
FACTA UNIVERSITATIS (NIŠ)
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Abstract. In this paper, we generalize the m-topology and the U -topology of C(X) to

its over-ring C(X)∆ . The generalized versions will be referred to as the m
∆

I
-topology

and the u
∆

I
-topology respectively. We define A∆

I = {f ∈ C(X)∆ : |f(x)| ≤ M , for all
x ∈ Z \H, for some Z ∈ Z∆(I) and H ∈ ∆}, which turns out to be the component of 0

in C(X)∆ with the u
∆

I
-topology. Next we define Iψ∆(X) = {f ∈ C(X)∆ : |fg(x)| ≤ M ,

for all g ∈ C(X)∆ and for all x ∈ Z \ H, for some Z ∈ Z∆(I) and H ∈ ∆}. This set
will be seen to play a key role in determining the connected ideals in C(X)∆ with the

m
∆

I
-topology. It is observed that C(X)∆ with the m

∆

I
-topology is a topological ring,

whereas C(X)∆ with the u
∆

I
-topology is not so. Finally, we give several necessary and

sufficient conditions for the coincidence of the u
∆

I
-topology and the m

∆

I
-topology on

C(X)∆ .

Keywords: C(X)∆ , u
∆

I
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1. Introduction

All topological spaces are assumed to be T1. Let RX be the ring of all real-valued
functions defined on a nonempty topological space X with pointwise addition and
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multiplication. Also, the collection of all continuous members of RX is denoted by
C(X), and the collection of all bounded members of C(X) is denoted by C

∗
(X).

In this connection, we refer to the reader [5], where these two rings have been
studied extensively. Our interest of study in this paper is an over-ring C(X)

∆

of C(X). In [10], we have introduced the ring C(X)
∆
, which consists of those

real-valued functions, whose discontinuity set is a member of ∆, where ∆ is a sub-
collection of P(X) with the properties: (i) For each x ∈ X, {x} ∈ ∆, (ii) for
A,B ∈ ∆, A ∪ B ∈ ∆, (iii) for A,B ∈ P(X) with A ⊆ B, if B ∈ ∆, then A ∈ ∆.
Then C(X)

∆
becomes a commutative ring with unity. Now for any f, g ∈ C(X)

∆
,

f ∨ g = 1
2 (f + g + |f − g|) ∈ C(X)

∆
and f ∧ g = 1

2 (f + g − |f − g|) ∈ C(X)
∆
.

Therefore, C(X)
∆

is actually a lattice-ordered ring and a sublattice of RX . More
properties of the ring C(X)

∆
have been studied in [9].

The m-topology on C(X) is first introduced in the late 40’s in [7] and later the
research in this area became active over the last 20 years, for example, the works
in [3, 6] and [8]. C(X) endowed with the m-topology is denoted by Cm(X) which
is a Hausdorff topological ring. In [5], further studies have been done regarding the
m-topology on C(X). Also, the uniform norm topology on C

∗
(X) has been studied

and investigated in [5]. A generalization of m-topology on C(X) has been defined
and thoroughly studied in [1]. Also in [2], the authors have given a generalization of
the U -topology of C(X). In this paper, we introduce the same kind of topologies,

i.e. the m
∆

I
-topology and the u

∆

I
-topology in the setting of C(X)∆ . We here aim

to investigate the similarities and dissimilarities between the ring C(X) and its
over-ring C(X)

∆
via these two topologies.

Let us first recall some necessary definitions and results for a smooth continua-
tion of the paper.

Definition 1.1. [10] For a topological space X and a subcollection ∆ of P(X) (≡
the power set of X), where ∆ is closed under forming subsets, finite unions and
containing all singletons, we define,

C(X)
∆
= {f ∈ RX : the set of points of discontinuities of f is a member of ∆}.

It can be easily observed that C(X)
∆
is a commutative ring with unity (with respect

to pointwise addition and multiplication) containing C(X), i.e. C(X)∆ is a super-
ring or an over-ring of C(X). We note that C(X)∆ is a sublattice of RX , in fact,
(C(X)

∆
,+, .,∨,∧) is a lattice-ordered ring if for any f, g ∈ C(X)

∆
, one defines

(f ∨ g)(x) = f(x) ∨ g(x) and (f ∧ g)(x) = f(x) ∧ g(x), x ∈ X. Also f ∨ g =
f+g+|f−g|

2 ∈ C(X)
∆
, for all f, g ∈ C(X)

∆
. For f ∈ C(X)

∆
and f > 0, we note that

there exists h ∈ C(X)
∆

such that f = h2. Also, whenever f ∈ C(X)
∆

and fr is
defined where r ∈ R, then fr ∈ C(X)

∆
. Also an element f in C(X)

∆
is called a

unit if and only if Z∆(f) = Ø (see Theorem 2.17 of [10]).

