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Abstract. The first purpose of this article is to examine the structure of an S/P
quotient ring, where S is any ring and P is the semiprime ideal of S. More specifically,
we look at differential identities in the semiprime ideal of an arbitrary ring using the
P -commuting homoderivations.
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1. Introduction

Let S will be an associative ring with center Z. For any a1, a2 ∈ S the symbol
[a1, a2] represents the Lie commutator a1a2−a2a1 and the Jordan product a1oa2 =
a1a2 + a2a1. Recall that an ideal P of S is said to be prime if P ̸= S and for all
a1, a2 ∈ S, a1Sa2 ⊆ P implies that a1 ∈ P or a2 ∈ P . Therefore, S is called a prime
ring if the ideal (0) is prime. P is a semiprime ideal if P ̸= S and for all a1 ∈ S,
a1Sa1 ⊆ P implies that a1 ∈ P and S is a semiprime ring if P = 0 is a semiprime
ideal of S.

Let P be a nonempty subset of S. A mapping F from S to S is called commuting
on P if [F (a1), a1] = 0, for all a1 ∈ P . This definition has been generalized such
as: A map F : S → S is called a P−commuting map on P if [F (a1), a1] ∈ P, for
all x ∈ P and some P ⊂ S. In particular, if P = 0, then F is called a commuting
map on S if [F (a1), a1] = 0. Note that every commuting map is a P−commuting
map (put 0 = P ). But the converse is not true in general.
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The first well-known result on commuting maps is Posner’s Second Theorem in
[10]. This theorem states that the existence of a nonzero commuting derivation on
a prime ring S implies S to be commutative. By a derivation, we mean an additive
mapping d : S → S such that d(a1a2) = d(a1)a2 + a1d(a2) for all a1, a2 ∈ S. Over
the last several years, a number of authors studied commutativity theorems for
prime rings admitting automorphisms or derivations on appropriate subsets of S.

In 2000, M. M. El Sofy Aly [7] defined a homoderivation on S as an additive
mapping } : S → S satisfying }(a1a2) = }(a1)}(a2) + }(a1)a2 + a1}(a2) for all
a1, a2 ∈ S. An example of such mapping is to let }(a1) = f(a1)−a1, for all a1, a2 ∈ S
where f is an endomorphism on S. Another example can be given as follows: The
additive mapping } : S → S defined by }(a1) = −a1 is a homoderivation of S.

In [6], Daif and Bell proved that S is semiprime ring, I is a nonzero ideal of S
and d is a derivation of S such that d([a1, a2]) = ±[a1, a2], for all a1, a2 ∈ I, then
S contains a nonzero central ideal. Further, Hongan [8] extended this theorem as
follows: Let S be a 2-torsion free semiprime ring and I a nonzero ideal of S and d
a derivation of S. If d([a1, a2])± [a1, a2] ∈ Z, for all a1, a2 ∈ I, then I ⊆ Z.

Recently, Quadri et al. [11] generalized this result replacing derivation d with a
generalized derivation in a prime ring S. More precisely, they proved the following:

Let S be a prime ring and I a nonzero ideal of S. If S admits a generalized
derivation F associated with a nonzero derivation d such that any one of the follow-
ing holds : (i) F ([a1, a2]) = [a1, a2] for all a1, a2 ∈ I; (ii)F ([a1, a2]) = −[a1, a2] for
all a1, a2 ∈ I; (iii) F (a1oa2) = (a1oa2) for all a1, a2 ∈ I; (iv) F (a1oa2) = −(a1oa2)
for all a1, a2 ∈ I; then S is commutative.

M. Ashraf et al. [4] proved that a prime ring S must be commutative, if S
satisfies any one of the following conditions: (i)f(a1a2) = a1a2, (ii)f(a1)f(a2) =
a1a2, where is a generalized derivation of S and I is a nonzero two-sided ideal of S.
In [5], M. Ashraf and N. Rehman showed that a prime ring S with a nonzero ideal
I must be commutative if it admits a derivation d satisfying either of the properties
d(a1a2) + a1a2 ∈ Z or d(a1a2)− a1a2 ∈ Z; for all a1, a2 ∈ I.

In 2020, to extend the theory of derivations rings, which has been studied for
years, Almahdi et al set out to examine the derivations of a random ring S satisfying
some P -valued conditions where P is the prime ideal of S. As an important devel-
opment in this work, they stated the theorem known as Posner’s Second Theorem
as follows:

Let S be a ring, P is a prime ideal of S and d a derivation of S. If [[d (a1) , a1] , a2] ∈
P for all a1, a2 ∈ S, then d (S) ⊆ P or S/P is commutative.

