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Abstract. In this paper, we delve into the exploration of projective Ricci curvature,
with a specific focus on characterizing Finsler metrics possessing isotropic projective
Ricci curvature and isotropic S-curvature. Notably, our investigation reveals a com-
pelling result: every Randers metric featuring isotropic S-curvature and constant pro-
jective Ricci curvature emerges as a weak Einstein metric. Furthermore, we pinpoint
the conditions under which such a metric exhibits isotropic projective Ricci curvature.
Remarkably, on a closed Einstein Randers manifold, we establish that being PRic-flat
is equivalent to being Ric-flat. This intriguing equivalence sheds light on the intricate
interplay between projective and Riemannian geometry, offering valuable insights into
the geometric structures underlying Finsler metrics.

Keywords: Finsler metric, Randers metric, Projective Ricci curvature, Weak Einstein
metrics.

1. Introduction

Two connections on the smooth manifold M that share the same geodesics (as
unparameterized curves) are termed projectively equivalent. This implies that for
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every geodesic γ(t) of any of these connections, one can find a reparametrization
γ(ϕ(t)) that is a geodesic of the other connection. In Riemannian geometry, it
is more common to compare connections in the family of Levi-Civita connections
corresponding to Riemannian metrics on the same manifold. However, in a gen-
eral setting, one can also consider the projective transformation of a Riemannian
structure as being a Riemannian metric on a different underlying manifold.

Locally, any geodesic is identified as the unique solution of a system of second-
order differential equations, involving connection components These reduce to equa-
tions involving spray coefficients when restricted to the family of Finsler metrics.
The reason is that, components Γk

ij(x, y) of Finsler connections (Berwald, Cartan,

or Chen connection) satisfy the relation Γk
ij(x, y)y

iyj = Gk(x, y), where Gk are
homogeneous functions of degree 2 with respect to y, defining the canonical spray
induced by the Finsler metric F . Thus, the condition for being projectively related
translates into a relation between spray coefficients Gk and G̃k corresponding to
Finsler metrics F and F̃ , respectively.
This reformulation allows us to generalize the concept of being projectively related
to the family of sprays, characterizing two sprays as projectively related whenever
their coefficients satisfy a specific relation. Instead of solely examining the projec-
tive transformation of the Finsler metric F , we explore the entire orbit of the spray
G induced by F under projective deformations, which includes sprays that may not
correspond to any Finsler metrics.

While our primary interest lies in comparing geodesics induced from a metric
structure on the manifold, we extend our scope to include geodesics defined by
sprays.

This extended viewpoint paves the way to discover more projectively invariant
objects, such as Douglas curvature, Weyl curvature [2], generalized Douglas-Weyl
curvature [3], and another projective invariant defined by Akbar-Zadeh in [1]. We
refer to [13], [17] for yet another set of special projective invariants.

These projectively invariant objects mainly correspond to the spray G, either
directly or through different connections defined with respect to G. However, Z.
Shen introduced a spray G̃, corresponding to G and the S-curvature, in [16] which
is uniquely determined in each projective class. This implies that the so-called
projective spray G̃ is invariant under the projective deformation of G. The Ricci
curvature of the projective spray G̃, termed projective Ricci curvature and denoted
by PRic, then poses as a new projective invariant characterizing Finsler manifolds
with respect to some geometric properties.

For instance, in [6], Cheng et al. characterized PRic-flat Randers metrics and
PRic-flat Randers metrics with isotropic S-curvature, later corrected in [5]. A
Finsler metric F is said to be projective Ricci flat (i.e. PRic-flat) if the projective
Ricci curvature of F vanishes, and is said to have isotropic S-curvature if S =
(n+ 1)c(x)F for some scalar function c on M .

PRic-flat spherically symmetric Finsler metrics and PRic-flat square metrics
were characterized in [19, 20].

Recently, Rezaei et al. studied Randers metrics of isotropic PRic-curvature,
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c.f. [11]. According to them, a Finsler metric F is of isotropic (resp. constant)
PRic-curvature if PRic = (n− 1)kF 2 for some function (resp. constant function)
k on M .

In this paper, concentrating on Randers metrics of isotropic S-curvature, we
obtain equations that characterize these metrics and then identify weak Einstein
metrics in this class by their PRic-curvature. More precisely, we prove the following
theorem:

Theorem 1.1. Let F be a Finsler metric of isotropic S-curvature on a manifold
M . Then F is of isotropic PRic-curvature if and only if F is weak Einstein.