Definition 1.2. [10] For f ∈ C(X)∆ , the set f−1(0) = {x ∈ X : f(x) = 0} will
be called the zero set of f , to be denoted by Z∆(f).
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We will use the notation Z
∆
(C(X)

∆
) (or, Z

∆
(X)) for the collection {Z

∆
(f)

: f ∈ C(X)∆} of all zero sets in X.

Remark 1.1. [10] (i) Unlike C(X), Z∆(f) is not necessarily closed.
(ii) Z∆(f) need not be a Gδ-set as in the case of C(X).

Throughout this paper whenever we speak of an ideal unmodified, we will always
mean a proper ideal in the ring under consideration. For an ideal I of C(X)

∆
, we

shall denote {Z
∆
(f) : f ∈ I} by Z

∆
(I).

Definition 1.3. [10] An ideal I of C(X)
∆

is called a Z
∆
-ideal if Z−1

∆
Z

∆
(I) = I.

Equivalently, Z∆(f) = Z∆(g), for f ∈ I and g ∈ C(X)∆ implies that g ∈ I.

For a Z∆ -ideal I of C(X)∆ , we consider U
∆

I

+

= {u ∈ C(X)∆ : u(x) > 0, for

all x ∈ Z, for some Z ∈ Z
∆
(I)}. For each f in C(X)

∆
and each u ∈ U

∆

I

+

, we set

m
∆

I
(f, u) = {g ∈ C(X)

∆
: |f(x)−g(x)| < u(x), for all x ∈ Z\H, for some Z ∈ Z

∆
(I)

and H ∈ ∆}. It is routine to check that there exists a unique topology which we

call the m
∆

I
-topology on C(X)∆ in which for each f ∈ C(X)∆ and each u ∈ U

∆

I

+

,

{m∆

I
(f, u) : f ∈ C(X)

∆
and u ∈ U

∆

I

+

} is a base for its open neighborhoods. It can

be easily proved that C(X)
∆
with this m

∆

I
-topology is a topological ring. Similarly,

for f ∈ C(X)
∆
and ϵ > 0 in R, we define u∆

I
(f, ϵ) = {g ∈ C(X)

∆
: |f(x)−g(x)| < ϵ,

for all x ∈ Z \ H, for some Z ∈ Z
∆
(I) and H ∈ ∆}. It needs some routine

computations to show that {u∆

I
(f, ϵ) : f ∈ C(X)

∆
, ϵ > 0} is an open base for some

topology on C(X)
∆
, which we wish to call the u

∆

I
-topology on C(X)

∆
. For any

f ∈ C(X)
∆
, the family {u∆

I
(f, ϵ) : ϵ > 0} turns out to be an open neighborhood base

about the point f in this topology. Let Iψ∆
(X) = {f ∈ C(X)

∆
: given g ∈ C(X)

∆
,

there exists M > 0, Z ∈ Z
∆
(I) and H ∈ ∆ such that |f(x).g(x)| ≤ M for each x ∈

Z \H}. This set will be seen to play a key role in determining the connected ideals

in C(X)
∆
with the m

∆

I
-topology. Next we define A∆

I = {f ∈ C(X)
∆
: |f(x)| ≤ M ,

for all x ∈ Z \ H, for some Z ∈ Z∆(I) and H ∈ ∆}, which turns out to be the

component of 0 in C(X)∆ with the u
∆

I
-topology. We utilize this fact to establish

that several statements individually are necessary and sufficient for C(X)
∆

with

the u
∆

I
-topology to be a topological ring.

In section 2, we at first investigate the clopen sets of C(X)∆ with the m
∆

I
-

topology. As in [1], the map ϕf : R → C(X)∆ defined by ϕf (r) = r.f is introduced
for any f ∈ Iψ

∆
. Then it has been shown that such ϕf is continuous, for any

f ∈ Iψ
∆

when C(X)
∆

is equipped with the m
∆

I
-topology. With the help of this,

we then prove that Iψ∆
(X) is the component of 0 in C(X)

∆
with the m

∆

I
-topology.

We next define for any f ∈ A∆
I , ∥f∥∆

= inf{M : |f(x)| ≤ M for all x ∈ Z \ H,
for some Z ∈ Z∆(I) and H ∈ ∆}. It can be easily checked that (A∆

I , ∥.∥∆) is a
pseudo-normed linear space over R. The relative topology on A∆

I induced by the
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m
∆

I
-topology is shown to be stronger than the pseudo-norm topology on A∆

I . For
the coincidence of these two topologies, we then find a set of necessary and sufficient
conditions involving A∆

I and Iψ∆
(X). Then we have proved that C(X)

∆
with this

m
∆

I
-topology is regular but not Hausdorff. Finally, we give a complete description

of the connected ideals in C(X)
∆
with the m

∆

I
-topology.

