FACTA UNIVERSITATIS (NIŠ)

Ser. Math. Inform. Vol. 40, No 3 (2025), 683-695

https://doi.org/10.22190/FUMI240807047S

Original Scientific Paper

ON A GENERALIZED VERSION OF m-TOPOLOGY AND U-TOPOLOGY IN THE OVER-RING $C(X)_{\Delta}$ OF C(X) *

Rudra Pratap Saha¹ and Ritu Sen²

 Presidency University, Department of Mathematics 86/1, College Street, Kolkata-700073, India
Department of Mathematics, 86/1, College Street Kolkata-700073, India

ORCID IDs: Rudra Pratap Saha

Ritu Sen

https://orcid.org/0009-0007-8183-0899https://orcid.org/0000-0002-3804-8355

Abstract. In this paper, we generalize the m-topology and the U-topology of C(X) to its over-ring $C(X)_{\Delta}$. The generalized versions will be referred to as the m_I^{Δ} -topology and the u_I^{Δ} -topology respectively. We define $A_I^{\Delta} = \{f \in C(X)_{\Delta} : |f(x)| \leq M$, for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$, which turns out to be the component of $\underline{0}$ in $C(X)_{\Delta}$ with the u_I^{Δ} -topology. Next we define $I_{\psi_{\Delta}}(X) = \{f \in C(X)_{\Delta} : |fg(x)| \leq M$, for all $g \in C(X)_{\Delta}$ and for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$. This set will be seen to play a key role in determining the connected ideals in $C(X)_{\Delta}$ with the m_I^{Δ} -topology. It is observed that $C(X)_{\Delta}$ with the m_I^{Δ} -topology is a topological ring, whereas $C(X)_{\Delta}$ with the u_I^{Δ} -topology is not so. Finally, we give several necessary and sufficient conditions for the coincidence of the u_I^{Δ} -topology and the m_I^{Δ} -topology on $C(X)_{\Delta}$.

Keywords: $C(X)_{\Delta}$, u_{I}^{Δ} -topology, m_{I}^{Δ} -topology.

1. Introduction

All topological spaces are assumed to be T_1 . Let \mathbb{R}^X be the ring of all real-valued functions defined on a nonempty topological space X with pointwise addition and

Received: August 07, 2024, revised: February 11, 2025, accepted: February 17, 2025

Communicated by Dimitris Georgiou

Corresponding Author: R. Sen

E-mail addresses: rudrapratapsaha1997@gmail.com (R. P. Saha), ritu_sen29@yahoo.co.in, ritu.maths@presiuniv.ac.in (R. Sen)

2020 Mathematics Subject Classification. Primary 54C30; Secondary 54C40.

© 2025 BY UNIVERSITY OF NIŠ, SERBIA | CREATIVE COMMONS LICENSE: CC BY-NC-ND

^{*}The first author is supported by CSIR, New Delhi, INDIA. File No. - 08/155(0089)/2020-EMR-I.

multiplication. Also, the collection of all continuous members of \mathbb{R}^X is denoted by C(X), and the collection of all bounded members of C(X) is denoted by $C^*(X)$. In this connection, we refer to the reader [5], where these two rings have been studied extensively. Our interest of study in this paper is an over-ring $C(X)_{\Delta}$ of C(X). In [10], we have introduced the ring $C(X)_{\Delta}$, which consists of those real-valued functions, whose discontinuity set is a member of Δ , where Δ is a subcollection of $\mathcal{P}(X)$ with the properties: (i) For each $x \in X$, $\{x\} \in \Delta$, (ii) for $A, B \in \Delta$, $A \cup B \in \Delta$, (iii) for $A, B \in \mathcal{P}(X)$ with $A \subseteq B$, if $B \in \Delta$, then $A \in \Delta$. Then $C(X)_{\Delta}$ becomes a commutative ring with unity. Now for any $f, g \in C(X)_{\Delta}$, $f \vee g = \frac{1}{2}(f+g+|f-g|) \in C(X)_{\Delta}$ and $f \wedge g = \frac{1}{2}(f+g-|f-g|) \in C(X)_{\Delta}$. Therefore, $C(X)_{\Delta}$ is actually a lattice-ordered ring and a sublattice of \mathbb{R}^X . More properties of the ring $C(X)_{\Delta}$ have been studied in [9].

