
FACTA UNIVERSITATIS (NIŠ)
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Abstract. The main purpose of this work is to derive the conditions that ensure the
stability of the generalized S-space forms with two structure vector fields. In addition,
some particular conditions under which a generalized S-space form with two structure
vector fields is unstable are obtained. Several consequences are also discussed at the
end of the article.
Keywords: generalized S-space forms, two structure vector fields.

1. Introduction

The concept of a generalized S-space form with two structure vector fields was
introduced by Carriazo, Fernández and Fuentes in [10]. Roughly speaking, this
is nothing but a metric f -manifold in the sense of Yano [45], equipped with two
structure vector fields such that the Riemannian curvature tensor takes a certain
form depending on eight functions. This important class of Riemannian spaces
includes in particular the family of real, (generalized) complex and (generalized)
Sasakian space forms, S-space forms and C-space forms. The geometry of these
particular spaces is very interesting and many nice properties were derived in the last
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years (see, e.g., [3,4,11,15,21,22,26,31,37,39,42,43]. Note that generalized S-space
forms with an arbitrary number of structure vector fields were also investigated
in [9, 14,28].

On the other hand, the notion of a harmonic map between Riemannian manifolds
has been introduced by Eells and Sampson [12] as a generalisation of geodesics, these
maps being defined as critical points of the Dirichlet energy. Harmonic maps are
objects of high interests in physics, where they can be found under the appellation
of generalized sigma models (see, e.g., [12, 13, 24], as well as the excellent review
paper [35]). The harmonicity of some different kinds of maps between Riemannian
spaces equipped with various remarkable geometric structures was investigated by
many authors (see, e.g., [1,2,7,20,32–34,41,44]). In this context, a problem of prime
importance is to investigate the stability property of harmonic maps (for example,
see [5, 38, 40]). Recall at the moment that a harmonic map u is stable if the index
of u, defined as the dimension of the largest subspace on which the Hessian of u is
negative definite, is zero.

It is clear that the identity map 1M of a Riemannian space (M, gM ) provides
us one of the simplest examples of harmonic maps. If this map is stable, then
the Riemannian space (M, gM ) is said to be stable. Otherwise, (M, gM ) is called
unstable. Although 1M has a simple form, the study of its stability is a non-trivial
problem and a lot of interesting results can be found in the literature (see, e.g.,
[8, 16, 17,19,25,27, 29–31,36]) Very recently, Gherghe and the second author of the
present paper proved in [18] a criterion for the stability of locally conformal almost
cosymplectic manifolds of pointwise constant ϕ-holomorphic sectional curvature.
Moreover, the first author of the present paper, established in [26] that a compact
T -space form is unstable if the first eigenvalue of the Laplace-Beltrami operator has
a certain upper bound.

Motivated by these works, we will investigate in the following the stability of
the generalized S-space forms with two structure vector fields. We first obtain the
conditions that ensure the stability of such spaces. Then we prove that in some
particular conditions, a generalized S-space form with two structure vector fields
is unstable. In the last part of the paper, we apply the previously found results
to some particular classes of generalized S-space forms with two structure vector
fields.

2. Preliminaries

2.1. Generalized S-space forms

A Riemannian manifold (M, gM ) of dimension (2n+s) equipped with an f -structure,
i.e. a (1, 1) tensor field f of rank 2n on M satisfying f3 = −f , is said to be a metric
f -manifold if there exist s vector fields ξα, α = 1, ..., s, on M , such that [45]

fξα = 0, ηα ◦ f = 0, f2 = −I +
s∑

α=1

ηα ⊗ ξα(2.1)
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and the Riemannian metric gM satisfies

gM (X,Y ) = gM (fX, fY ) +
s∑

α=1

ηα(X)ηα(Y ),(2.2)

for any vector fields X,Y on M , where ηα is the 1-form dual to ξα α = 1, ..., s.
Hence

gM (X, ξα) = ηα(X),(2.3)

for α = 1, ..., s.