In section 3, we prove results concerning the u
∆

I
-topology on C(X)

∆
. Since the

map ϕf : R → C(X)
∆

defined by ϕf (r) = r.f is proved to be continuous for each

f ∈ Iψ
∆
in them

∆

I
-topology and the u

∆

I
-topology is weaker than them

∆

I
-topology on

C(X)
∆
, it follows that the same map is also continuous for each f ∈ Iψ

∆
, if C(X)

∆

is equipped with the u
∆

I
-topology. It is then proved that A∆

I is the component of

0 in C(X)
∆
equipped with the u

∆

I
-topology. Next, an example has been furnished

to show that for a free Z
∆
-ideal, C(X)

∆
with the u

∆

I
-topology is not a topological

ring. Finally it has been proved that C(X)
∆

with u
∆

I
-topology is a topological

ring if and only if the u
∆

I
-topology and the m

∆

I
-topology coincide on C(X)

∆
. Next

endeavour has been made for the coincidence of the u
∆

I
-topology and the m

∆

I
-

topology on C(X)
∆
. For this, we define U

∆

I

++

= {u ∈ C(X)
∆

: u(x) > λ, for
all x ∈ Z \ H, for some Z ∈ Z∆(I) and H ∈ ∆, λ > 0}. It has been proved that

for any Z∆ -ideal I in C(X)∆ , the u
∆

I
-topology coincides with the m

∆

I
-topology if

and only if U
∆

I

+

⊆ U
∆

I

++

. Finally, we give several other necessary and sufficient

conditions for the coincidence of the u
∆

I
-topology and the m

∆

I
-topology on C(X)

∆
.

Throughout the paper, for any literature on topology one may go through [4].

2. m
∆

I
-topology on C(X)∆

We start this section by investigating the nature of clopen sets of C(X)∆ with

the m
∆

I
-topology.

Theorem 2.1. The set A∆
I is a clopen set in C(X)

∆
with the m

∆

I
-topology.

Proof. For f ∈ C(X)
∆
\A∆

I , m
∆
I
(f, 1) ⊆ C(X)

∆
\A∆

I . So A∆
I is a closed set. Again

for f ∈ A∆
I , m

∆
I
(f, 1) ⊆ A∆

I which shows that A∆
I is an open set in C(X)

∆
with

the m
∆

I
-topology.

Theorem 2.2. For any Z∆-ideal I, I ⊆ Iψ∆(X) ⊆ A∆
I ⊆ C(X)∆ .

Proof. It is straightforward.

Theorem 2.3. For f ∈ Iψ∆
(X), the map ϕf : R → C(X)

∆
defined by ϕf (r) = r.f

is continuous, when C(X)∆ is equipped with the m
∆

I
-topology.
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Proof. Let r.f ∈ m∆
I
(f, u), where u ∈ U

∆

I

+

. Then u(x) > 0, for all x ∈ Z
∆
(h), for

some Z
∆
(h) ∈ Z

∆
(I). Consider g = |u| + |h|. Then g(x) > 0 for all x ∈ X and

g ∈ C(X)∆ . So g is a unit of C(X)∆ . Therefore 1
g ∈ C(X)∆ . Since f ∈ Iψ∆(X),

there exists M > 0 such that | f(x)g(x) | ≤ M for all x ∈ Z \H, for some Z ∈ Z∆(I) and

H ∈ ∆. Let s ∈ (r− 1
M , r+ 1

M ). Then |ϕf (r)− ϕf (s)| = |r− s||f | = |r− s| |f ||g| |g| <
|g| = |u| = u, for all x ∈ (Z

∆
(h) ∩ Z) \H. So ϕf is continuous.

Using the above theorem we can now have an idea about the component of 0 in

C(X)∆ with the m
∆

I
-topology as follows.

Theorem 2.4. Iψ∆
(X) is the component of 0 in C(X)∆ with the m

∆

I
-topology.

Proof. It can be easily seen that Iψ∆
(X) =

⋃
f∈Iψ∆

(X)

ϕf (R) and 0 ∈
⋂

f∈Iψ∆
(X)

ϕf (R).

Hence Iψ∆
(X) is a connected ideal of C(X)

∆
with respect to the m

∆

I
-topology. Let

J be a connected ideal of C(X)
∆
containing Iψ∆

(X). If f ∈ J \ Iψ∆
(X), then there

exists g ∈ C(X)∆ such that fg /∈ A∆
I . But A

∆
I is a clopen set containing 0 and as J

is an ideal, fg ∈ J \A∆
I . So J = (J ∩A∆

I )∪ (J \A∆
I ) = the union of two non-empty

disjoint open sets in the space J , a contradiction to the fact that J is connected.
Hence Iψ∆

(X) is the component of 0 in C(X)
∆
with the m

∆

I
-topology.

For f ∈ A∆
I , we define ∥f∥∆ = inf{M : |f(x)| ≤ M for all x ∈ Z \H, for some

Z ∈ Z∆(I) andH ∈ ∆}. It can be easily checked that (A∆
I , ∥.∥∆) is a pseudo-normed

linear space over R. Next for f ∈ A∆
I , we define B(f, ϵ) = {g ∈ A∆

I : ∥f −g∥∆ < ϵ}.
Then the family {B(f, ϵ) : f ∈ A∆

I , ϵ > 0} forms a base of open sets for the pseudo-
norm topology on A∆

I .