A Finsler metric F on an n-dimensional manifold M is called a weak Einstein
metric if its Ricci curvature satisfies the following equation

RicF = (n− 1)

(
3θ

F
+ σ

)
F 2,(1.1)

where σ is a scalar function and θ = θiy
i is a 1−form on M .

Corollary 1.1. Let F be a weak Einstein Randers metric with 1−form θ = θiy
i

and scalar function σ = σ(x). Then F has isotropic PRic-curvature with scalar
function l = l(x) if and only if θ and σ satisfy the following equations

σ(x) = l(x)− c2(x),

θ = − 1
3c0.

In [14], C. Robles shows that every non-Riemannian Einstein Randers metric on a
closed manifold is RicF -flat if and only if it is Berwaldian.

In this paper, we generalize this result to the case of PRic-flat Einstein Randers
metrics and prove the following statement

Theorem 1.2. Let (M,F ) be a connected, closed Einstein Randers manifold with
Ricci scalar RicF , and PRic-flat. Then F is either Riemannian metric or RicF -
flat.

Using this result, we conclude

Corollary 1.2. Let F = α+ β be a non-Riemannian Einstein Randers metric on
a closed manifold M . Then F is PRic-flat if and only if it is RicF -flat.

2. Preliminaries

A Finsler structure on M is a function F : TM → [0,∞) with the following
properties:

(a) F is C∞ on TM0, where π : TM0 → M is the slit tangent bundle;
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(b) F is positively homogeneous of degree one in y, that is

F (x, λy) = λF (x, y),∀λ > 0

(c) The Hessian matrix of F 2, i.e. (gij) =
(
1/2[ ∂2

∂yi∂yj F
2]
)
, is positive definite

on TM0.

A Finsler manifold is then a pair consisting of a (smooth) manifold M and a
Finsler structure F on M .
For each y ∈ TxM0, a non-degenerate bilinear form gy on TxM is defined by

gy(u, v) :=
1

2

∂2

∂s∂t
|s=t=0F

2(y + su+ tv), ∀u, v ∈ TxM.

In a local coordinates, gy(u, v) = gij(x, y)u
ivj , where u = ui ∂

∂xi and v = vi ∂
∂xi .

This defines a Riemannian metric on the vector bundle π∗TM .
The energy functional corresponding to the Finsler metric F is given by

EF (α) =
∫ 1

0

F 2(α̇(t))dt,

with extremal points satisfying the Euler-Lagrange equations

Ei(F
2) :=

∂F 2

∂xi
− d

dt

∂F 2

∂yi
= 0.(2.1)

These extremal points coincide with the trajectories of the geodesic spray:

G = yi
∂

∂xi
− 2Gi ∂

∂yi
,

where spray coefficients Gi are given by

Gi :=
1

4
gil

{
[F 2]xkylyk − [F 2]xl

}
,

c.f. [12].
Various affine connections in Finsler geometry are defined in a way that their
Christoffel symbols Γ̄k

ij satisfy

Γ̄k
ij(x, y)y

iyj = Gk(x, y).

The Christoffel symbols split into two components Γk
ij(x, y) and B̄k

ij(x, y), with
the formal component defined as:

Γk
ij(x, y) =

1

2
gkl

(
∂gil

∂xj
+

∂gjl

∂xi
− ∂gij

∂xl

)
(x, y),
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and the second component B̄k
ij(x, y) vanishes by contracting with yiyj .

In the spacial case where F corresponds to the norm of a Riemannian metric
tensor g, the spray coefficients are determined by the Christoffel symbols Γi

jk via

Gi(x, y) = 1
2Γ

i
jk(x)y

jyk.

The Riemannian curvature is represented by a family of linear maps,

{Ry : TxM
n −→ TxM

n, y ∈ T0M}

defined on a local chart as

Ry = Ri
jdx

j ⊗ ∂

∂xi
|x,

where the components Ri
j are given by

Ri
j = 2

∂Gi

∂xj
− yk

∂2Gi

∂xj∂xk
+ 2Gk ∂2Gi

∂yj∂yk
− ∂Gi

∂yk
∂Gk

∂yj
.

The Ricci curvature is the trace of the Riemann curvature and is defined by

Ric = Rm
m.

A well-known non-Riemannian object associated with the Finsler metric F is
the S-curvature, expressed as

S =
∂Gm

∂ym
− ym

∂

∂xm

[
lnσBH

]
,(2.2)

where σBH is the component of the Busemann-Hausdorff volume form dVF =
σBH(x) dx1 ∧ · · · ∧ dxn, c.f. [15].
F is termed to have isotropic S-curvature if there exists a scalar function c = c(x) on
M such that S = (n+1)cF . If c is constant, F is said to have constant S-curvature.