Our aim in this study is to examine the differential identities in the semiprime
ideal of an arbitrary ring by using homoderivations and to generalize some results
from previous articles with the help of homoderivations.
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2. Results

For any a1, a2, a3 ∈ S, as usual [a1, a2] = a1a2 − a2a1 and a1oa2 = a1a2 + a2a1 will
denote the well-known Lie and Jordan product, respectively and make extensive
use of basic commutator identities:

[a1, a2a3] = a2[a1, a3] + [a1, a2]a3

[a1a2, a3] = [a1, a3]a2 + a1[a2, a3]

a1o(a2a3) = (a1oa2)a3 − a2[a1, a3] = a2(a1oa3) + [a1, a2]a3

(a1a2)oa3 = a1(a2oa3)− [a1, a3]a2 = (a1oa3)a2 + a1[a2, a3].

Remark 2.1. For all a1, a2 ∈ S, we get

}([a1, a2]) = }(a1a2 − a2a1) = }(a1a2)− }(a2a1)

= }(a1)}(a2) + }(a1)a2 + a1}(a2)− }(a2)}(a1)− }(a2)a1 − a2}(a1)

= [}(a1), }(a2)] + [}(a1), a2] + [a1, }(a2)].

Every prime ideal is a semiprime ideal, but the reverse is not true. For this rea-
son, it is more important to examine identities containing derivations in semiprime
ideals. In this study, which is an extension and generalization of the existing findings
in the literature, we will conduct a new research. We will make use of homoderiva-
tions when examining differential properties in the semiprime ideal of an arbitrary
ring.

Lemma 2.1. [3, Lemma 1] Let S be a ring with P a semiprime ideal of S such
that P ( I, I an ideal of S, and a ∈ I such that axa ∈ P for all x ∈ I, then a ∈ P.

Theorem 2.1. Let I be a nonzero ideal, P a semiprime ideal of a ring S such
that P ( I. If } a nonzero homoderivation of S satisfies any one of the conditions

1. }([a1, a2]) ∈ P,

2. }(a1oa2) ∈ P for all a1, a2 ∈ I, then } is P -commuting on I.

Proof. (1) By the hypothesis, we have

(2.1) }([a1, a2]) ∈ P for all a1, a2 ∈ I.

Writing a2a1 instead of a2 in (2.1), we get

}([a1, a2])}(a1) + }([a1, a2])a1 + [a1, a2]}(a1) ∈ P for all a1, a2 ∈ I.

By using the hypothesis, we obtain that

(2.2) [a1, a2]}(a1) ∈ P for all a1, a2 ∈ I.

Writing ra2 for a2, r ∈ S in last relation, we arrive at

(2.3) [a1, r]a2}(a1) ∈ P for all a1, a2 ∈ I, r ∈ S.
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Replacing a2a1 instead of a2 in (2.3), we get

(2.4) [a1, r]a2a1}(a1) ∈ P for all a1, a2 ∈ I, r ∈ S.

Multiplying (2.3) by a1 from the right, we get

(2.5) [a1, r]a2}(a1)a1 ∈ P for all a1, a2 ∈ I, r ∈ S.

Subtracting expressions (2.4) and (2.5) we get that

(2.6) [a1, r]a2 [}(a1), a1] ∈ P for all a1, a2 ∈ I, r ∈ S.

Writing }(a1) instead of r in last expression, we get

[}(a1), a1]a2 [}(a1), a1] ∈ P for all a1, a2 ∈ I.

It follows that
[}(a1), a1]I [}(a1), a1] ∈ P for all a1, a2 ∈ I.

By Lemma 1, we arrive at [}(a1), a1] ∈ P for all a1 ∈ I. Hence } is P -commuting
on I.

(2) By the hypothesis, we have

(2.7) }(a1oa2) ∈ P for all a1, a2 ∈ I.

Writing a2a1 instead of a2 in (2.7) and by expanding the expression, we get

}(a1oa2)}(a1) + }(a1oa2)a1 + (a1oa2) }(a1) ∈ P for all a1, a2 ∈ I.

Using (2.7) in last relation, we obtain that

(2.8) (a1oa2) }(a1) ∈ P for all a1, a2 ∈ I.

Substituting ra2 for a2,where r ∈ S in (2.8), we find that

r (a1oa2) }(a1) + [a1, r] a2}(a1) ∈ P for all a1, a2 ∈ I, r ∈ S.