Lemma 2.1. The relative topology on A∆
I induced by the m

∆

I
-topology is stronger

than the pseudo-norm topology on A∆
I .

Proof. It follows from the fact that for f ∈ A∆
I , A

∆
I ∩m∆

I
(f, ϵ2 ) ⊆ B(f, ϵ).

Theorem 2.5. The following statements are equivalent:

(i) A∆
I = C(X)

∆
.

(ii) Iψ∆
(X) = C(X)

∆
.

(iii) The pseudo-norm topology on A∆
I is identical with the relative m

∆

I
-topology.

(iv) The m
∆

I
-topology on C(X)

∆
is connected.

(v) The m
∆

I
-topology on C(X)

∆
is locally connected.
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Proof. (i) ⇒ (ii): Let f, g ∈ C(X)
∆
. Then f, g ∈ A∆

I also. So there exist M1,M2 >
0 such that |f(x)| ≤ M1, for all x ∈ Z1 \H1 and |g(x)| ≤ M2, for all x ∈ Z2 \H2

for some Z1, Z2 ∈ Z∆(I) and H1, H2 ∈ ∆. This implies that |fg(x)| ≤ M1M2, for
all x ∈ (Z1 ∩ Z2) \ (H1 ∪ H2), where Z1 ∩ Z2 ∈ Z

∆
(I) and H1 ∪ H2 ∈ ∆. Hence

f ∈ Iψ∆
(X).

(ii) ⇒ (i): Follows from Theorem 2.2.

(i) ⇒ (iii): From Lemma 2.1 it follows that the pseudo-norm topology on A∆
I

is weaker than the m
∆

I
-topology on A∆

I . So it is sufficient to show that the m
∆

I
-

topology is weaker than the pseudo-norm topology on A∆
I . Let m

∆
I
(f, u) be a basic

element for m
∆

I
-topology on A∆

I , where f ∈ A∆
I and u ∈ U

∆

I

+

. Then u(x) > 0
for all x ∈ Z∆(g), for some Z∆(g) ∈ Z∆(I), where g ∈ I. Let v = |u| + |g|.
Then v ∈ C(X)∆ and v(x) > 0 for all x ∈ X. So v is a unit of C(X)∆ . This
implies that 1

v ∈ C(X)
∆

= A∆
I . Hence there exists M > 0 such that | 1

v(x) | ≤
M , for all x ∈ Z1 \ H1, for some Z1 ∈ Z

∆
(I) and H1 ∈ ∆ which implies that

|v(x)| ≥ 1
M , for all x ∈ Z1 \H1 for some Z1 ∈ Z

∆
(I) and H1 ∈ ∆. Now consider

B(f, 1
M ) = {h ∈ A∆

I : ∥f − h∥∆ < 1
M }. Choose h ∈ B(f, 1

M ). Then ∥f − h∥∆ < 1
M .

Therefore there exist Z2 ∈ Z∆(I) and H ∈ ∆ such that |f(x) − h(x)| < 1
M , for all

x ∈ Z2 \H2. This implies that |f(x) − h(x)| < 1
M ≤ v(x) = |u(x)| = u(x), for all

x ∈ (Z
∆
(g)∩Z1∩Z2)\ (H1∪H2), where Z∆

(g)∩Z1∩Z2 ∈ Z
∆
(I) and H1∪H2 ∈ ∆.

Hence B(f, 1
M ) ⊆ m∆

I
(f, u). So the pseudo-norm topology on A∆

I is weaker than

the m
∆

I
-topology on A∆

I .

(iii) ⇒ (i): Let A∆
I ⊊ C(X)∆ . Then there exists f ∈ C(X)∆ \ A∆

I with f ≥ 1
such that for each Z ∈ Z

∆
(I) and H ∈ ∆, there exists x ∈ Z \H with f(x) > n,

for all n ∈ N. We consider g = 1
f . Then g ∈ C(X)

∆
with g ≤ 1. Therefore for

each Z ∈ Z∆(I) and H ∈ ∆, there exists x ∈ Z \ H such that g(x) < 1
n , for all

n ∈ N. Now m∆
I
(0, g) is a neighbourhood of 0 in the relative m

∆

I
-topology. We

will show that there does not exist any ϵ > 0 such that B(0, ϵ) ⊆ m∆
I
(0, g) ∩ A∆

I .
Since ϵ

2 ∈ B(0, ϵ) but ϵ
2 /∈ m∆

I
(0, g), B(0, ϵ) ⊈ m∆

I
(0, g) ∩ A∆

I for any ϵ > 0, a
contradiction. Hence A∆

I = C(X)
∆
.

(i) ⇒ (iv): A pseudo-norm topology is path connected, hence connected.

(iv) ⇒ (i): If A∆
I ̸= C(X)

∆
, then by Theorem 2.1, A∆

I is a proper clopen set in
C(X)∆ , a contradiction. Hence A∆

I = C(X)∆ .

