)− c+ 1 + (r − 1)

which is the same result as the one obtained in the proof of the Theorem 4.3.

5. Connection graphs of convex polyhedra

For any convex polyhedron, the simplest connection graph consists of a single
node. Of course, other more precise connection graphs can be formed, showing e.g.
how the polyhedron is 3-triangulated. In this case, the nodes of the graph would
represent the tetrahedra in the considered triangulation. Here, we shall consider
two types of triangulations described in [10], and their connection graphs.

1. The ”Greedy Peeling” (GP) algorithm for triangulating a given polyhedron P
is iterative and is described below. Take a vertex of the smallest order (an arbitrary
one in the case that there are more such vertices) and discard the triangulated
”pyramid” which consists of the mentioned vertex and its neighbour vertices. 2-
triangulate the new surface of the remaining polyhedron in such a way that the
whole triangulation would be face to face. All this has to be done in such a way
to get a new polyhedron, which is convex. Then repeat everything with the new
polyhedron. At the end of such triangulation there remains only one tetrahedron.
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Fig. 5.1: Icosahedron

Let’s apply the GP algorithm to the icosahedron (Figure 5.1). Denote by V1

and V2 its opposite vertices, and by A1, B1, C1, D1, E1 and A2, B2, C2, D2, E2

vertices of space pentagons connected with V1, resp. V2, and chosen in such a way
that the icosahedron contains edges A1A2 and A1B2. Then a GP triangulation with
17 tetrahedra was obtained in [10] by discarding vertices in the following order and
adding new edges marked in parentheses: A1 (V1A2, V1B2), B1 (V1C2), C1 (V1D2),
D1 (D2E1), E1 (V1E2), E2 (A2D2), V1 (A2C2), B2. There remains the tetrahedron
A2C2D2V2.

Here, for the described triangulation the nodes of the connection graph are
introduced by the following list, while the graph is given in Figure 5.2.

Node number 1 2 3 4 5
Tetrahedron A1V1A2E1 A1V1A2B2 A1V1B1B2 B1V1C2C1 B1V1C2B2

6 7 8 9 10 11
C1V1D2D1 C1V1D2C2 D1D2E1V1 D1D2E1E2 E1V1E2D2 E1V1E2A2

12 13 14 15 16 17
E2A2D2V1 E2A2D2V2 V1A2C2B2 V1A2C2D2 B2A2C2V2 A2C2D2V2

As we can notice, the graph in the Figure 5.2 is not plane graph (it has inter-
secting edges). If we modify this graph by introducing a new node that represents
three collected tetrahedra, that form a new polyhedron P , then we can get a new
graph that is plane graph (Figure 5.3). Collected tetrahedra originally correspond
to nodes 14, 15, 17. Observe that the original node 16 is doubly connected to the
new node. This means that corresponding tetrahedra B2A2C2V2 to the node 16 is
connected to the new polyhedron P with two faces, moreover P is not convex. If we
annex the tetrahedron B2A2C2V2 to P to form a larger polyhedron, we get a graph
that is at the same time plane graph and all its nodes represent convex polyhedra.
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Fig. 5.2: Connection graph for GP triangulation of icosahedron

Fig. 5.3: Modified graph for GP triangulation of icosahedron
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2. Let us consider the connection graph for the cone triangulation defined as
follows.

Definition 5.1. 3-Triangulation in which one of the vertices V is the common
apex, which builds a tetrahedron with each triangular face of the polyhedron, except
these containing apex is cone triangulation.

The cone triangulation is known as that which gives a small number of tetrahedra
[9, 10, 15]. By the Euler’s theorem, if a polyhedron P with n vertices has only
triangular faces, then the number of faces is 2n − 4. Each polyhedron with n ≥
13 vertices has at least one vertex of order 6 or more. Therefore the number of
tetrahedra in cone triangulation of P with n ≥ 13 is at most 2n− 10.

As before, for the cone triangulation of a convex polyhedron P we can form the
connection graph G in such a way that nodes represent tetrahedra of the triangu-
lation. E.g. the connection graph of the cone triangulation for the icosahedron is
given in Figure 5.4.

Fig. 5.4: Connection graph for cone triangulation of icosahedron

We claim that the graph G is related to the dual polyhedron of the P . Duality
is introduced as follows.