The m-topology on C(X) is first introduced in the late 40's in [7] and later the research in this area became active over the last 20 years, for example, the works in [3, 6] and [8]. C(X) endowed with the m-topology is denoted by $C_m(X)$ which is a Hausdorff topological ring. In [5], further studies have been done regarding the m-topology on C(X). Also, the uniform norm topology on $C^*(X)$ has been studied and investigated in [5]. A generalization of m-topology on C(X) has been defined and thoroughly studied in [1]. Also in [2], the authors have given a generalization of the U-topology of C(X). In this paper, we introduce the same kind of topologies, i.e. the m_I^{Δ} -topology and the u_I^{Δ} -topology in the setting of $C(X)_{\Delta}$. We here aim to investigate the similarities and dissimilarities between the ring C(X) and its over-ring $C(X)_{\Delta}$ via these two topologies.

Let us first recall some necessary definitions and results for a smooth continuation of the paper.

Definition 1.1. [10] For a topological space X and a subcollection Δ of $\mathcal{P}(X)$ (\equiv the power set of X), where Δ is closed under forming subsets, finite unions and containing all singletons, we define,

 $C(X)_{\wedge} = \{ f \in \mathbb{R}^X : \text{the set of points of discontinuities of } f \text{ is a member of } \Delta \}.$

It can be easily observed that $C(X)_{\Delta}$ is a commutative ring with unity (with respect to pointwise addition and multiplication) containing C(X), i.e. $C(X)_{\Delta}$ is a superring or an over-ring of C(X). We note that $C(X)_{\Delta}$ is a sublattice of \mathbb{R}^{X} , in fact, $(C(X)_{\Delta},+,.,\vee,\wedge)$ is a lattice-ordered ring if for any $f,g\in C(X)_{\Delta}$, one defines $(f\vee g)(x)=f(x)\vee g(x)$ and $(f\wedge g)(x)=f(x)\wedge g(x)$, $x\in X$. Also $f\vee g=\frac{f+g+|f-g|}{2}\in C(X)_{\Delta}$, for all $f,g\in C(X)_{\Delta}$. For $f\in C(X)_{\Delta}$ and f>0, we note that there exists $h\in C(X)_{\Delta}$ such that $f=h^{2}$. Also, whenever $f\in C(X)_{\Delta}$ and f^{r} is defined where $r\in \mathbb{R}$, then $f^{r}\in C(X)_{\Delta}$. Also an element f in $C(X)_{\Delta}$ is called a unit if and only if $Z_{\Delta}(f)=\emptyset$ (see Theorem 2.17 of [10]).

Definition 1.2. [10] For $f \in C(X)_{\Delta}$, the set $f^{-1}(0) = \{x \in X : f(x) = 0\}$ will be called the zero set of f, to be denoted by $Z_{\Delta}(f)$.

We will use the notation $Z_{\Delta}(C(X)_{\Delta})$ (or, $Z_{\Delta}(X)$) for the collection $\{Z_{\Delta}(f): f \in C(X)_{\Delta}\}$ of all zero sets in X.

Remark 1.1. [10] (i) Unlike C(X), $Z_{\Delta}(f)$ is not necessarily closed. (ii) $Z_{\Delta}(f)$ need not be a G_{δ} -set as in the case of C(X).

Throughout this paper whenever we speak of an ideal unmodified, we will always mean a proper ideal in the ring under consideration. For an ideal I of $C(X)_{\Delta}$, we shall denote $\{Z_{\Delta}(f): f \in I\}$ by $Z_{\Delta}(I)$.

 $\begin{array}{ll} \textbf{Definition 1.3.} & [10] \text{ An ideal } I \text{ of } C(X)_{\Delta} \text{ is called a } Z_{\Delta}\text{-ideal if } Z_{\Delta}^{-1}Z_{\Delta}(I) = I. \\ \text{Equivalently, } Z_{\Delta}(f) = Z_{\Delta}(g), \text{ for } f \in I \text{ and } g \in C(X)_{\Delta} \text{ implies that } g \in I. \\ \end{array}$