The projective spray G̃ associated with a spray G on an n-dimensional Finsler
manifold (M,F ) is defined as

G̃ = G+
2S

n+ 1
Y,

where S denotes the S-curvature of F and Y := yi ∂
∂yi is a vertical vector field on

TM . The vector files G̃ is a projective invariant on TM0. The Ricci curvature of
G̃, referred to as the projective Ricci curvature and denoted by PRic, is given by

PRic := RicF +
n− 1

n+ 1
S|iy

i +
n− 1

(n+ 1)2
S2,(2.3)

where the vertical line ”|” indicates the horizontal derivative with respect to the
Berwald connection of F .
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The concept of projective Ricci curvature, which is projectively invariant according
to the fixed volume form, was introduced by Z. Shen in [16].
In the case where PRic = 0, the Finsler metric F is termed projective Ricci flat.
By relaxing the assumption, we define

Definition 2.1. Let F be a Finsler metric on an n-dimensional smooth manifold
M . Then

(a) F is said to have isotropic PRic-curvature if

PRic = (n− 1)l(x)F 2,(2.4)

where l = l(x) is a scalar function on M ;

(b) F is of constant PRic-curvature if

PRic = (n− 1)kF 2,(2.5)

where k ∈ R is a constant function on M .

The class of (α, β)-metrics forms a special and important subset of Finsler met-
rics, comprising those Finsler functions F expressed in the form

F := αϕ(s), s =
β

α

where

i) α := α(x, y) =
√
aij(x)yiyj is a Riemannian metric,

ii) β := β(y) = bi(x)y
i is a 1−form with ||β||α < b0 on M ,

iii) ϕ is a smooth positive function on some open symmetric interval (−b0, b0)
satisfying the following condition:

ϕ(s) > 0, ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s|2 ≤ b2 < b20,(2.6)

where b2 := ||β||2α.

In the following, we use some common notations for (α, β)-metrics and define

rij :=
1

2
(bi;j + bj;i), sij :=

1

2
(bi;j − bj;i),

where ”;” denotes the covariant derivative with respect to the Levi-Civita connection
of α. Further, we have

rij := aimrmj , sij := aimsmj , rj := bmrmj , sj := bmsmj ,
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qij := rimsmj , tij := simsmj , qj := biqij = rmsmj , tj := bitij = smsmj , tmm := sijs
j
i.

Throughout this paper, the matrix (aij) is the inverse of the matrix (aij), b :=
||β||α and ρ := ln

√
1− b2.

As is customary in tensor computations in Finsler geometry, zero in the lower index
indicates the contraction with the tangential coordinate. For instance,

ri0 := rijy
j , si0 := sijy

j , r00 := rijy
iyj , r0 := riy

i, s0 := siy
i.

The spray coefficients of (α, β)-metrics, as derived in [8], can be expressed as

Gi = αGi + αQsi0 +Θ(r00 − 2αQs0)
yi

α
+Ψ(r00 − 2αQs0)b

i,

where

Q =
ϕ

′

ϕ− sϕ′ , Θ =
(ϕ− sϕ

′
)ϕ

′ − sϕϕ
′′

2ϕ[ϕ− sϕ′ + (b2 − s2)ϕ′′ ]
, Ψ =

ϕ
′′

2[ϕ− sϕ′ + (b2 − s2)ϕ′′ ]
.

For details about the projective Ricci curvature of (α, β)-metrics, we refer to [19, 10].
In particular, for a Randers metric, a special case of (α, β)-metrics with ϕ(s) = 1+s,
the spray coefficients of F and α are related as per [7]

Gi = Gi
α + αsi0 +

−2αs0 + r00
2(α+ β)

yi.(2.7)

In [5, 6], the projective Ricci curvature of a Randers metric with isotropic S-
curvature is given by

PRic = Ricα + 2αsm0;m − 2t00 − α2tmm + (n− 1)
[
2α(ρmsm0)− ρ0;0 + ρ20

]
.(2.8)

We recall that a Finsler metric F on an n-dimensional manifold M is classified
as a weak Einstein metric if it conforms to the equation (1.1) governing the Ricci
curvature. Specifically, F is termed an Einstein metric if θ = 0 in (1.1), expressed
as

RicF = (n− 1)σF 2.(2.9)

