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Ser. Math. Inform. Vol. 40, No 3 (2025), 655–669

https://doi.org/10.22190/FUMI240731045S

Original Scientific Paper

RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR FIELDS
ON THE MODEL SPACE Sol40

Mahin Sohrabpour1 and Shahroud Azami2

1 Faculty of Science, Department of Pour mathematics

Imam Khomeini International University, Qazvin, Iran
2 Faculty of Electronic Engineering, Department of Pour mathematics

Imam Khomeini International University, Qazvin, Iran

Abstract. In this paper, we classify the Ricci solitons and the Ricci bi-conformal vector
fields on model space Sol40. We also show which of them are gradient vector fields and
which one of those are Killing vector fields.
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1. Introduction

The study of conformal vector fields in geometry and physics has been an im-
portant subject. In general conformal vector fields preserve angles and ratios of
distances between points on the manifolds. Suppose (M, g) be a Riemannian mani-
fold, X a smooth vector field, and f a smooth function on M . Thus (M, g) is called
a conformal vector field when the following equation holds

LXg = fg,

LX is the Lie derivative along X. So if the function f = 0 , X is a Killing vector
field. X is said to be a gradient conformal vector field when X is the gradient of a
smooth function. Completely in [8, 9], the conformal vector field is explained. At
first, bi-conformal vector fields were introduced by Garcia-Parrado and Senovilla

Received: July 31, 2024, revised: September 12, 2024, accepted: September 12, 2024
Communicated by Uday Chand De
Corresponding Author: M. Sohrabpour
E-mail addresses: m.sohrabpour@edu.ikiu.ac.ir (M. Sohrabpour), azami@sci.ikiu.ac.ir (S. Azami)
2020 Mathematics Subject Classification. 53C21, 53E20, 53C50
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[15], then Ricci bi-conformal vector fields were defined by De et al. in [7]. Presume
that α and β are smooth functions and Y,Z are vector fields, the vector field X is
called a Ricci bi-conformal vector field when the following equations are true

(LXg)(Y, Z) = αg(Y,Z) + βS(Y,Z),(1.1)

and
(LXS)(Y, Z) = αS(Y, Z) + βg(Y,Z),(1.2)

where S denotes the Ricci tensor of M . The relationship between the existence
of certain holomorphic structures in complex manifolds is one of the geometric
properties of bi-conformal vector fields. Also, in [15] the authors showed that the
bi-conformal vector fields can be concluded with the flow of the bi-conformal vector
fields, which is the geometrical interpretation of these vector fields of the generalized
regular motions of two orthogonal projectors. In [2], [3], [4], [5] and [19] Ricci bi-
conformal vector fields on Lorentzian five-dimensional two-step nilpotent Lie groups,
Siklos spacetimes, homogeneous Gödel-type spacetimes, H2 × R, and Lorentzian
Walker manifolds, have been studied respectively.

Studies about Ricci’s solitons play important roles in geometry and physics that
are natural generalizations of Einstein’s metrics. At first, Ricci soliton was studied
in Lorentzian manifolds and was offered by Hamilton [16]. Therefore, on a pseudo-
Riemannian manifold (M, g) we define Ricci soliton as follows

LXg + S = λg,(1.3)

where X is a smooth vector field on M , and λ is a real number [6]. If we consider
λ as a smooth function on M , then it is said to be an almost Ricci soliton. A
Ricci soliton was developed as a self-similar solution to the Ricci flow. Solving
Poincare century-old conjecture is the first importance of using the Ricci soliton.
Then, its applications were investigated in various fields of economics and science.
Ricci solitons are useful in various sciences such as physics [14], biology, chemistry
[17], and economics [21]. Also, the importance of Ricci soliton and Ricci flow can be
seen in medical imaging of brain surfaces [25]. Moreover, the algebraic Ricci solitons
of three-dimensional Lie group H2 × R, have been studied in [1]. In addition, the
presence of sol-solitons on the three-dimensional Lie group Sol3, has been checked.