For a Z_{Δ} -ideal I of $C(X)_{\Delta}$, we consider $U_{I}^{\Delta^{+}} = \{u \in C(X)_{\Delta} : u(x) > 0$, for all $x \in Z$, for some $Z \in Z_{\Delta}(I)\}$. For each f in $C(X)_{\Delta}$ and each $u \in U_{I}^{\Delta^{+}}$, we set $m_{I}^{\Delta}(f,u) = \{g \in C(X)_{\Delta} : |f(x) - g(x)| < u(x)$, for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$. It is routine to check that there exists a unique topology which we call the m_{I}^{Δ} -topology on $C(X)_{\Delta}$ in which for each $f \in C(X)_{\Delta}$ and each $u \in U_{I}^{\Delta^{+}}$, $\{m_{I}^{\Delta}(f,u) : f \in C(X)_{\Delta} \text{ and } u \in U_{I}^{\Delta^{+}}\}$ is a base for its open neighborhoods. It can be easily proved that $C(X)_{\Delta}$ with this m_{I}^{Δ} -topology is a topological ring. Similarly, for $f \in C(X)_{\Delta}$ and $\epsilon > 0$ in \mathbb{R} , we define $u_{I}^{\Delta}(f,\epsilon) = \{g \in C(X)_{\Delta} : |f(x) - g(x)| < \epsilon$, for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$. It needs some routine computations to show that $\{u_{I}^{\Delta}(f,\epsilon) : f \in C(X)_{\Delta}, \epsilon > 0\}$ is an open base for some topology on $C(X)_{\Delta}$, which we wish to call the u_{I}^{Δ} -topology on $C(X)_{\Delta}$. For any $f \in C(X)_{\Delta}$, the family $\{u_{I}^{\Delta}(f,\epsilon) : \epsilon > 0\}$ turns out to be an open neighborhood base about the point f in this topology. Let $I_{\psi_{\Delta}}(X) = \{f \in C(X)_{\Delta} : \text{given } g \in C(X)_{\Delta}$, there exists M > 0, $Z \in Z_{\Delta}(I)$ and $H \in \Delta$ such that $|f(x).g(x)| \leq M$ for each $x \in Z \setminus H$. This set will be seen to play a key role in determining the connected ideals in $C(X)_{\Delta}$ with the m_{I}^{Δ} -topology. Next we define $A_{I}^{\Delta} = \{f \in C(X)_{\Delta} : |f(x)| \leq M$, for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$, which turns out to be the component of 0 in $C(X)_{\Delta}$ with the u_{I}^{Δ} -topology. We utilize this fact to establish that several statements individually are necessary and sufficient for $C(X)_{\Delta}$ with the u_{I}^{Δ} -topology to be a topological ring.

In section 2, we at first investigate the clopen sets of $C(X)_{\Delta}$ with the m_I^{Δ} -topology. As in [1], the map $\phi_f: \mathbb{R} \to C(X)_{\Delta}$ defined by $\phi_f(r) = r.f$ is introduced for any $f \in I_{\psi_{\Delta}}$. Then it has been shown that such ϕ_f is continuous, for any $f \in I_{\psi_{\Delta}}$ when $C(X)_{\Delta}$ is equipped with the m_I^{Δ} -topology. With the help of this, we then prove that $I_{\psi_{\Delta}}(X)$ is the component of $\underline{0}$ in $C(X)_{\Delta}$ with the m_I^{Δ} -topology. We next define for any $f \in A_I^{\Delta}$, $||f||_{\Delta} = \inf\{M: |f(x)| \leq M \text{ for all } x \in Z \setminus H,$ for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta\}$. It can be easily checked that $(A_I^{\Delta}, ||.||_{\Delta})$ is a pseudo-normed linear space over \mathbb{R} . The relative topology on A_I^{Δ} induced by the

 m_I^{Δ} -topology is shown to be stronger than the pseudo-norm topology on A_I^{Δ} . For the coincidence of these two topologies, we then find a set of necessary and sufficient conditions involving A_I^{Δ} and $I_{\psi_{\Delta}}(X)$. Then we have proved that $C(X)_{\Delta}$ with this m_I^{Δ} -topology is regular but not Hausdorff. Finally, we give a complete description of the connected ideals in $C(X)_{\Delta}$ with the m_I^{Δ} -topology.

In section 3, we prove results concerning the u_I^{Δ} -topology on $C(X)_{\Delta}$. Since the map $\phi_f:\mathbb{R}\to C(X)_{\Delta}$ defined by $\phi_f(r)=r.f$ is proved to be continuous for each $f\in I_{\psi_{\Delta}}$ in the m_I^{Δ} -topology and the u_I^{Δ} -topology is weaker than the m_I^{Δ} -topology on $C(X)_{\Delta}$, it follows that the same map is also continuous for each $f\in I_{\psi_{\Delta}}$, if $C(X)_{\Delta}$ is equipped with the u_I^{Δ} -topology. It is then proved that A_I^{Δ} is the component of 0 in $C(X)_{\Delta}$ equipped with the u_I^{Δ} -topology. Next, an example has been furnished to show that for a free Z_{Δ} -ideal, $C(X)_{\Delta}$ with the u_I^{Δ} -topology is not a topological ring. Finally it has been proved that $C(X)_{\Delta}$ with u_I^{Δ} -topology is a topological ring if and only if the u_I^{Δ} -topology and the m_I^{Δ} -topology coincide on $C(X)_{\Delta}$. Next endeavour has been made for the coincidence of the u_I^{Δ} -topology and the m_I^{Δ} -topology on $C(X)_{\Delta}$. For this, we define U_I^{Δ} = $\{u\in C(X)_{\Delta}:u(x)>\lambda,$ for all $x\in Z\setminus H$, for some $Z\in Z_{\Delta}(I)$ and $H\in \Delta,\lambda>0\}$. It has been proved that for any Z_{Δ} -ideal I in $C(X)_{\Delta}$, the u_I^{Δ} -topology coincides with the m_I^{Δ} -topology if and only if U_I^{Δ} $\subseteq U_I^{\Delta}$. Finally, we give several other necessary and sufficient conditions for the coincidence of the u_I^{Δ} -topology and the m_I^{Δ} -topology on $C(X)_{\Delta}$.