Definition 5.2. For a convex polyhedron P , the Q is its dual polyhedron if the
vertices of one of them correspond to the faces of the other, and the edges between
pairs of vertices of one correspond to the edges between pairs of faces of the other.

We can consider vertices and edges of a convex polyhedron P as a graph GP .
Then vertices and edges of its dual polyhedron Q form a graph GQ. If we exclude
vertices of Q that correspond to the triangular faces of P with the apex V as a one
of vertices, and edges of Q containing these vertices, then it remains the subgraph
G′

Q of GQ. We claim that G′
Q is isomorphic to connection graph G representing

cone triangulation of P .

If we denote with G′
P subgraph of GP , obtained from GP by excluding the vertex

V and the edges containing it, then we can also think about GQ as dual graph of
GP and about G′

Q as weak dual graph of G′
P . Namely in graph theory
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Definition 5.3. The dual graph of a planar graph G is a graph that has a node
for each ’face’ of G. The dual graph has an edge for each pair of faces in G that are
separated from each other by an edge, and a self-loop when the same face appears
on both sides of an edge.

The weak dual graph of a plane graph is the subgraph of the dual graph whose
nodes correspond to the bounded faces of the original graph.

In introducing this definition we have problem with term ’face’ of the graph.
More precisely, the definition of the dual graph (and so of weak dual) depends on
the choice of embedding of the graph G. That is the reason the dual graph is rather
a property of plane graphs (graphs that are already embedded in the plane) than
planar graphs (graphs that may be embedded but for which the embedding is not yet
known). For planar graphs generally, there may be multiple dual graphs, depending
on the choice of planar embedding of the graph. In our case, the structure of the
polyhedron P uniquely determines G′

Q as weak dual graph of G′
P . The polyhedral

graphs and their dual ones are also considered in [4].

So we can formulate Theorem 5.1 about connection graph of cone triangulation.
The proof is illustrated in Figure 5.5.

Theorem 5.1. If GQ is the graph which consists of vertices and edges of poly-
hedron Q dual to a given convex polyhedron P , then the connection graph G re-
presenting cone triangulation of P is the subgraph of GQ. Moreover, graph G is
planar.

Proof. For each tetrahedron of cone triangulation of P with apex V , chose
one inner point Ai. Then project whole polyhedron P and chosen points Ai by the
central projection π from the apex V , to a plane α (V /∈ α). If GP is the graph
which consists of vertices and edges of polyhedron P then the central projection
is giving graph Ḡ′

P which is isomorphic to a subgraph of GP . In fact, each edge
of P containing V as a end-point is whole projected to one point, the same one
as the projection of its other end-point. Projection of other vertices and edges is
giving similar structure as original ones in corresponding ’part’ of starting graph
GP , i.e. it is making isomorphic subgraph of GP . More precisely, Ḡ′

P is isomorphic
to previously introduced graph G′

P . Furthermore, Ḡ′
P is plane graph.

The projection of points Ai to Āi ∈ α is done by the rays from V passing
through inner points Bi of the triangular faces of P . Note that the points Bi can be
considered as the vertices of the dual polyhedron Q of P . Also, the edges between
Bi’s in Q are corresponding to lines connecting Ai’s from neighbour tetrahedra in
triangulation of P . This means the projection π of points Ai and lines between
them (and so of Bi and edges between them), form the graph G ≡ Ḡ representing
cone triangulation of P . At the same time, this projection gives a graph that is
obviously isomorphic to the subgraph of GQ or, more precisely, according to our
earlier notation, it is isomorphic to G′

Q. So, as we claimed, G is planar graph
isomorphic to subgraph of GQ.
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Fig. 5.5: Connection graph for cone triangulation of polyhedron P

6. Summary

Here, properties of the connection graph for 3-triangulation were investigated.
Moreover, in addition to considering triangulations of toroids and other non-convex
polyhedra, new applications of connection graphs for convex polyhedra are given.

As shown by the discussions in [5, 14] as well as in this paper, the space of
realization of a connection graph can be an important property, so it would be
good to take it into account in further investigation.

Also, in some future investigations, based on the algorithm for finding triangular
faces of a given polyhedron P , given in [15], an algorithm for forming the connection
graph G that represents the cone triangulation of P can be given.

Some future topic can also be, e.g. forming connection graphs for n-dimensional
triangulations of polytopes, with the aim to consider them more easily.
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