The connected pseudo-Riemannian manifold (M, g) is called homogeneous, if
the group of isometries of (M, g) transitively acts on M . Study Riemannian homo-
geneous spaces are common in geometry, algebra, and group theory. A Thurston
geometry (G,X) is a homogeneous space where we have is connected and simply
connected X; let G be a group, and there is a compact point stabilizer that G
acts on X transitively, and only one compact manifold exists that it is composed of
(G,X), so G is not included in any larger group of diffeomorphisms of X. Thurston
geometry is studied in dimension three for three-manifolds; that is a subset of Rie-
mannian homogeneous spaces. Therefore, there is a similarity between the possible
Riemannian structures of orientable compact three-manifolds and the uniformiza-
tion theorem for surfaces that are compact and orientable. We can divide any
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three-manifold into slices. Therefore each of them accepts a Riemannian metric
in a locally isometric manner in one of the eight three-dimensional model spaces,
the Thurston geometries R3,S3,H3,S2 ×R,H2 ×R, S̃L(2,R), Nil3 and Sol3. Eight
three-dimensional Thurston spaces are explained completely in [22, 23].

One of the four-dimensional Thurston geometries is the model space (Sol40, g).
Filipkiewicz studied spaces in dimension four and he obtained 19 homogeneous
model spaces in it [13]. In addition, Wall checked that between these model spaces,
the space (Sol40, g) depends on 14 spaces that accept a complex structure that is ac-
cording to the geometric structure [24]. Also, Sol40 has been found to have a locally
conformal Kahler (LCK) structure [11]. Moreover, in this space, the generalization
of geodesics, which are J-trajectories, that represent the analog of magnetic curves
in LCK spaces, have been investigated. Also, in non-geodesic J-trajectories in the
arbitrary LCK manifold where the anti-Lee field has an invariable length, the first
and second curvatures have been investigated [12]. In a homogeneous space, there
are hypothetical isometrics that map every point to every other point. In addition,
in some homogeneous spaces, there is a different translation called the translation
curve. This new translation moves the given unit vector at the origin to any point
by mappings its tangent. Molnár and Szilagyi studied translation curves in [20].
Moreover, Erjavec [10] classified geodesics and translation curves in Sol40 spaces.
In [18], the hypersurfaces of the four-dimensional Thurston geometry Sol40, that
is a Riemannian homogeneous space and a solvable Lie group, are investigated.
Especially, it presents a complete classification of hypersurfaces whose second fun-
damental form is the Codazzi tensor- including fully geodesic hypersurfaces and
hypersurfaces with parallel second fundamental form- and of totally umbilical hy-
persurfaces of Sol40.
The paper is arranged as follows: In Section 2, we recall the essential general ideas
on (Sol40, g) which will be used throughout the paper. In Section 3, we calculate
the Ricci solitons, talk about a theorem of this equation on this space, and discuss
the existence of Ricci solitons. Also, in Section 4, we check the Ricci bi-conformal
vector fields on (Sol40, g) spaces, and we investigated which of Ricci bi-conformal
vector fields are Killing vector fields and gradient vector fields.

2. The model space Sol40

The primary manifold of the model space Sol40 is R4(x, y, z, t) with the group
operation

(x1, y1, z1, t1) ∗ (x2, y2, z2, t2) = (x1 + et1x2, y1 + et1y2, z1 + e−2t1z2, t1 + t2).