Throughout the paper, for any literature on topology one may go through [4].

2.
$$m_{_I}^{^{\Delta}}$$
-topology on $C(X)_{_{\Delta}}$

We start this section by investigating the nature of clopen sets of $C(X)_{\Delta}$ with the $m_{_I}^{^{\Delta}}$ -topology.

Theorem 2.1. The set A_I^{Δ} is a clopen set in $C(X)_{\Delta}$ with the m_I^{Δ} -topology.

Proof. For $f \in C(X)_{\Delta} \setminus A_I^{\Delta}$, $m_I^{\Delta}(f,1) \subseteq C(X)_{\Delta} \setminus A_I^{\Delta}$. So A_I^{Δ} is a closed set. Again for $f \in A_I^{\Delta}$, $m_I^{\Delta}(f,1) \subseteq A_I^{\Delta}$ which shows that A_I^{Δ} is an open set in $C(X)_{\Delta}$ with the m_I^{Δ} -topology. \square

Theorem 2.2. For any Z_{Δ} -ideal $I, I \subseteq I_{\psi_{\Delta}}(X) \subseteq A_I^{\Delta} \subseteq C(X)_{\Delta}$.

Proof. It is straightforward. \square

Theorem 2.3. For $f \in I_{\psi_{\Delta}}(X)$, the map $\phi_f : \mathbb{R} \to C(X)_{\Delta}$ defined by $\phi_f(r) = r.f$ is continuous, when $C(X)_{\Delta}$ is equipped with the m_f^{Δ} -topology.

Proof. Let $r.f \in m_{_I}^{\Delta}(f,u)$, where $u \in U_{_I}^{\Delta^+}$. Then u(x) > 0, for all $x \in Z_{\Delta}(h)$, for some $Z_{\Delta}(h) \in Z_{\Delta}(I)$. Consider g = |u| + |h|. Then g(x) > 0 for all $x \in X$ and $g \in C(X)_{\Delta}$. So g is a unit of $C(X)_{\Delta}$. Therefore $\frac{1}{g} \in C(X)_{\Delta}$. Since $f \in I_{\psi_{\Delta}}(X)$, there exists M>0 such that $|\frac{f(x)}{g(x)}|\leq M$ for all $x\in Z\setminus H$, for some $Z\in Z_{\Delta}(I)$ and $H \in \Delta$. Let $s \in (r - \frac{1}{M}, r + \frac{1}{M})$. Then $|\phi_f(r) - \phi_f(s)| = |r - s||f| = |r - s|\frac{|f|}{|g|}|g| < 1$ |g|=|u|=u, for all $x\in (Z_{\Delta}(h)\cap Z)\setminus H$. So ϕ_f is continuous. \square

Using the above theorem we can now have an idea about the component of $\underline{0}$ in $C(X)_{\Delta}$ with the m_{I}^{Δ} -topology as follows.

Theorem 2.4. $I_{\psi_{\Delta}}(X)$ is the component of $\underline{0}$ in $C(X)_{\Delta}$ with the m_{χ}^{Δ} -topology.

Proof. It can be easily seen that
$$I_{\psi_{\Delta}}(X) = \bigcup_{f \in I_{\psi_{\Delta}}(X)} \phi_f(\mathbb{R})$$
 and $\underline{0} \in \bigcap_{f \in I_{\psi_{\Delta}}(X)} \phi_f(\mathbb{R})$.