Using (2.8), we get

(2.9) [a1, r] a2}(a1) ∈ P for all a1, a2 ∈ I, r ∈ S.

Replace a2 by a2a1 in (2.9), we get

(2.10) [a1, r] a2a1}(a1) ∈ P for all a1, a2 ∈ I, r ∈ S.

Multiplying (2.9) by a1 from the right, we have

(2.11) [a1, r] a2}(a1)a1 ∈ P for all a1, a2 ∈ I, r ∈ S.

Combining (2.10) and (2.11), we obtain that

[a1, r] a2 [}(a1), a1] ∈ P for all a1, a2 ∈ I, r ∈ S
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that is
[a1, r]I [}(a1), a1] ∈ P for all a1, a2 ∈ I, r ∈ S.

Writing r by }(a1) in this relation, we find that

[}(a1), a1]I [}(a1), a1] ∈ P for all a1 ∈ I.

By Lemma 1, we obtain that [}(a1), a1] ∈ P for all a1 ∈ I. This means } is P -
commuting on I.

Theorem 2.2. Let I be a nonzero ideal, P a semiprime ideal of a ring S such that
P ( I and char(S/P ) ̸= 2. If } a nonzero homoderivation of S satisfies condition
}([a1, a2])− [a1, a2] ∈ P, for all a1, a2 ∈ I, then } is P -commuting on I.

Proof. By the hypothesis, we have

(2.12) }([a1, a2])− [a1, a2] ∈ P, for all a1, a2 ∈ I.

Writing a2 by [a1, a2] in (2.12) and using the remark given above, we get

[} (a1) , } ([a1, a2])]+[}(a1), [a1, a2]]+[a1, } ([a1, a2])]−[a1, [a1, a2]] ∈ P, for all a1, a2 ∈ I.

Using (2.12), we arrive at

(2.13) [} (a1) , } ([a1, a2])] + [}(a1), [a1, a2]] ∈ P, for all a1, a2 ∈ I.

Editing the last expression, we have

[} (a1) , } ([a1, a2])]+[}(a1), [a1, a2]]−[} (a1) , [a1, a2]]+[} (a1) , [a1, a2]] ∈ P, for all a1, a2 ∈ I.

Using the (2.12), we have

2 [}(a1), [a1, a2]] ∈ P, for all a1, a2 ∈ I.

Since char(S/P ) ̸= 2, we have

(2.14) [}(a1), [a1, a2]] ∈ P, for all a1, a2 ∈ I.

Writing a2a1 instead of a2 in (2.14) and using (2.14), we obtain that

(2.15) [a1, a2][}(a1), a1] ∈ P, for all a1, a2 ∈ I.

Taking ra2, r ∈ S for a2 in (2.15) and using this, we have

[a1, r]a2[}(a1), a1] ∈ P for all a1, a2 ∈ I, r ∈ S.

Writing }(a1) instead of r this relation

[a1, }(a1)]a2[}(a1), a1] ∈ P for all a1 ∈ I

and so
[}(a1), a1]I[}(a1), a1] ∈ P for all a1 ∈ I.

By Lemma 1, we get that [}(a1), a1] ∈ P for all a1 ∈ I. As a result } is P -commuting
on I.
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Theorem 2.3. Let I be a nonzero ideal, P a semiprime ideal of a ring S such that
P ( I and char(S/P ) ̸= 2. If } a nonzero homoderivation of S satisfies condition
}(a1oa2)− a1oa2 ∈ P, for all a1, a2 ∈ I, then } is P -commuting on I.

Proof. By the hypothesis, we have

(2.16) }(a1oa2)− a1oa2 ∈ P, for all a1, a2 ∈ I.

Writing a2 by a2a1 in (2.16) and using it, we get

} ((a1oa2) a1)−(a1oa2) a1 = }(a1oa2)} (a1)+}(a1oa2)a1+(a1oa2) } (a1)−(a1oa2) a1 ∈ P

and so

(2.17) }(a1oa2)} (a1) + (a1oa2) } (a1) ∈ P, for all a1, a2 ∈ I.

Editing the last expression, we obtain that

}(a1oa2)} (a1)+(a1oa2) } (a1)−(a1oa2) } (a1)+(a1oa2) } (a1) ∈ P, for all a1, a2 ∈ I.

Using the (2.16), we have

2 (a1oa2) } (a1) ∈ P, for all a1, a2 ∈ I.

Since char(S/P ) ̸= 2, we obtain that

(2.18) (a1oa2) } (a1) ∈ P, for all a1, a2 ∈ I.