In particular, a Finsler metric F is labeled as having constant Ricci if it satisfies(2.9)
with a constant σ. In the context of [7], a Randers metric F = α + β on an n-
dimensional manifold M qualifies as a weak Einstein metric if and only if α, β meet
the conditions defined by the following equations

Ricα = (n− 1)
[
(σ − 3c2)α2 + (σ + c2)β2 + (3θ − c0)β − s0;0 − s20

]
+2t00 + α2tmm,(2.10)

sm0;m = (n− 1)
[
(σ + c2)β + 2cs0 + t0 +

3θ + c0
2

]
,(2.11)

r00 = −2s0β + 2c(α2 − β2),(2.12)
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where c is a scalar function and c0 = cxiyi.

Consequently, according to (2.12), F possesses isotropic S-curvature. As a spe-
cial case, we can derive the necessary and sufficient conditions for a Randers metric
to be an Einstein metric.

3. Constant PRic-curvature of Randers metrics of isotropic
S-curvature

In this section, we initially derive a formula for the projective Ricci curvature
of Randers metrics with isotropic S-curvature. Subsequently, we demonstrate that
PRic-flat Randers metrics with isotropic S-curvature represent a special case of
Randers metrics exhibiting constant PRic-curvature.

Now, consider a Randers metric F = α + β with isotropic S-curvature, where
S = (n+ 1)c(x)F . According to [6], α and β then satisfy the following equation

r00 + 2βs0 = 2c(α2 + β2),(3.1)

which can be expressed as

rij = −bisj − bjsi + 2c(aij − bibj).(3.2)

From (3.2), we deduce
ri = −b2si + 2c(1− b2)bi,(3.3)

r0 = −b2s0 + 2c(1− b2)β.(3.4)

Furthermore, we have

r0;0 = −b2s0;0 + 2(1− b2)
(
− s20 − 6cβs0 + c0β + 2c2α2 − 6c2β2

)
,(3.5)

qi = −b2ti + 2c(1− b2)si,(3.6)

q0 + t0 = (1− b2)(t0 + 2cs0).(3.7)

By substituting (3.4), (3.5) and (3.7) into (2.8), we arrive at the following formula
for the projective Ricci curvature of Randers metrics with isotropic S-curvature:

PRic = Ricα + 2αsm0;m − 2t00 − α2tmm

+ (n− 1)
[
− 2α(t0 + 2cs0) + s0;0 + s20 + 2c0β + 4c2α2

]
.(3.8)

Consider Randers metrics with isotropic S-curvature and constant PRic-curvature.
Substitute (2.5) into (3.8) and organize the resulting equation with respect to α as
follows

A2α
2 +A1α+A0 = 0,(3.9)

where
A2 = −tmm + (n− 1)

[
4c2 − k

]
,(3.10)

A1 = 2sm0;m − 2(n− 1)
[
t0 + 2cs0 + kβ

]
,(3.11)
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A0 = Ricα − 2t00 + (n− 1)
[
s0;0 + s20 + 2c0β − kβ2

]
,(3.12)

where Ricα is the Ricci curvature of α, c = c(x) is a scalar function and “;” denotes
the covariant derivative with respect to the Levi-Civita connection of α.

Equation (3.9) yield two fundamental equations:

A1 = 0,(3.13)

and

A2α
2 +A0 = 0.(3.14)

By combining (3.13) and (3.14), we derive equations characterizing Randers metrics
of constant PRic-curvature as follows:

Ricα = tmmα2 + 2t00 − (n− 1)
[
4c2α2 − kα2 + s0;0 + 2c0β + s20 − kβ2

]
,(3.15)

sm0;m = (n− 1)
[
t0 + 2cs0 + kβ

]
.(3.16)

This leads to the following result:
If F = α + β is a Randers metric of isotropic S-curvature, then F has constant
PRic-curvature if and only if α and β satisfy the equations (3.15), (3.16).

It is noteworthy that equations (3.15), (3.16) with (k = 0) are equivalent to
equations (2.5) and (2.6) in Cheng-Rezaei theorem, c.f. [5, Theorem 2.1.]. Conse-
quently, we establish the following corollary:

Corollary 3.1. Let F = α+β be a Randers metric on an n-dimensional manifold
M . Then F is a PRic-flat metric if and only if α and β satisfy (3.15) and (3.16),
with k = 0.

Importantly, this result aligns with the equations characterizing weak Einstein
Randers metrics. Specifically, equations (3.15), (3.16) can also be deduced from
(2.10), (2.11) with 3θ + c0 = 0 and σ + c2 = k.