Note that ξα, α = 1, ..., s, are called the structure vector fields on M and due
this a metric f -manifold is also named as a manifold with a metric f -structure with
complemented frames ξα, α = 1, ..., s, or as a metric f -manifold with s structure
vector fields ξα, α = 1, ..., s. Denoting by M the distribution spanned by the
structure vector fields, then we have the decomposition

TM = L ⊕M,

where L stands for the complementary orthogonal distribution of M. It is clear
from (2.3) that

ηα(X) = 0(2.4)

for any X ∈ L and α = 1, ..., s, while (2.1) implies

fX = 0(2.5)

for any X ∈ M.

We recall now that a metric f -manifold (M, gM ) is called a K-manifold [6] if the
2-form Ω on M defined by

Ω(X,Y ) = gM (X, fY ),

is closed and the Nijenhuis tensor Nf = [f, f ] satisfies

Nf = −2
s∑

α=1

ξα ⊗ dηα.

A K-manifold is said to be an S-manifold if F = dηα, for α = 1, ..., s, and is
said to be a C-manifold if ηα is closed, for α = 1, ..., s (for basic properties of
K-manifolds, S-manifolds and C-manifolds see [6]). An S-manifold of constant
f -sectional curvature is said to be an S-space form. Similarly, a C-manifold of
constant f -sectional curvature is called a C-space form.

Suppose now we have a metric f -manifold (M, gM ) with two structure vector
fields ξ1, ξ2. Such a manifold is said to be a generalized S-space form (with two
structure vector fields) if there exists eight differentiable functions F1, ..., F8 on M
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such that the Riemannian curvature tensor on M takes the form

R(X,Y )Z = F1{gM (Y, Z)X − gM (X,Z)Y }
+F2{gM (X, fZ)fY − gM (Y, fZ)fX + 2gM (X, fY )fZ}
+F3{η1(X)η1(Z)Y − η1(Y )η1(Z)X + gM (X,Z)η1(Y )ξ1 − gM (Y, Z)η1(X)ξ1}
+F4{η2(X)η2(Z)Y − η2(Y )η2(Z)X + gM (X,Z)η2(Y )ξ2 − gM (Y, Z)η2(X)ξ2}
+F5{η1(X)η2(Z)Y − η1(Y )η2(Z)X + gM (X,Z)η1(Y )ξ2 − gM (Y, Z)η1(X)ξ2}
+F6{η2(X)η1(Z)Y − η2(Y )η1(Z)X + gM (X,Z)η2(Y )ξ1 − gM (Y, Z)η2(X)ξ1}
+F7{η1(X)η2(Y )η2(Z)ξ1 − η2(X)η1(Y )η2(Z)ξ1}
+F8{η2(X)η1(Y )η1(Z)ξ2 − η1(X)η2(Y )η1(Z)ξ2},(2.6)

for any vector fields X,Y, Z on M .

As natural examples of generalized S-space forms with two structure vector
fields we have real, (generalized) complex and (generalized) Sasakian space forms,
S-space forms and C-space forms. We also have the following non-trivial examples
constructed in [10]: pseudo-umbilical, totally contact-umbilical and totally umbilical
hypersurfaces of a generalized Sasakian space form; principal toroidal bundles over a
Kähler manifold and warped products of the real line and any generalized Sasakian
space form. Note that other interesting examples of generalized S-space forms with
two structure vector fields were constructed in [9].

2.2. Harmonic maps

Let (M, gM ) and (N, gN ) be two Riemannian manifolds and u : (M, gM ) → (N, gN )
a smooth map. The second fundamental form of the map u, denoted by αu, is given
by

αu(X,Y ) = ∇̃Xu∗Y − u∗∇XY,

for any vector fields X,Y on M , where ∇ is the Riemannian connection on M and
∇̃ is the pullback of the Riemannian connection ∇′ of N to the induced vector
bundle u−1(TN). The trace of αu, denoted by τ(u), is called the tension field of u.
If τ(u) = 0, then u is said to be a harmonic map. Equivalently, if M is compact,
then the map u is harmonic if and only if for any smooth variation {ut}t∈(−ϵ,ϵ) of
u, with u0 = u, one has

d

dt
Et|t=0 = 0,

where Et is the Dirichlet energy of ut, that is

Et =
∫
M

e(ut)ϑgM ,

where ϑgM is the canonical measure associated with gM and

e(u)p =
1

2
trace(u∗gN )x, ∀x ∈ M.
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Now, let {us,t}s,t∈(−ϵ,ϵ) be a smooth variation of u with two parameters s and
t such that u0,0 = u. Then the Hessian of the map u is defined by:

Hessu(V,W ) =
∂2

∂s∂t
(E(us,t))|(s,t)=(0,0),

where V,W ∈ Γ(u−1(TN)) are the associated variational vector fields.

Recall that the dimension of the largest subspace of Γ(u−1(TN)) on which the
Hessian of u is negative definite is called the index of u and denoted by i(u). A
harmonic map u having i(u) = 0 is said to be stable. Otherwise, u is termed as
unstable. For more details and basic properties of harmonic maps, see [5]. We only
recall now the next formula obtained independently by Mazet and Smith [23, 36]
which will be useful later:

Hessu(V,W ) =

∫
M

gN (Ju(V ),W )ϑgM ,(2.7)

where Ju denotes the Jacobian operator of u given by [5]

JuV = −
m∑
i=1

(
∇̃Ei∇̃Ei − ∇̃∇Ei

Ei

)
V −

m∑
i=1

RN (V, u∗Ei)u∗Ei,(2.8)

for any V ∈ Γ(u−1(TN)), where {E1, ..., Em} is a local orthonormal frame on M
and RN is the Riemannian curvature tensor of N .

Taking into account that the rough Laplacian ∆̄u of u is given by

∆̄uV = −
m∑
i=1

(
∇̃Ei∇̃Ei − ∇̃∇Ei

Ei

)
V(2.9)

we obtain immediately from (2.8) that

JuV = ∆̄uV −
m∑
i=1

RN (V, u∗Ei)u∗Ei.(2.10)

3. A stability criterion

The aim of this section is to obtain a stability criterion for generalized S-space
forms with two structure vector fields.

Suppose M = (M, gM , f, ξ1, ξ2, F1, ..., F8) is a compact generalized S-space form
of dimension (2n + 2) and let 1M be the identity map on M . Applying (2.7) for
u = 1M and using (2.8), we derive:

Hess1M (V, V ) =

∫
M

gM (J1MV, V )ϑgM

= −
∫
M

n∑
i=1

gM ((∇̃Ei∇̃Ei − ∇̃∇Ei
Ei)V, V )ϑgM
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−
∫
M

n∑
i=1

gM (RM (V,Ei)Ei, V )ϑgM

−
∫
M

n∑
i=1

gM ((∇̃fEi∇̃fEi − ∇̃∇fEi
fEi)V, V )ϑgM

−
∫
M

n∑
i=1

gM (RM (V, fEi)fEi, V )ϑgM

−
∫
M

gM ((∇̃ξ1∇̃ξ1 − ∇̃∇ξ1
ξ1)V, V )ϑgM

−
∫
M

gM (RM (V, ξ1)ξ1, V )ϑgM

−
∫
M

gM ((∇̃ξ2∇̃ξ2 − ∇̃∇ξ2
ξ2)V, V )ϑgM

−
∫
M

gM (RM (V, ξ2)ξ2, V )ϑgM(3.1)

where {E1, ..., En, fE1, .., fEn, ξ1, ξ2} is a local orthonormal frame on M . But, with
respect to this frame, the rough Laplacian of 1M is

∆̄1MV = −
n∑

i=1

(∇̃Ei∇̃Ei − ∇̃∇Ei
Ei)V

−
n∑

i=1

(∇̃fEi∇̃fEi − ∇̃∇fEi
fEi)V

−(∇̃ξ1∇̃ξ1 − ∇̃∇ξ1
ξ1)V

−(∇̃ξ2∇̃ξ2 − ∇̃∇ξ2
ξ2)V.(3.2)

Using now (3.2) in (3.1), it follows that we can rewtite Hess1M (V, V ) as follows:

Hess1M (V, V ) =

∫
M

gM (∆̄1MV, V )ϑgM

−
∫
M

n∑
i=1

gM (RM (V,Ei)Ei, V )ϑgM

−
∫
M

n∑
i=1

gM (RM (V, fEi)fEi, V )ϑgM

−
∫
M

gM (RM (V, ξ1)ξ1, V )ϑgM

−
∫
M

gM (RM (V, ξ2)ξ2, V )ϑgM .(3.3)

Taking now X = V , Y = Ei, Z = Ei in (2.6) and applying gM (·, V ) in the
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resulting formula, due to the fact that

g(Ei, Ei) = 1, g(Ei, fEi) = 0

and taking account of (2.1)-(2.5), one obtains

gM (RM (V,Ei)Ei, V ) = F1[gM (V, V )− g2M (V,Ei)] + 3F2g
2
M (fV,Ei)

−F3η
2
1(V )− F4η

2
2(V )− (F5 + F6)η1(V )η2(V ).(3.4)

In a similar way, taking X = V , Y = fEi, Z = fEi in (2.6) and applying
gM (·, V ) in the resulting formula, one derives

gM (RM (V, fEi)fEi, V ) = F1[gM (V, V )− g2M (V, fEi)] + 3F2g
2
M (fV, fEi)

−F3η
2
1(V )− F4η

2
2(V )− (F5 + F6)η1(V )η2(V ).(3.5)

Now, we take X = V , Y = ξ1, Z = ξ1 in (2.6) and applying gM (·, V ) in the
resulting formula, with the same arguments as in the previous computations, one
finds

gM (RM (V, ξ1)ξ1, V ) = F1[gM (V, V )− g2M (V, ξ1)]

+F3[g
2
M (V, ξ1)− gM (V, V )]

−(F4 − F8)η
2
2(V ).(3.6)

In a similar way, taking X = V , Y = ξ2, Z = ξ2 in (2.6) and applying gM (·, V )
in the resulting formula, one derives

gM (RM (V, ξ2)ξ2, V ) = F1[gM (V, V )− g2M (V, ξ2)]

+F4[g
2
M (V, ξ2)− gM (V, V )]

−(F3 − F7)η
2
1(V ).(3.7)

Using now (3.4), (3.5), (3.6) and (3.7) in (3.3), one arrives at the next formula

Hess1M (V, V ) =

∫
M

gM (∆̄1MV, V )ϑgM

−
∫
M

n∑
i=1

{F1[gM (V, V )− g2M (V,Ei)] + 3F2g
2
M (fV,Ei)

−F3η
2
1(V )− F4η

2
2(V )− (F5 + F6)η1(V )η2(V )}ϑgM

−
∫
M

n∑
i=1

{F1[gM (V, V )− g2M (V, fEi)] + 3F2g
2
M (fV, fEi)

−F3η
2
1(V )− F4η

2
2(V )− (F5 + F6)η1(V )η2(V )}ϑgM

−
∫
M

{F1[gM (V, V )− g2M (V, ξ1)]

+F3[g
2
M (V, ξ1)− gM (V, V )]− (F4 − F8)η

2
2(V )}ϑgM

−
∫
M

{F1[gM (V, V )− g2M (V, ξ2)]

+F4[g
2
M (V, ξ2)− gM (V, V )]− (F3 − F7)η

2
1(V )}ϑgM .(3.8)
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Combining and summing the terms having similar type in (3.8), in view of the
fact that (see, e.g. [31, Theorem 1])∫

M

gM (∆̄1MV, V )ϑgM =

∫
M

gM (∇̃V , ∇̃V )ϑgM ,(3.9)

we obtain the following expression for Hess1M (V, V ):

Hess1M (V, V ) =

∫
M

gM (∇̃V , ∇̃V )ϑgM

+

∫
M

[−(2n+ 1)F1 − 3F2 + F3 + F4]gM (V, V )ϑgM

+

∫
M

[2nF3 + 3F2 − F7]η
2
1(V )ϑgM

+

∫
M

[2nF4 + 3F2 − F8]η
2
2(V )ϑgM

+2n

∫
M

(F5 + F6)η1(V )η2(V )ϑgM .(3.10)

and therefore we derive that the index i(1M ) of the identity map 1M of M is zero
if the next conditions are satisfied:

(A) −(2n+ 1)F1 − 3F2 + F3 + F4 ≥ 0;

(B) 2nF3 + 3F2 − F7 ≥ 0;

(C) 2nF4 + 3F2 − F8 ≥ 0;

(D) F5 + F6 = 0.