This last expression obtained is similar to expression (2.8) in the proof of Theorem
1(2). Therefore, by applying similar techniques, the desired result is achieved.

Theorem 2.4. Let I be a nonzero ideal, P a semiprime ideal of a ring S such
that , P ( I and char(S/P ) ̸= 2. If } a nonzero homoderivation of S satisfies any
one of the condition

1. }(a1a2)− a1a2 ∈ P,

2. }(a1a2)− a2a1 ∈ P, for all a1, a2 ∈ I, then } is P -commuting on I.

Proof. (1) By the hypothesis, we have

(2.19) }(a1a2)− a1a2 ∈ P, for all a1, a2 ∈ I.

Swapping the roles of a1 and a2 in (2.19), we get

(2.20) }(a2a1)− a2a1 ∈ P, for all a1, a2 ∈ I.

The expressions for (2.19) and (2.20) together give that

}([a1, a2])− [a1, a2] ∈ P, for all a1, a2 ∈ I.



Semiprime Ideals and P−commuting Homoderivations on Ideals 7

This expression is same as the assertion (1) of Theorem 2. Using the same arguments
in there, we get the required result.

(2) By the hypothesis, we get

(2.21) }(a1a2)− a2a1 ∈ P, for all a1, a2 ∈ I.

Swapping the roles of a1 and a2 in (2.21), we have

(2.22) }(a2a1)− a1a2 ∈ P, for all a1, a2 ∈ I.

Combining (2.21) and (2.22), we get

} (a1oa2)− (a1oa2) ∈ P, for all a1, a2 ∈ I.

The last expression is the same as Theorem 3 (1). Therefore, the desired result is
obtained by the proof of Theorem 3 (1).

Theorem 2.5. Let I be a nonzero ideal, P a semiprime ideal of a ring S such
that , P ( I. If } a nonzero homoderivation of S satisfies any one of the conditio

1. }(a1a2) + [a1, a2] ∈ P,

2. }(a1a2) + (a1oa2) ∈ P, for all a1, a2 ∈ I, then } is P -commuting on I.

Proof. By the hypothesis, we have

(2.23) }(a1a2) + [a1, a2] ∈ P, for all a1, a2 ∈ I.

Writing a2a1 instead of a2 in (2.23), we have

}(a1a2)}(a1) + }(a1a2)a1 + a1a2}(a1) + [a1, a2] a1 ∈ P, for all a1, a2 ∈ I.

Using (2.23), we get

(2.24) }(a1a2)}(a1) + a1a2}(a1) ∈ P, for all a1, a2 ∈ I.

This expression can be written as

}(a1a2)}(a1) + a1a2}(a1)− a2a1}(a1) + a2a1}(a1)
= }(a1a2)}(a1) + [a1, a2] }(a1) + a2a1}(a1) ∈ P.(2.25)

Using the hypothesis, we get

a2a1}(a1) ∈ P, for all a1, a2 ∈ I.

Replacing a2 by a1}(a1)a3 in last relation, we have

a1}(a1)a3a1}(a1) ∈ P, for all a1, a2, a3 ∈ I

and so
a1}(a1)Ia1}(a1) ∈ P, for all a1, a2 ∈ I
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By Lemma 1, we obtain that

a1}(a1) ∈ P, for all a1 ∈ I.

Now, substituting a1a2 for a1 in (2.23) and applying similar operations above, we
get

}(a1)a1 ∈ P, for all a1 ∈ I.

From the last two expressions we get that

[}(a1), a1] ∈ P, for all a1 ∈ I.

This means } is P -commuting on I. So the proof is complete.

(2) By the hypothesis, we get

(2.26) }(a1a2) + (a1oa2) ∈ P, for all a1 ∈ I.

Replacing a2 by a2a1 in (2.26), and using (2.26), we obtain that

}(a1a2)}(a1) + a1a2}(a1) ∈ P, for all a1, a2 ∈ I.

Last expression is same as (2.24). Now by following the same steps as after (2.24),
we get required result.

Example 2.1. Consider the ring S =


 0 0 0

a 0 b
c 0 0

 | a, c, b ∈ R

. Let

P =


 0 0 0

a 0 0
c 0 0

 | a, c ∈ R

 be an ideal of S and } : S → S be a map defined

by

}

 0 0 0
a 0 b
c 0 0

 =

 0 0 0
a 0 0
c 0 0

 .

Here, } is a nonzero homoderivation of the ring S. Also, it is clear that the ideal P
is not semiprime ideal. The conditions in the above theorems are satisfied but } is not
P -commuting.
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