Proof. It can be easily seen that $I_{\psi_{\Delta}}(X) = \bigcup_{f \in I_{\psi_{\Delta}}(X)} \phi_f(\mathbb{R})$ and $\underline{0} \in \bigcap_{f \in I_{\psi_{\Delta}}(X)} \phi_f(\mathbb{R})$. Hence $I_{\psi_{\Delta}}(X)$ is a connected ideal of $C(X)_{\Delta}$ with respect to the m_I^{Δ} -topology. Let J be a connected ideal of $C(X)_{\Delta}$ containing $I_{\psi_{\Delta}}(X)$. If $f \in J \setminus I_{\psi_{\Delta}}(X)$, then there exists $g \in C(X)_{\Delta}$ such that $fg \notin A_I^{\Delta}$. But A_I^{Δ} is a clopen set containing $\underline{0}$ and as J is an ideal, for G, A_I^{Δ} , A_I^{Δ} , A_I^{Δ} , the union of two parameters. is an ideal, $fg \in J \setminus A_I^{\Delta}$. So $J = (J \cap A_I^{\Delta}) \cup (J \setminus A_I^{\Delta}) =$ the union of two non-empty disjoint open sets in the space J, a contradiction to the fact that J is connected. Hence $I_{\psi_{\Delta}}(X)$ is the component of $\underline{0}$ in $C(X)_{\Delta}$ with the m_I^{Δ} -topology. \square

For $f \in A_I^{\Delta}$, we define $\|f\|_{\Delta} = \inf\{M: |f(x)| \leq M \text{ for all } x \in Z \setminus H \text{, for some } Z \in Z_{\Delta}(I) \text{ and } H \in \Delta\}$. It can be easily checked that $(A_I^{\Delta}, \|.\|_{\Delta})$ is a pseudo-normed linear space over \mathbb{R} . Next for $f \in A_I^{\Delta}$, we define $B(f, \epsilon) = \{g \in A_I^{\Delta} : ||f - g||_{\Delta} < \epsilon\}$. Then the family $\{B(f,\epsilon): f\in A_I^\Delta, \epsilon>0\}$ forms a base of open sets for the pseudonorm topology on A_I^Δ .

Lemma 2.1. The relative topology on A_I^{Δ} induced by the m_i^{Δ} -topology is stronger than the pseudo-norm topology on A_I^{Δ} .

Proof. It follows from the fact that for $f \in A_I^{\Delta}$, $A_I^{\Delta} \cap m_{\tau}^{\Delta}(f, \frac{\epsilon}{2}) \subseteq B(f, \epsilon)$. \square

Theorem 2.5. The following statements are equivalent:

- (i) $A_I^{\Delta} = C(X)_{\Delta}$.
- (ii) $I_{\psi_{\wedge}}(X) = C(X)_{\wedge}$.
- (iii) The pseudo-norm topology on A_I^{Δ} is identical with the relative m_I^{Δ} -topology.
- (iv) The m^{Δ} -topology on $C(X)_{\Delta}$ is connected.
- (v) The m_{τ}^{Δ} -topology on $C(X)_{\Delta}$ is locally connected.