Therefore, we proved the following result.

Theorem 3.1. Let (M, gM , f, ξ1, ξ2, F1, ..., F8) be a (2n+2)-dimensional compact
generalized S-space form with two structure vector fields. If the eight defining func-
tions F1, ..., F8 satisfy relations (A), (B), (C) and (D), then M is stable.

4. Instability conditions

The aim of the current section is to derive conditions under which a generalized
S-space form with two structure vector fields is unstable.

We start by recalling the well-known Weitzenböck formula. If B is a vector
bundle over a Riemannian manifold (M, gM ) and η is a 1-form, then we have [17,31]:

∆1η = ∆̄η − ρ(η),
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where ∆1 is the Laplacian of B-valued 1-forms, ∆̄ denotes the rough Laplacian on
1-forms, while ρ(η) is given by

ρ(η)(X) =
m∑
i=1

RM (X,Ui)(η(Ui))−
m∑
i=1

η(RM (X,Ui)Ui),

for any vector field X on M , where {U1, . . . , Um} is an orthonormal frame on M .

Now, let us suppose that M = (M, gM , f, ξ1, ξ2, F1, ..., F8) is a compact gener-
alized S-space form with two structure vector fields, having dimension 2n+ 2. By
applying Weitzenböck formula for B = M × R, we obtain:

∆1V = ∆̄V +

n∑
i=1

RM (V,Ei)Ei

+
n∑

i=1

RM (V, fEi)fEi +RM (V, ξ1)ξ1 +RM (V, ξ2)ξ2.(4.1)

where {E1, ..., En, fE1, ..., fEn, ξ1, ξ2} is a local orthonormal frame on M .

Using now (4.1) in (3.3), we obtain

Hess1M (V, V ) =

∫
M

gM (∆1V, V )ϑgM

−2

∫
M

n∑
i=1

gM (RM (V,Ei)Ei, V )ϑgM

−2

∫
M

n∑
i=1

gM (RM (V, fEi)fEi, V )ϑgM

−2

∫
M

gM (RM (V, ξ1)ξ1, V )ϑgM

−2

∫
M

gM (RM (V, ξ2)ξ2, V )ϑgM .(4.2)

But it is known that (see, e.g. [18])∫
M

gM (∆1V, V )ϑgM = λ1

∫
M

gM (V, V )ϑgM ,

where λ1 denotes the first eigenvalue of the Laplace-Beltrami operator. In view of
the above equation, (4.2) reduces to

Hess1M (V, V ) = λ1

∫
M

gM (V, V )ϑgM

−2

∫
M

n∑
i=1

gM (RM (V,Ei)Ei, V )ϑgM
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−2

∫
M

n∑
i=1

gM (RM (V, fEi)fEi, V )ϑgM

−2

∫
M

gM (RM (V, ξ1)ξ1, V )ϑgM

−2

∫
M

gM (RM (V, ξ2)ξ2, V )ϑgM .(4.3)

Using (3.4), (3.5), (3.6) and (3.7) in (4.3), we get

Hess1M (V, V ) =

∫
M

{λ1 + 2[−(2n+ 1)F1 − 3F2 + F3 + F4]}gM (V, V )ϑgM

+2

∫
M

[2nF3 + 3F2 − F7]η
2
1(V )ϑgM

+2

∫
M

[2nF4 + 3F2 − F8]η
2
2(V )ϑgM

+4n

∫
M

(F5 + F6)η1(V )η2(V )ϑgM .(4.4)

Based on (4.4), we are able now to prove the next result providing instability
conditions for a generalized S-space form with two structure vector fields.