(ii) ⇒ (v): To show that the m
∆

I
-topology is locally connected, it is sufficient

to show that m∆
I
(0, ϵ) is connected. Since Iψ∆(X) = C(X)∆ , for any f ∈ C(X)∆

the map ϕf : R → C(X)∆ defined by ϕf (r) = r.f is continuous, by Theorem 2.3.

Now m∆
I
(0, ϵ) =

⋃
f∈m∆

I
(0,ϵ)

ϕf ([−1, 1]) and 0 ∈
⋂

f∈m∆
I
(0,ϵ)

ϕf ([−1, 1]). This implies

that m∆
I
(0, ϵ) is connected. Hence the m

∆

I
-topology is locally connected.

(v) ⇒ (ii): If possible, let Iψ∆(X) ̸= C(X)∆ . Let U be any connected open
neighborhood of 0. Then U ⊆ Iψ∆(X) (since Iψ∆(X) is a component of 0 by

Theorem 2.4). Again there exists u ∈ U
∆

I

+

such that m∆
I
(0, u) ⊆ U ⊆ Iψ∆(X) ⊊
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C(X)
∆
. Since u ∈ U

∆

I

+

, u(x) > 0 for all x ∈ Z, for some Z ∈ Z
∆
(I), where

Z = Z
∆
(g) for some g ∈ I. Let v = |u| + |g|. Then v ∈ C(X)

∆
and v(x) > 0,

for all x ∈ X. Let f ∈ C(X)∆ \ Iψ∆(X). Now f
1+|f |v ∈ m∆

I
(0, u) ⊆ U ⊆ Iψ∆(X).

Therefore f = 1+|f |
v . f

1+|f |v ∈ Iψ∆
(X) (as Iψ∆

(X) is an ideal), a contradiction.

Hence Iψ∆
(X) = C(X)

∆
.

Regarding the separation axioms of C(X)∆ with the m
∆

I
-topology, we have the

following results.

Proposition 2.1. C(X)∆ with the m
∆

I
-topology is a completely regular space.

Proof. Let for each u ∈ U
∆

I

+

, Su = {(f, g) ∈ C(X)
∆
× C(X)

∆
: there exist Z ∈

Z
∆
(I) and H ∈ ∆ such that |f(x) − g(x)| < u(x) for each x ∈ Z \H}. Then the

family {Su : u ∈ U
∆

I

+

} is a base for some uniformity on C(X)
∆
; furthermore the

topology induced by this uniformity is the m
I∆

-topology on C(X)∆ . Consequently,
C(X)∆ with the m

I∆
-topology becomes a completely regular space.

Remark 2.1. C(X)∆ with the m
∆

I
-topology is not a Hausdorff space.

Example 2.1. Let X be a topological space and I be any Z∆ -ideal of C(X)∆ . Consider
a, b ∈ X with a ̸= b. Then χ{a} , χ{b} ∈ C(X)∆ and χ{a} ̸= χ{b} . Now χ{a} ∈ m∆

I
(χ{a} , u),

for any u ∈ U
∆

I

+

. Since u ∈ U
∆

I

+

, there exists Z ∈ Z∆(I) such that u(x) > 0, for all
x ∈ Z. Hence |χ{a}(x) − χ{b}(x)| = 0 < u(x), for all x ∈ Z \ {a, b}, where Z ∈ Z∆(I)

and {a, b} ∈ ∆. Therefore, χ{b} ∈ m∆
I
(χ{a} , u). So C(X)∆ with the m

∆

I
-topology is not a

Hausdorff space.

Next we investigate the connected ideals of C(X)
∆
with the m

∆

I
-topology.

Proposition 2.2. Let J ⊆ C(X)∆ be an ideal containing a Z∆-ideal I. Then

int J = Ø in C(X)
∆

with the m
∆

I
-topology.

Proof. Let f ∈ int J . Then there exists u ∈ U
∆

I

+

such that f ∈ m∆
I
(f, u) ⊆ J .

Since u ∈ U
∆

I

+

, there exists Z = Z
∆
(|g|) ∈ Z

∆
(I) such that u(x) > 0, for all

x ∈ Z
∆
(|g|) with |g| ∈ I . Now f + |u|

2 ∈ m∆
I
(f, u) ⊆ J and f ∈ J implies that

|u| ∈ J . Now consider v = |u|+ |g|. Then v ∈ C(X)∆ as well as v ∈ J and v(x) > 0
for all x ∈ X. Therefore v is a unit of C(X)∆ contained in J , a contradiction.
Hence int J = Ø.

Proposition 2.3. The following statements are equivalent for an ideal J of C(X)∆
equipped with the m

∆

I
-topology.
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(i) J is a connected ideal.

(ii) J ⊆ A∆
I .

(iii) J ⊆ Iψ∆
(X).