This process is deduced from the matrix multiplications by the following definition

(x, y, z, t) :=


et 0 0 0 x
0 et 0 0 y
0 0 e−2t 0 z
0 0 0 1 t
0 0 0 0 1

 .(2.1)
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Notice (0, 0, 0, 0) is a neutral element. From the below equation, we have the
inverse element of (x, y, z, t)

(x, y, z, t)−1 = (−e−tx,−e−ty,−e2tz,−t).(2.2)

Utilizing the inverse translation of (2.2), by the pullback of coordinate differen-
tials, 

e−t 0 0 0 −e−tx
0 e−t 0 0 −e−ty
0 0 e2t 0 −e2tz
0 0 0 1 −t
0 0 0 0 1




dx
dy
dz
dt
0

 =


e−tdx
e−tdy
e2tdz
dt
0

 .(2.3)

The left invariant Riemannian metric g of Sol40 is obtained as follows

g = e−2t(dx2 + dy2) + e4tdz2 + dt2.(2.4)

Therefore, the left constant basis vector fields of the dual metric are considered as

e1 = et
∂

∂x
, e2 = et

∂

∂y
, e3 = e−2t ∂

∂z
, e4 =

∂

∂t
.(2.5)

So basis vector fields are satisfied the following brackets:

[e1, e2] = [e1, e3] = [e2, e3] = 0, [e4, e1] = e1, [e4, e2] = e2,

[e4, e3] = −2e3.

The Levi-Civita connection of manifold (M, g) is shown by∇. We have the following
equation, which is known as the curvature tensor R of (M, g)

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ]

, so the Ricci tensor S by S(X,Y ) = tr(Z → R(X,Z)Y ) is defined. The details of
Levi-Civita connection on Sol40 are calculated by

∇eiej =


e4 0 0 −e1
0 e4 0 −e2
0 0 −2e4 2e3
0 0 0 0

 ,(2.6)

and details of Ricci tensor are determined by

S =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −6

 .(2.7)

For any vector field X = Xkek by (LXg)(ei, ej) = g(∇eiX, ej)+g(ei,∇ejX) the
Lie derivative of the metric g along to the vector field X (see [26]), is given by
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(LXg)11 = −2X4 + 2e1X
1,

(LXg)12 = e1X
2 + e2X

1,

(LXg)13 = e1X
3 + e3X

1,

(LXg)14 = X1 + e1X
4 + e4X

1,

(LXg)22 = 2e2X
2 − 2X4,

(LXg)23 = e2X
3 + e3X

2,

(LXg)24 = X2 + e2X
4 + e4X

2,

(LXg)33 = 2e3X
3 + 4X4,(2.8)

(LXg)34 = −2X3 + e3X
4 + e4X

3,

(LXg)44 = 2e4X
4.

Further, by using (LXS)(ei, ej) = X(S(ei, ej))− S(LXei, ej)− S(ei,LXej) the
Lie derivative of the Ricci tensor along X (see [26]), is determined by

(LXS)11 = 0,

(LXS)12 = 0,

(LXS)13 = 0,

(LXS)14 = −6e1X
4,

(LXS)22 = 0,

(LXS)23 = 0,

(LXS)24 = −6e2X
4,

(LXS)33 = 0,(2.9)

(LXS)34 = −6e3X
4,

(LXS)44 = −12e4X
4.

3. Ricci solitons on the model space Sol40

In this part, the equation (1.3) on the model space Sol40 is solved. Substituting
(2.7), (2.8), and (2.9) into (1.3), the following system is obtained

2e1X
1 − 2X4 = λ,(3.1)

e2X
1 + e1X

2 = 0,(3.2)

e1X
3 + e3X

1 = 0,(3.3)

X1 + e1X
4 + e4X

1 = 0,(3.4)

2e2X
2 − 2X4 = λ,(3.5)

e2X
3 + e3X

2 = 0,(3.6)

X2 + e2X
4 + e4X

2 = 0,(3.7)
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2e3X
3 + 4X4 = λ,(3.8)

−2X3 + e3X
4 + e4X

3 = 0,(3.9)

2e4X
4 − 6 = λ.(3.10)

By taking the integral of the equation (3.10), X4 is infered

X4 =
λ+ 6

2
t+ F (x, y, z),

for some smooth function F . Integrating the equation (3.1), the following relation
is deduced