4. Proof of main theorems

Proof of Theorem 1.1: By assumption, the S-curvature of F satisfies S = (n+
1)c(x)F . In this case, the projective curvature PRic is given by (2.3)

PRic = RicF + (n− 1)c0F + (n− 1)c2F 2.(4.1)

Recall that a Finsler metric F is of isotropic PRic-curvature if and only if

PRic = (n− 1)k(x)F 2.(4.2)

Combining (4.1) and (4.2), we find

RicF = (n− 1){−c0F + (k − c2)F 2}.(4.3)
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Since a Finsler metric is called a weak Einstein metric if

RicF = (n− 1)(
3θ

F
+ σ)F 2 = (n− 1)(3θF + σF 2),(4.4)

then from (4.3), F is a weak Einstein metric with

θ = −1

3
c0, σ = k − c2.(4.5)

Conversely, if F is has isotropic S-curvature and is weak Einstein with (4.5), the
Ricci curvature of F is given by (4.3). Substituting the Ricci curvature (4.3) into
(4.1) yields

PRic = (n− 1)k(x)F 2.

Thus, F is of isotropic PRic-curvature.

Proof of Theorem 1.2: Let F be an Einstein Randers metric (so F is isotropic
S-curvature) with PRic = 0. We can easily derive c0 = 0, meaning c is a constant.
Then, by (4.1), F satisfies

RicF = −(n− 1)c2F 2.(4.6)

We split the proof into two cases.

Case (1): If c ̸= 0, then RicF < 0. According to [4], on a closed manifold M ,
Einstein Randers metrics with negative Ricci scalar are Riemannian.
Case (2): if c = 0, then F is RicF -flat.

By Theorem 1.2, it is established that on closed manifolds, non-Riemannian Ein-
stein Randers metrics with PRic-flat property are indeed RicF -flat. Conversely,
a corollary in [14] suggests that a non-Riemannian Einstein Randers metric on a
closed manifold is RicF -flat if and only if it is a Berwald metric. It is worth noting
that Berwald metrics are associated with S-flatness. Therefore, Theorem 1.2 leads
to Corollary 1.2.

Corollary 4.1. Assume F is a non-Riemannian Einstein Randers metric with
PRic-flatness on a closed manifold M . Then S = 0.

Although the converse of Corollary 4.1 does not hold universally, we establish a
weak result:

If F is a non-Riemannian Einstein Randers metric with S-flatness on a closed
manifold M of dimension n ⩾ 3, then F exhibits constant PRic-curvature. The
following example illustrates and confirms this result.

Example 4.1. Consider the generic tangent vectors on S3 given by

u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.
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The Finsler function for Bao-Shen’s Randers space is defined as

F (x, y, z;u, v, w) = α(x, y, z;u, v, w) + β(x, y, z;u, v, w),

where

α =

√
η(cu− zv + yw)2 + (zu+ cv − xw)2 + (−yu+ xv + cw)2

1 + x2 + y2 + z2
,

β =
±
√
η − 1(cu− zv + yw)

1 + x2 + y2 + z2
,

and η > 1 is a real constant. The family of Randers metrics on S3 constructed by Bao-
Shen satisfies S=0. Given that these metrics possess constant flag curvature K, we have
RicF = 2KF 2. Hence, Bao-Shen’s metrics exhibit constant projective Ricci curvature
with k = K = constant, i.e. PRic = 2KF 2.

In Theorem 2, the assumption is that the manifold is closed, which is a cru-
cial condition for establishing the equivalence of RicF -flatness, PRic-flatness, and
Berwald metrics. However, in the following example, the manifold is not closed. As
a result, the metric is not Berwaldian, yet it transitions fromRicF -flat to PRic-flat.

This example serves as evidence that the Berwaldian condition is not a prereq-
uisite for transitioning from RicF -flat to PRic-flat.

Example 4.2. Consider the Randers metric defined in the vicinity of the origin in Rn

as follows

F :=

√
|y|2 − (|xQ|2|y|2− < y, xQ >2)

1− |xQ|2 − < y, xQ >

1− |xQ|2 ,(4.7)

where Q = (qij) is an antisymmetric matrix. Despite Q not being equal to zero, the metric
F satisfies S = 0. In fact, Ri

k = 0 and the Ricci curvature RicF = 0. However, it is
important to note that F does not qualify as a Berwald metric when Q ̸= 0. Nevertheless,
F is a PRic-flat metric.
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