Proof. (i) ⇒ (ii): Let f ∈ J \ A∆
I . Since 0 ∈ J ∩ A∆

I , it follows that J ∩ A∆
I and

J \A∆
I are two nonempty disjoint open sets in the space J , as by Theorem 2.1 A∆

I

is a clopen set in C(X)∆ . This contradicts the fact that J is a connected ideal.
Hence J ⊆ A∆

I .

(ii) ⇒ (iii): Let f ∈ J . Then for all g ∈ C(X)∆ , fg ∈ J (as J is an ideal).
Therefore fg ∈ A∆

I . Thus for all g ∈ C(X)∆ , fg ∈ A∆
I implies that f ∈ Iψ∆(X).

So J ⊆ Iψ∆
(X).

(iii) ⇒ (i): For all f ∈ J , the map ϕf : R → C(X)∆ defined by ϕf (r) = r.f is

continuous. Now J =
⋃
f∈J

ϕf (R) and 0 ∈
⋂
f∈J

ϕf (R). So J is connected.

3. u
∆

I
-topology on C(X)

∆

Theorem 3.1. For f ∈ A∆
I , the map ϕf : R → C(X)∆ defined by ϕf (r) = r.f is

continuous with respect to the u
∆

I
-topology.

Proof. Let r.f ∈ u∆
I
(f, ϵ), for ϵ > 0. Since f ∈ A∆

I , there exists M > 0 such
that |f(x)| ≤ M , for all x ∈ Z \ H, for some Z ∈ Z

∆
(I) and H ∈ ∆. Now

consider the open set (r − ϵ
M , r + ϵ

M ) containing r. If s ∈ (r − ϵ
M , r + ϵ

M ), then
|ϕf (r)(x)−ϕf (s)(x)| = |rf(x)−sf(x)| = |r−s||f(x)| < ϵ

MM = ϵ, for all x ∈ Z \H,
Z ∈ Z∆(I) and H ∈ ∆. Hence ϕf is continuous whenever f ∈ A∆

I .

Theorem 3.2. A∆
I is a clopen set in C(X)

∆
with respect to the u

∆

I
-topology.

Proof. Can be done similarly as in Theorem 2.1.

Lemma 3.1. A∆
I is the component of 0 in C(X)∆ with respect to the u

∆

I
-topology.

Proof. It can be easily seen that A∆
I =

⋃
f∈A∆

I

ϕf (R) and 0 ∈
⋂

f∈A∆
I

ϕf (R). Hence A∆
I

is connected (as ϕf is continuous for f ∈ A∆
I ) and also A∆

I is a clopen set in C(X)
∆

with respect to the u
∆

I
-topology. So A∆

I is a maximal connected set containing 0.

Hence A∆
I is the component of 0 in the u

∆

I
-topology.

Since in a topological ring, the component of 0 is an ideal, in view of the fol-
lowing example we can make a remark that C(X)∆ with the u

∆

I
-topology is not a

topological ring.
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Example 3.1. Consider X = R with the usual topology of reals and ∆ = {A ⊆ X : A is
countable}. Let S = {χ{x} : x ∈ X} and I =< S >. Then I is a free Z∆ -ideal generated
by S and for any g ∈ I, Z∆(g) = X \ A, where A is a finite subset of X (where an ideal

I is said to be free if
⋂
f∈I

Z∆(f) = Ø). Now we show that A∆
I is not an ideal of C(X)∆ .

Take the function f : R → R defined by,

f(x) =


x, x ̸= n

n+ 1, x = n.

Clearly f ∈ C(X)∆ . But there does not exist any Z ∈ Z∆(I) and H ∈ ∆ such that f is
bounded on Z \H. This implies that f /∈ A∆

I . Therefore 1 ∈ A∆
I whereas 1.f /∈ A∆

I , which

implies that A∆
I is not an ideal. Hence C(X)∆ with the u

∆

I
-topology is not a topological

ring.

In fact, we can say that

Remark 3.1. For any free Z∆ -ideal I, C(X)∆ with the u
∆

I
-topology may not be a topo-

logical ring.

We next have the nature of quasicomponent of 0 in C(X)
∆
with the u

∆

I
-topology

as follows.

Theorem 3.3. The component and the quasicomponent of 0 in C(X)∆ with the

u
∆

I
-topology are identical.

Proof. By Lemma 3.1, we have that A∆
I is the component of 0 in C(X)

∆
with the

u
∆

I
-topology. So it is sufficient to prove that the quasicomponent of 0 is contained

in A∆
I . As A∆

I is a clopen set in C(X)∆ with the u
∆

I
-topology and the quasi-

component of a point is the intersection of all clopen sets containing it, it thus
follows that the quasi-component of 0 is contained in A∆

I . Hence the component

and the quasicomponent of 0 in C(X)
∆
with the u

∆

I
-topology are identical.

Proposition 3.1. The pseudo-norm topology on A∆
I is identical with the relative

u
∆

I
-topology on it.