X1 =
λ

2
e−tx+

λ+ 6

2
e−txt+ e−t

∫
F (x, y, z)dx+G(y, z, t),(3.11)

for some smooth function G. Now, by taking the integration of equation (3.5), X2

is obtained as

X2 = (
λ

2
)e−ty + (

λ+ 6

2
)e−tty + e−t

∫
F (x, y, z)dy +K(x, z, t),(3.12)

for some smooth functionK. Also, integrating of the equation (3.8), X3 is concluded

X3 = (
λ

2
)e2tz − (λ+ 6)e2ttz − 2e2t

∫
F (x, y, z)dz + L(x, y, t),(3.13)

for some smooth function L. Substituting (2.5), (3.11), and (3.12) into (3.2), we
obtain∫

∂yF (x, y, z)dx+ et∂yG(y, z, t) +

∫
∂xF (x, y, z)dy + et∂xK(x, z, t) = 0,(3.14)

also, by the same access for the equation (3.3), the following equation is gotten

e−3t

∫
∂zF (x, y, z)dx+ e−2t∂zG(y, z, t)−2e3t

∫
∂xF (x, y, z)dz+ et∂xL(x, y, t) = 0.

(3.15)
Next, from the equation (3.4), we have

λ+ 6

2
e−tx+G(y, z, t) + ∂tG(y, z, t) + et∂xF (x, y, z) = 0,(3.16)

so λ = −6 and F (x, y, z) = A(y, z)x + B(y, z) are obtained, for some smooth
functions A and B, by derivation the last equation along to X. Thus, (3.16) can be
rewritten as follows

G(y, z, t) + ∂tG(y, z, t) + etA(y, z) = 0,

so we obtain G(y, z, t) as

G(y, z, t) = −1

2
etA(y, z) + e−tC(y, z),
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for some smooth function C. Now by taking the integration of (3.14), K(x, z, t) is
deduced

K(x, z, t) = −∂yA(y, z)e−tx
3

6
− e−t∂yB(y, z)

x2

2
+

1

2
et∂yA(y, z)x(3.17)

−∂yC(y, z)xe−t − e−tx

∫
A(y, z)dy +K1(z, t),

for some smooth function K1, by derivation of the equation (3.17) along to y, we
have

−∂yyA(y, z)e−tx
3

6
− e−t∂yyB(y, z)

x2

2
+

1

2
et∂yyA(y, z)x(3.18)

−∂yyC(y, z)xe−t − e−txA(y, z) = 0,

now we get a polynomial along to x. Since x is optional we infer A = ∂yyB =
∂yyC = 0. By the same process on the equation (3.15), L(x, y, t) is infered

L(x, y, t) = −e−4t(∂zA(y, z)
x3

6
+ ∂zB(y, z)

x2

2
)

−e−3t(−1

2
et∂zA(y, z) + ∂zC(y, z)e−t)x+ 2e2tx

∫
A(y, z)dz + L1(y, t),(3.19)

for some smooth function L1, by deriving of the equation (3.19) along to z, we have

−e−4t(∂zzA(y, z)
x3

6
+ ∂zzB(y, z)

x2

2
)(3.20)

−e−3t(−1

2
et∂zzA(y, z) + ∂zzC(y, z)e−t)x+ 2e2txA(y, z) = 0,

since (3.19) is a polynomial along to variable x, and x is optional, we find ∂zzB =
∂zzC = 0. By substituting (3.12), (3.13), and (2.4) in (3.6), we have

e−2t(∂zK(x, z, t)− 2e3t
∫

B(y, z)dz + et∂yL(x, y, t) + e3t
∫

∂zB(y, z)dy = 0,(3.21)

by derivation of the equation (3.21) along z, we obtain

∂zzK1(z, t)− 2e3t∂yB(y, z) = 0,(3.22)

thus, we have a polynomial along to x. Since x is optional we infer ∂zzK1 = ∂yB = 0.
Therefore, we can be written K(x, z, t) and L(x, y, t) as follow

K(x, z, t) = −∂yC(y, z)xe−t +K1(z, t),(3.23)

L(x, y, t) = −e−4t∂zB(y, z)
x2

2
− e−4t∂zC(y, z)x+ L1(y, t).(3.24)