- Proof. (i) \Rightarrow (ii): Let $f, g \in C(X)_{\Delta}$. Then $f, g \in A_I^{\Delta}$ also. So there exist $M_1, M_2 > 0$ such that $|f(x)| \leq M_1$, for all $x \in Z_1 \setminus H_1$ and $|g(x)| \leq M_2$, for all $x \in Z_2 \setminus H_2$ for some $Z_1, Z_2 \in Z_{\Delta}(I)$ and $H_1, H_2 \in \Delta$. This implies that $|fg(x)| \leq M_1 M_2$, for all $x \in (Z_1 \cap Z_2) \setminus (H_1 \cup H_2)$, where $Z_1 \cap Z_2 \in Z_{\Delta}(I)$ and $H_1 \cup H_2 \in \Delta$. Hence $f \in I_{\psi_{\Delta}}(X)$.
 - $(ii) \Rightarrow (i)$: Follows from Theorem 2.2.
- $(i)\Rightarrow (iii) \text{: From Lemma 2.1 it follows that the pseudo-norm topology on } A_I^\Delta \text{ is weaker than the } m_I^\Delta\text{-topology on } A_I^\Delta. \text{ So it is sufficient to show that the } m_I^\Delta\text{-topology is weaker than the pseudo-norm topology on } A_I^\Delta. \text{ Let } m_I^\Delta(f,u) \text{ be a basic element for } m_I^\Delta\text{-topology on } A_I^\Delta, \text{ where } f \in A_I^\Delta \text{ and } u \in U_I^{\Delta^+}. \text{ Then } u(x) > 0 \text{ for all } x \in Z_\Delta(g), \text{ for some } Z_\Delta(g) \in Z_\Delta(I), \text{ where } g \in I. \text{ Let } v = |u| + |g|. \text{ Then } v \in C(X)_\Delta \text{ and } v(x) > 0 \text{ for all } x \in X. \text{ So } v \text{ is a unit of } C(X)_\Delta. \text{ This implies that } \frac{1}{v} \in C(X)_\Delta = A_I^\Delta. \text{ Hence there exists } M > 0 \text{ such that } |\frac{1}{v(x)}| \leq M, \text{ for all } x \in Z_1 \setminus H_1, \text{ for some } Z_1 \in Z_\Delta(I) \text{ and } H_1 \in \Delta \text{ which implies that } |v(x)| \geq \frac{1}{M}, \text{ for all } x \in Z_1 \setminus H_1 \text{ for some } Z_1 \in Z_\Delta(I) \text{ and } H_1 \in \Delta. \text{ Now consider } B(f,\frac{1}{M}) = \{h \in A_I^\Delta: \|f-h\|_\Delta < \frac{1}{M}\}. \text{ Choose } h \in B(f,\frac{1}{M}). \text{ Then } \|f-h\|_\Delta < \frac{1}{M}. \text{ Therefore there exist } Z_2 \in Z_\Delta(I) \text{ and } H \in \Delta \text{ such that } |f(x)-h(x)| < \frac{1}{M}, \text{ for all } x \in Z_2 \setminus H_2. \text{ This implies that } |f(x)-h(x)| < \frac{1}{M} \leq v(x) = |u(x)| = u(x), \text{ for all } x \in Z_\Delta(G) \cap Z_1 \cap Z_2) \setminus (H_1 \cup H_2), \text{ where } Z_\Delta(g) \cap Z_1 \cap Z_2 \in Z_\Delta(I) \text{ and } H_1 \cup H_2 \in \Delta. \text{ Hence } B(f,\frac{1}{M}) \subseteq m_I^\Delta(f,u). \text{ So the pseudo-norm topology on } A_I^\Delta \text{ is weaker than the } m_A^\Delta \text{-topology on } A_I^\Delta.$
- $\begin{array}{l} (iii) \Rightarrow (i) \text{: Let } A_I^\Delta \subsetneq C(X)_\Delta \text{. Then there exists } f \in C(X)_\Delta \setminus A_I^\Delta \text{ with } f \geq 1 \\ \text{such that for each } Z \in Z_\Delta(I) \text{ and } H \in \Delta \text{, there exists } x \in Z \setminus H \text{ with } f(x) > n, \\ \text{for all } n \in \mathbb{N}. \text{ We consider } g = \frac{1}{f}. \text{ Then } g \in C(X)_\Delta \text{ with } g \leq 1. \text{ Therefore for each } Z \in Z_\Delta(I) \text{ and } H \in \Delta \text{, there exists } x \in Z \setminus H \text{ such that } g(x) < \frac{1}{n}, \text{ for all } n \in \mathbb{N}. \text{ Now } m_I^\Delta(\underline{0},g) \text{ is a neighbourhood of } \underline{0} \text{ in the relative } m_I^\Delta\text{-topology. We will show that there does not exist any } \epsilon > 0 \text{ such that } B(\underline{0},\epsilon) \subseteq m_I^\Delta(\underline{0},g) \cap A_I^\Delta. \\ \text{Since } \frac{\epsilon}{2} \in B(\underline{0},\epsilon) \text{ but } \frac{\epsilon}{2} \notin m_I^\Delta(\underline{0},g), \ B(\underline{0},\epsilon) \not\subseteq m_I^\Delta(\underline{0},g) \cap A_I^\Delta \text{ for any } \epsilon > 0, \text{ a contradiction. Hence } A_I^\Delta = C(X)_\Delta. \end{array}$
 - $(i) \Rightarrow (iv)$: A pseudo-norm topology is path connected, hence connected.
- $(iv) \Rightarrow (i)$: If $A_I^{\Delta} \neq C(X)_{\Delta}$, then by Theorem 2.1, A_I^{Δ} is a proper clopen set in $C(X)_{\Delta}$, a contradiction. Hence $A_I^{\Delta} = C(X)_{\Delta}$.
- $\begin{array}{l} (ii) \Rightarrow (v) \colon \text{To show that the $m_I^{^\Delta}$-topology is locally connected, it is sufficient} \\ \text{to show that $m_I^{\Delta}(\underline{0},\epsilon)$ is connected. Since $I_{\psi_{\Delta}}(X) = C(X)_{\Delta}$, for any $f \in C(X)_{\Delta}$ the map $\phi_f : \mathbb{R} \to C(X)_{\Delta}$ defined by $\phi_f(r) = r.f$ is continuous, by Theorem 2.3. Now $m_I^{\Delta}(\underline{0},\epsilon) = \bigcup_{f \in m_I^{\Delta}(\underline{0},\epsilon)} \phi_f([-1,1])$ and $\underline{0} \in \bigcap_{f \in m_I^{\Delta}(\underline{0},\epsilon)} \phi_f([-1,1])$. This implies$
- that $m_{_I}^\Delta(\underline{0},\epsilon)$ is connected. Hence the $m_{_I}^\Delta$ -topology is locally connected.
- $(v)\Rightarrow (ii)$: If possible, let $I_{\psi_{\Delta}}(X)\neq C(X)_{\Delta}$. Let U be any connected open neighborhood of $\underline{0}$. Then $U\subseteq I_{\psi_{\Delta}}(X)$ (since $I_{\psi_{\Delta}}(X)$ is a component of $\underline{0}$ by Theorem 2.4). Again there exists $u\in U_I^{\Delta^+}$ such that $m_I^{\Delta}(\underline{0},u)\subseteq U\subseteq I_{\psi_{\Delta}}(X)\subsetneq$