Proof. For f ∈ A∆
I , we have that A∆

I ∩ u∆
I
(f, ϵ2 ) ⊆ B(f, ϵ), for all ϵ > 0. So the

relative topology on A∆
I induced by the u

∆

I
-topology is stronger than the pseudo-

norm topology on A∆
I . Again if f /∈ A∆

I , then u∆
I
(f, ϵ)∩A∆

I = Ø, for any ϵ > 0. Also
for f ∈ A∆

I , B(f, ϵ) ⊆ u∆
I
(f, ϵ) ∩ A∆

I , for all ϵ > 0. So the pseudo-norm topology

on A∆
I is stronger than the relative u

∆

I
-topology on it. Hence the pseudo-norm

topology on A∆
I is identical with the relative u

∆

I
-topology on A∆

I .

Next we investigate about the connectedness of C(X)∆ with the u
∆

I
-topology.

Also, we give a complete description of the connected ideals of C(X)
∆

with the

u
∆

I
-topology.
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Proposition 3.2. The u
∆

I
-topology on C(X)

∆
is connected if and only if A∆

I =
C(X)

∆
.

Proof. Let the u
∆

I
-topology on C(X)

∆
be connected. As A∆

I is a clopen set in

C(X)
∆
with the u

∆

I
-topology, we must have A∆

I = C(X)
∆
.

Conversely, let A∆
I = C(X)

∆
. As the u

∆

I
-topology on A∆

I is identical with the
pseudo-norm topology on the same and since the pseudo-norm topology is con-
nected, so the u

∆

I
-topology on C(X)

∆
must be connected.

Proposition 3.3. If A∆
I = C(X)

∆
, then C(X)

∆
with the u

∆

I
-topology is locally

connected.

Proof. Since the pseudo-norm topology on A∆
I is ideantical with the u

∆

I
-topology,

it is sufficient to show that u∆
I
(0, ϵ) is a connected open set, for any ϵ > 0. As

A∆
I = C(X)

∆
, by Theorem 3.1, the map ϕf : R → C(X)

∆
defined by ϕf (r) =

r.f is continuous for all f ∈ C(X)∆ . Now u∆
I
(0, ϵ) =

⋃
f∈u∆

I
(0,ϵ)

ϕf ([−1, 1]) and

0 ∈
⋂

f∈u∆
I
(0,ϵ)

ϕf ([−1, 1]). This implies that u∆
I
(0, ϵ) is connected. Hence the u

∆

I
-

topology on C(X)∆ is locally connected.

Theorem 3.4. Iψ∆
(X) is the maximal connected ideal containing 0 in the space

C(X)∆ endowed with the u
∆

I
-topology.

Proof. Obviously 0 ∈ Iψ∆
(X). Let J be a connected ideal containing Iψ∆

(X). Then
there exists f ∈ J \Iψ∆

(X) such that fg /∈ A∆
I , for some g ∈ C(X)

∆
. Again A∆

I is a

clopen set in the u
∆

I
-topology. But fg ∈ J\A∆

I and 0 ∈ A∆
I ∩J . This contradicts the

fact that J is connected. Hence Iψ∆
(X) is the maximal connected ideal containing

0.

Proposition 3.4. For an ideal J in C(X)
∆

with the u
∆

I
-topology, the following

statements are equivalent:

(i) J is a connected ideal.

(ii) J ⊆ A∆
I .

(iii) J ⊆ Iψ∆(X).

Proof. (i) ⇒ (ii): Let J be a connected ideal of C(X)
∆
. Since A∆

I is the component

of 0 in C(X)
∆
with the u

∆

I
-topology, this implies that J ⊆ A∆

I .

(ii) ⇒ (i): Let J ⊆ A∆
I . As the map ϕf : R → C(X)

∆
defined by ϕf (r) = r.f is

continuous in the u
∆

I
-topology (by Theorem 3.1), for all f ∈ J and J =

⋃
f∈J

ϕf (R),

it follows that J is connected.
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(ii) ⇒ (iii): Let J ⊆ A∆
I . If possible, let there exist f ∈ J \Iψ∆(X). Then there

exists g ∈ C(X)∆ such that fg /∈ A∆
I . But fg ∈ J ⊆ A∆

I , a contradiction. Hence
J ⊆ A∆

I .

(iii) ⇒ (ii): Let J ⊆ Iψ∆
(X). As Iψ∆

(X) ⊆ A∆
I ⊆ C(X)

∆
, it follows that

J ⊆ A∆
I .

Proposition 3.5. Let J ⊆ C(X)
∆

be an ideal containing the Z
∆
-ideal I. Then

int J = Ø with respect to the u
∆

I
-topology on C(X)

∆
.

Proof. Since the u
∆

I
-topology on C(X)

∆
is weaker than the m

∆

I
-topology on the

same and by Proposition 2.2, int J = Ø with respect to them
∆

I
-topology on C(X)

∆
,

intJ = Ø with respect to the u
∆

I
-topology on C(X)

∆
also.

Now for the coincidence of the u
∆

I
-topology and the m

∆

I
-topology on C(X)

∆
,

we define U
∆

I

++

= {u ∈ C(X)∆ : u(x) > λ, for all x ∈ Z \ H, for some Z ∈
Z∆(I) and H ∈ ∆, λ > 0}.