By replacing K(x, z, t) and L(x, y, t) into the equation (3.21), we get a polynomial
along to x. Since x is optional we get ∂zK1 = ∂yL1 = ∂zyB = ∂yzC = 0. Therefore,
K1(z, t) and L1(y, t) are obtained as follows

K1(z, t) = K1(t)z +K2(t),(3.25)

L1(y, t) = L1(t)y + L2(t).(3.26)
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So by substituting X2 and X4 into equation (3.7), the following equation is con-
cluded

K1(t) +K ′
1(t) + et∂yzB(y, z) = 0,(3.27)

thus, we deduce

K1(t) = e−ta1,(3.28)

K2(t) = −1

2
et∂yB(y, z) + e−ta2,(3.29)

for some constant a1 and a2. Now (3.25) is written as follows

K1(z, t) = e−tza1 + e−ta2,(3.30)

by derivation of the equation (3.30) along to z, we determine a1 = 0. By replacing
X3 and X4 into the equation (3.9) we have a polynomial along to x. Since x is
optional, we deduce ∂zB = ∂zC = 0, and the following equations are obtained

L1(y, t) = e2tya3 + e2ta4,(3.31)

for some constant a3 and a4, by derivation of the equation (3.31) along to y, we infer
a3 = 0. Because ∂yz = ∂yy = 0, then we have ∂yC(y, z) = a5, for some constant a5,
thus we deduce

C(y, z) = a5y + a6,(3.32)

for some constant a6. Considering that ∂yB = ∂zB = 0, then B = a7, for some
constant a7.

Briefly, we have

F = a7, G = e−t(a5y + a6),K = a5xe
−t + e−ta2, L = e2ta4.

Consequently, X1, X2, X3 and X4 are listed as follows

X1 = e−t(−x(−3 + a7) + ya5 + a6),

X2 = e−t(y(−3 + a7)− a5x+ a2),

X3 = e2t(−3z − 2a7z + a4),

X4 = a7.

Therefore, the following theorem is stated:

Theorem 3.1. The vector field X on (Sol40, g) where g given by (2.4), is a Ricci
soliton vector field if and only if

X = (−x(−3+a7)+ya5+a6)
∂

∂x
+(y(−3+a7)−a5x+a2)

∂

∂y
+(−3z−2a7z+a4)

∂

∂z
+a7

∂

∂t
.
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Now, we can investigate which of Ricci solitons on (Sol40, g) is as gradient vector
field. Also, consider X = ∇f on (Sol40, g) with potential function f . Therefore,
with respect to basis e1, e2, e3, e4 we have

∇f = e1fe1 + e2fe2 + e3fe3 + e4fe4.

From theorem (3.1), the Ricci soliton X on (Sol40, g) is gradient vector field as ∇f
if and only if

∂xf = e−2t(−x(−3 + a7) + ya5 + a6),

∂yf = e−2t(y(−3 + a7)− a5x+ a2),

∂zf = e4t(−3z − 2a7z + a4),(3.33)

∂tf = a7.

Taking derivation of the first equation of the last system along to t we get ∂t∂xf =
−2e−2t(−x(−3+a7)+ya5+a6). The derivation of the fourth equation of (3.33) along
to x implies that ∂x∂tf = 0. Therefore, from them, we deduce a5 = a6 = 0, a7 = 3.
By deriving the second equation and the fourth equation of (3.33) along to t and
y, respectively, we get a2 = a5 = 0, a7 = 3. Also, by deriving the third equation
and the fourth equation along to t and z, respectively, we get a4 = 0, a7 = − 3

2 .
Therefore, the gradient vector field on the Ricci soliton X on (Sol40, g) has no
solution.

Thus, we have the following corollary:

Corollary 3.1. There is not any gradient Ricci soliton X on (Sol40, g).