 $\begin{array}{l} C(X)_{\scriptscriptstyle\Delta}. \ \ \text{Since} \ u \in {U_{\scriptscriptstyle I}^{\scriptscriptstyle\Delta}}^+, \ u(x) > 0 \ \ \text{for all} \ x \in Z, \ \text{for some} \ Z \in Z_{\scriptscriptstyle\Delta}(I), \ \text{where} \\ Z = Z_{\scriptscriptstyle\Delta}(g) \ \ \text{for some} \ g \in I. \ \ \text{Let} \ v = |u| + |g|. \ \ \text{Then} \ v \in C(X)_{\scriptscriptstyle\Delta} \ \ \text{and} \ v(x) > 0, \\ \text{for all} \ x \in X. \ \ \text{Let} \ f \in C(X)_{\scriptscriptstyle\Delta} \setminus I_{\psi_{\scriptscriptstyle\Delta}}(X). \ \ \text{Now} \ \frac{f}{1+|f|} v \in m_{\scriptscriptstyle I}^{\scriptscriptstyle\Delta}(\underline{0},u) \subseteq U \subseteq I_{\psi_{\scriptscriptstyle\Delta}}(X). \\ \text{Therefore} \ f = \frac{1+|f|}{v}. \frac{f}{1+|f|} v \in I_{\psi_{\scriptscriptstyle\Delta}}(X) \ \ \text{(as} \ I_{\psi_{\scriptscriptstyle\Delta}}(X) \ \ \text{is an ideal)}, \ \ \text{a contradiction}. \\ \text{Hence} \ I_{\psi_{\scriptscriptstyle\Delta}}(X) = C(X)_{\scriptscriptstyle\Delta}. \ \ \Box \end{array}$

Regarding the separation axioms of $C(X)_{\Delta}$ with the m_I^{Δ} -topology, we have the following results.

Proposition 2.1. $C(X)_{\Delta}$ with the m_I^{Δ} -topology is a completely regular space.

Proof. Let for each $u \in U_{\scriptscriptstyle I}^{^{\Delta^+}}$, $S_u = \{(f,g) \in C(X)_{\scriptscriptstyle \Delta} \times C(X)_{\scriptscriptstyle \Delta} : \text{there exist } Z \in Z_{\scriptscriptstyle \Delta}(I) \text{ and } H \in \Delta \text{ such that } |f(x) - g(x)| < u(x) \text{ for each } x \in Z \setminus H\}.$ Then the family $\{S_u : u \in U_{\scriptscriptstyle I}^{^{\Delta^+}}\}$ is a base for some uniformity on $C(X)_{\scriptscriptstyle \Delta}$; furthermore the topology induced by this uniformity is the $m_{\scriptscriptstyle I_{\scriptscriptstyle \Delta}}$ -topology on $C(X)_{\scriptscriptstyle \Delta}$. Consequently, $C(X)_{\scriptscriptstyle \Delta}$ with the $m_{\scriptscriptstyle I_{\scriptscriptstyle \Delta}}$ -topology becomes a completely regular space. \square

Remark 2.1. $C(X)_{\Delta}$ with the m_I^{Δ} -topology is not a Hausdorff space.