Proposition 3.6. For any Z∆-ideal I in C(X)∆ , the u
∆

I
-topology coincides with

the m
∆

I
-topology if and only if U

∆

I

+

⊆ U
∆

I

++

.

Proof. First let U
∆

I

+

⊆ U
∆

I

++

. Then it is sufficient to show that the m
∆

I
-topology is

weaker than the u
∆

I
-topology. Let f ∈ m∆

I
(f, u), where f ∈ C(X)∆ and u ∈ U

∆

I

+

.

Since U
∆

I

+

⊆ U
∆

I

++

, there exists λ > 0 such that u(x) > λ, for all x ∈ Z1 \ H1,
for some Z1 ∈ Z

∆
(I) and H1 ∈ ∆. We now show that u∆

I
(f, λ) ⊆ m∆

I
(f, u). Let

g ∈ u∆
I
(f, λ). Then |g(x)− f(x)| < λ, for all x ∈ Z2 \H2, for some Z2 ∈ Z∆(I) and

H2 ∈ ∆. This implies that |g(x)−f(x)| < λ < u(x), for all x ∈ (Z1∩Z2)\(H1∪H2),
where Z1 ∩ Z2 ∈ Z

∆
(I) and H1 ∪ H2 ∈ ∆. So g ∈ m∆

I
(f, u). Hence u∆

I
(f, λ) ⊆

m∆
I
(f, u).

Conversely, let the u
∆

I
-topology coincide with the m

∆

I
-topology on C(X)

∆
and

u ∈ U
∆

I

+

. Then f ∈ m∆
I
(f, u), where m∆

I
(f, u) is an open set in the m

∆

I
-topology,

for any f ∈ C(X)
∆
. Hence there exists λ > 0 such that u∆

I
(f, λ) ⊆ m∆

I
(f, u).

Now f + λ
2 ∈ u∆

I
(f, λ) implies that f + λ

2 ∈ m∆
I
(f, u). Thus u(x) > λ

2 , for all

x ∈ Z \H, for some Z ∈ Z
∆
(I) and H ∈ ∆, which implies that u ∈ U

∆

I

++

. Hence

U
∆

I

+

⊆ U
∆

I

++

.

Next we give several other necessary and sufficient conditions for the coincidence
of the m

∆

I
-topology and the u

∆

I
-topology on C(X)∆ .

Theorem 3.5. The following statements are equivalent:



694 R. P. Saha and R. Sen

(i) The u
∆

I
-topology and the m

∆

I
-topology coincides on C(X)

∆
.

(ii) C(X)
∆

with the u
∆

I
-topology is a topological ring.

(iii) A∆
I = C(X)

∆
.

(iv) Iψ∆
(X) = C(X)

∆
.

(v) C(X)
∆

with the u
∆

I
-topology is connected.

Proof. (i) ⇒ (ii): Obvious, since C(X)
∆

with the m
I∆

-topology is a topological
ring.

(ii) ⇒ (iii): Let C(X)
∆
with the u

∆

I
-topology be a topological ring. Then A∆

I is

an ideal of C(X)
∆
(as A∆

I is the component of 0 in C(X)
∆
with the u

∆

I
-topology).

Also 1 ∈ A∆
I ⇒ C(X)∆ = A∆

I .

(iii) ⇔ (iv): Follows from Theorem 2.5.

(iii) ⇔ (v) Follows from Proposition 3.2.

(iii) ⇒ (i): To show that the u
∆

I
-topology and the m

∆

I
-topology coincides on

C(X)
∆
, it is sufficient to show that U

∆

I

+

⊆ U
∆

I

++

. Now, for all f ∈ C(X)
∆
, f

is bounded on some Z \ H, where Z ∈ Z∆(I) and H ∈ ∆. Therefore C(X)∆ =⋃
ϵ>0

u∆
I
(0, ϵ). Let u ∈ U

∆

I

+

. Then u(x) > 0, for all x ∈ Z
∆
(g), for some Z

∆
(g) ∈

Z
∆
(I), where g ∈ I. We consider v = u2 + g2. Then v ∈ C(X)

∆
and v(x) > 0,

for all x ∈ X. Hence v is a unit of C(X)
∆

and thus 1
v ∈ C(X)

∆
. Therefore there

exists ϵ > 0 such that 1
v ∈ u∆

I
(0, ϵ). This implies that 1

v(x) < ϵ, for all x ∈ Z \H,

for some Z ∈ Z∆(I) and H ∈ ∆. Therefore (u2 + g2)(x) > 1
ϵ , for all x ∈ Z \H, for

some Z ∈ Z∆(I) and H ∈ ∆. Thus u(x) > 1√
ϵ
, for all x ∈ (Z ∩ Z∆(g)) \H, where

Z ∩ Z
∆
(g) ∈ Z

∆
(I) and H ∈ ∆. Hence u ∈ U

∆

I

++

.
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