4. Ricc bi-conformal vector fields on the model space Sol40

In this section, we solve the equation (1.1) and (1.2) on the model space Sol40.
Replacing (2.4), (2.7), and (2.8) into (1.1), the following equations are obtained

−2X4 + 2e1X
1 = α,(4.1)

e1X
2 + e2X

1 = 0,(4.2)

e1X
3 + e3X

1 = 0,(4.3)

X1 + e1X
4 + e4X

1 = 0,(4.4)

2e2X
2 − 2X4 = α,(4.5)

e2X
3 + e3X

2 = 0,(4.6)

X2 + e2X
4 + e4X

2 = 0,(4.7)

2e3X
3 + 4X4 = α,(4.8)

−2X3 + e3X
4 + e4X

3 = 0,(4.9)

2e4X
4 = α− 6β.(4.10)
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Also, substituting (2.4), (2.7), and (2.9) into (1.2), the following equations are
obtained

−6e1X
4 = 0,(4.11)

−6e2X
4 = 0,(4.12)

−6e3X
4 = 0,(4.13)

−12e4X
4 = −6α+ β.(4.14)

In the following we solve the above equations. By integrating the equations (4.11),
(4.12) and (4.13), X4 is found

X4 = F (t),(4.15)

for some smooth function F . From the equations (4.10) and (4.14), we arrive at

β = 0.(4.16)

So from (4.10), we get

F
′
(t) =

α

2
.(4.17)

From (4.1), we obtain

X1 =
α

2
e−tx+ e−tF (t)x+G(y, z, t),(4.18)

for some smooth function G. Similarly, from (4.5), we calculate

X2 =
α

2
e−ty + e−tF (t)y +K(x, z, t),(4.19)

for some smooth function K. Also from (4.8), we obtain

X3 =
α

2
e2tz − 2e2tF (t)z + L(x, y, t),(4.20)

for some smooth function L. Now from (4.2), we deduce

∂xK(x, z, t) = −∂yG(y, z, t),(4.21)

by derivation of the equation (4.21) along to x, we conclude

∂xxK(x, z, t) = 0,(4.22)

also by derivation of the equation (4.21) along to y, we have

∂yyG(y, z, t) = 0,(4.23)

then by taking integration of (4.22) and (4.23), the following relations are obtained

K(x, z, t) = A(z, t)x+B(z, t),(4.24)

G(y, z, t) = C(z, t)y +D(z, t),(4.25)
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for some smooth functions A,B,C, and D. From equation (4.21), we get C(z, t) =
−A(z, t), so (4.25) can be rewritten as follow

G(y, z, t) = −A(z, t)y +D(z, t).(4.26)

From (4.7), we obtain

∂tK(x, z, t) +K(x, z, t) = 0.(4.27)

thus, we have

∂tA(z, t)x+ ∂tB(z, t) +A(z, t)x+B(z, t) = 0,(4.28)

therefore, we calculate

A(z, t) = e−tA1(z),(4.29)

B(z, t) = e−tB1(z),(4.30)

for some smooth functions A1, and B1. Therefore, we can be written (4.24) as
follow

K(x, z, t) = e−t(A1(z)x+B1(z)).(4.31)

From (4.4), we get

∂tG(y, z, t) +G(y, z, t) = 0.(4.32)

thus, we have

∂tC(z, t)y + ∂tD(z, t) + C(z, t)y +D(z, t) = 0,(4.33)

therefore, we deduce

C(z, t) = e−tC1(z),(4.34)

D(z, t) = e−tD1(z),(4.35)

for some smooth functions C1, and D1. Therefore, we can be written (4.25) as
follow

G(y, z, t) = e−t(C1(z)y +D1(z)).(4.36)

Now from the equation (4.9), the following relation is obtained

∂tL(x, y, t)− 2L(x, y, t)− e2tαz = 0,(4.37)

thus, we have

L(x, y, t) = e−2tL1(x, y),(4.38)

α = 0,(4.39)
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for some smooth function L1. Therefore, from (4.15) and (4.17), we infer