Theorem 4.1. Let (M, gM , f, ξ1, ξ2, F1, ..., F8) be a (2n+2)-dimensional compact
generalized S-space form with two structure vector fields. If the first eigenvalue λ1

of the Laplace-Beltrami operator and the eight defining functions F1, ..., F8 satisfy
the next three relations

(E) λ1 < 2(2n+ 1)F1 + 6F2 − 2F3 − 2F4,

(F) (2F3 + |F5 + F6|)n+ 3F2 − F7 ≤ 0,

(G) (2F4 + |F5 + F6|)n+ 3F2 − F8 ≤ 0,

then M is unstable.

Proof. Using the elementary inequality

(F5 + F6)η1(V )η2(V ) ≤ 1

2
|F5 + F6|[η21(V ) + η22(V )]

in (4.4), we derive

Hess1M (V, V ) ≤
∫
M

{λ1 + 2[−(2n+ 1)F1 − 3F2 + F3 + F4]}gM (V, V )ϑgM

+2

∫
M

[2nF3 + 3F2 − F7 + n|F5 + F6|]η21(V )ϑgM

+2

∫
M

[2nF4 + 3F2 − F8 + n|F5 + F6|]η22(V )ϑgM .(4.5)



On the Stability of Generalized S-space Forms With Two Structure Vector Fields 795

Taking account of relations (E), (F ) and (G), we conclude easily from (4.5) that

Hess1M (V, V ) < 0.

Thus, we have i1M ̸= 0 and it is clear that M is unstable.

5. Consequences and further developments

In this section we will discuss the applicability of Theorems 3.1 and 4.1 for two
particular classes of generalized S-space forms with two structure vector fields.

Remark 5.1. It is known that any S-space form M of constant f -sectional curva-
ture c with two structure vector fields is a generalized S-space form. In this case,
we have (see [10, page 210])

F1 =
1

4
(c+ 6), F2 = F7 = F8 =

1

4
(c− 2), F3 = F4 =

1

4
(c+ 2), F5 = F6 = −1.

Since F5 + F6 = −2 ̸= 0, it is clear that one cannot apply Theorem 3.1 as
condition (D) is not valid. On the other hand, a simple computation shows us that
condition (E) in Theorem 4.1 is equivalent to

λ1 < c(n+ 1) + 6n− 2,(5.1)

while each of the conditions (F ) and (G) is equivalent to c ≤ −2n. Hence, we have
the next result.

Theorem 5.1. If M is an (2n + 2)-dimensional compact S-space form of con-
stant f -sectional curvature c ≤ −2n with two structure vector fields such that first
eigenvalue λ1 of the Laplace-Beltrami operator satisfies (5.1), then M is unstable.

Remark 5.2. It is known that any C-space form M with two structure vector fields
is a generalized S-space form. In this case, if c is the constant f -sectional curvature
of M , then we have (see [10, page 210])

F1 = ... = F4 =
c

4
, F5 = F6 = 0, F7 = F8 =

c

4
.

Now, we can see immediately that condition (D) in Theorem 3.1 is automatically
satisfied. On the other hand, one can directly checked that condition (A) in Theorem
3.1 is equivalent to c ≤ 0, while each of the conditions (B) and (C) is equivalent to
c ≥ 0. Hence, we have the following result.

Theorem 5.2. Any compact C-space form of vanishing f -sectional curvature with
two structure vector fields is stable.
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On the other hand, if we focuss on the conditions appearing in Theorem 4.1, we
can easily see that condition (E) is equivalent to

λ1 < c(n+ 1),(5.2)

while each of the conditions (F ) and (G) is equivalent to c ≤ 0. Hence, we have the
next result.

Theorem 5.3. If M is an (2n+2)-dimensional compact C-space form of constant
f -sectional curvature c ≤ 0 with two structure vector fields such that first eigenvalue
λ1 of the Laplace-Beltrami operator satisfies (5.2), then M is unstable.

Remark 5.3. An open problem for further research is to investigate the stability
of generalized S-space forms with an arbitrary number of structure vector fields.
For definition, examples and basic properties of these spaces, see [28].
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