X4 = a1,(4.40)

for some constant a1. From (4.3), we arrive at

et∂xL(x, y, t) + e−2t∂zG(y, z, t) = 0,(4.41)

and derivation this with respect to x and z,respectively, we infer

∂xxL(x, y, t) = 0,(4.42)

∂zzG(y, z, t) = 0,(4.43)

therefore from (4.38), the following relations are deduced

L1(x, y) = L2(y)x+ L3(y).(4.44)

for some smooth functions L2, and L3. Now by substituting (4.36) and (4.38) into
(4.41), we get

e−t∂xL1 + e−3t(C ′
1(z)y +D′

1(z)) = 0,(4.45)

thus, from (4.45), we get C ′
1(z) = D′

1(z) = ∂xL1(x, y) = L2(y) = 0. Therefore, we
deduce

C1(z) = a2,(4.46)

D1(z) = a3,(4.47)

L1(x, y) = L3(y).(4.48)

for some constant a2 and a3. Also, from (4.6), we have

e−t∂yL3(y) + et∂zA1(z)x+ et∂zB1(z) = 0,(4.49)

now we get a polynomial with respect to x. So we have

et∂zA1(z) = 0,(4.50)

e−t∂yL3(y) + et∂zB1(z) = 0,(4.51)

therefore, we get

A1(z) = a4,(4.52)

B1(z) = a5,(4.53)

L3(y) = a6,(4.54)

for some constants a4, a5, and a6. By substituting the obtained elements in (4.31),
(4.36), and (4.38), we have

K(x, z, t) = e−t(a4x+ a5),(4.55)

G(y, z, t) = e−t(a2y + a3),(4.56)

L(x, y, t) = e−2ta6,(4.57)
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and from (4.26), we have a4 = −a2.

Subsequently, X1, X2, X3, X4, α and β are listed as

X1 = (a1x+ a2y + a3)e
−t,

X2 = (a1y − a2x+ a5)e
−t,

X3 = −2(a1z + a6)e
2t,

X4 = a1,

α = β = 0.

Therefore, the following theorem is stated:

Theorem 4.1. The vector field X on (Sol40, g) where g is given by (2.4), is Ricci
bi-conformal vector field if and only if α = β = 0 and

X = (a1x+ a2y + a3)
∂

∂x
+ (a1y − a2x+ a5)

∂

∂y
− 2(a1z + a6)

∂

∂z
+ a1

∂

∂t
.

Now, consider X = ∇f on (Sol40, g) with potential function f . Therefore,

∇f = e1fe1 + e2fe2 + e3fe3 + e4fe4.

From theorem (4.1), the Ricci bi-conformal vector field X on (Sol40, g) is gradient
vector field as ∇f if and only if

∂xf = e−2t(a1x+ a2y + a3),

∂yf = e−2t(a1y − a2x+ a5),

∂zf = −2e4t(a1z + a6),(4.58)

∂tf = a1.

Taking the derivation of the first equation of the last system along to t, we get
∂t∂xf = −2e−2t(a1x+a2y+a3). The derivation of the fourth equation of (4.58) with
respect to x implies that ∂x∂tf = 0. Therefore, from them, we deduce a1 = a2 =
a3 = 0. By deriving the second equation and the fourth equation of (4.58) along
to t and y, respectively, we get a1 = a2 = a5 = 0. Thus, the third and the fourth
equations of (4.58) along to t and z,respectively, becomes ∂t∂zf = −8e4t(a1z + a6)
and ∂z∂tf = 0, thus we have a1 = a6 = 0. Therefore (4.58) becomes

∂xf = ∂yf = ∂zf = ∂tf = 0,

The direct integration yields to the following

f(x, y, z, t) = a7.

for some constant a7. As a result, we can state the following theorem:

Theorem 4.2. Any Ricci bi-conformal vector field X on (Sol40, g) is gradient vec-
tor field with potential function f if and only if f = a7.

In the end, we have:

Corollary 4.1. Any Ricci bi-conformal vector field X on (Sol40, g) is Killing vector
field.
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