 $\begin{array}{l} \textbf{Example 2.1.} \quad \text{Let X be a topological space and I be any Z_{Δ}-ideal of $C(X)_{\Delta}$. Consider $a,b\in X$ with $a\neq b$. Then $\chi_{\{a\}},\chi_{\{b\}}\in C(X)_{\Delta}$ and $\chi_{\{a\}}\neq\chi_{\{b\}}$. Now $\chi_{\{a\}}\in m_I^{\Delta}(\chi_{\{a\}},u)$, for any $u\in U_I^{\Delta^+}$. Since $u\in U_I^{\Delta^+}$, there exists $Z\in Z_{\Delta}(I)$ such that $u(x)>0$, for all $x\in Z$. Hence $|\chi_{\{a\}}(x)-\chi_{\{b\}}(x)|=0< u(x)$, for all $x\in Z\setminus\{a,b\}$, where $Z\in Z_{\Delta}(I)$ and $\{a,b\}\in\Delta$. Therefore, $\chi_{\{b\}}\in m_I^{\Delta}(\chi_{\{a\}},u)$. So $C(X)_{\Delta}$ with the m_I^{Δ}-topology is not a Hausdorff space.$

Next we investigate the connected ideals of $C(X)_{\Delta}$ with the $m_{_{I}}^{^{\Delta}}$ -topology.

Proposition 2.2. Let $J \subseteq C(X)_{\Delta}$ be an ideal containing a Z_{Δ} -ideal I. Then int $J = \emptyset$ in $C(X)_{\Delta}$ with the m_I^{Δ} -topology.

Proof. Let $f\in int\ J$. Then there exists $u\in U_I^{\Delta^+}$ such that $f\in m_I^\Delta(f,u)\subseteq J$. Since $u\in U_I^{\Delta^+}$, there exists $Z=Z_\Delta(|g|)\in Z_\Delta(I)$ such that u(x)>0, for all $x\in Z_\Delta(|g|)$ with $|g|\in I$. Now $f+\frac{|u|}{2}\in m_I^\Delta(f,u)\subseteq J$ and $f\in J$ implies that $|u|\in J$. Now consider v=|u|+|g|. Then $v\in C(X)_\Delta$ as well as $v\in J$ and v(x)>0 for all $x\in X$. Therefore v is a unit of $C(X)_\Delta$ contained in J, a contradiction. Hence $int\ J=\emptyset$. \square

Proposition 2.3. The following statements are equivalent for an ideal J of $C(X)_{\Delta}$ equipped with the $m_{_{I}}^{^{\Delta}}$ -topology.

- (i) J is a connected ideal.
- (ii) $J \subseteq A_I^{\Delta}$.
- (iii) $J \subseteq I_{\psi_{\Delta}}(X)$.

Proof. (i) \Rightarrow (ii): Let $f \in J \setminus A_I^{\Delta}$. Since $\underline{0} \in J \cap A_I^{\Delta}$, it follows that $J \cap A_I^{\Delta}$ and $J \setminus A_I^{\Delta}$ are two nonempty disjoint open sets in the space J, as by Theorem 2.1 A_I^{Δ} is a clopen set in $C(X)_{\Delta}$. This contradicts the fact that J is a connected ideal. Hence $J \subseteq A_I^{\Delta}$.

 $(ii)\Rightarrow (iii)$: Let $f\in J$. Then for all $g\in C(X)_{\Delta}$, $fg\in J$ (as J is an ideal). Therefore $fg\in A_I^{\Delta}$. Thus for all $g\in C(X)_{\Delta}$, $fg\in A_I^{\Delta}$ implies that $f\in I_{\psi_{\Delta}}(X)$. So $J\subseteq I_{\psi_{\Delta}}(X)$.

 $(iii) \Rightarrow (i)$: For all $f \in J$, the map $\phi_f : \mathbb{R} \to C(X)_{\Delta}$ defined by $\phi_f(r) = r.f$ is continuous. Now $J = \bigcup_{f \in J} \phi_f(\mathbb{R})$ and $\underline{0} \in \bigcap_{f \in J} \phi_f(\mathbb{R})$. So J is connected. \square

3. u_{τ}^{Δ} -topology on $C(X)_{\Delta}$

Theorem 3.1. For $f \in A_I^{\Delta}$, the map $\phi_f : \mathbb{R} \to C(X)_{\Delta}$ defined by $\phi_f(r) = r.f$ is continuous with respect to the u_I^{Δ} -topology.

Proof. Let $r.f \in u_I^{\Delta}(f,\epsilon)$, for $\epsilon > 0$. Since $f \in A_I^{\Delta}$, there exists M > 0 such that $|f(x)| \leq M$, for all $x \in Z \setminus H$, for some $Z \in Z_{\Delta}(I)$ and $H \in \Delta$. Now consider the open set $(r - \frac{\epsilon}{M}, r + \frac{\epsilon}{M})$ containing r. If $s \in (r - \frac{\epsilon}{M}, r + \frac{\epsilon}{M})$, then $|\phi_f(r)(x) - \phi_f(s)(x)| = |rf(x) - sf(x)| = |r - s||f(x)| < \frac{\epsilon}{M}M = \epsilon$, for all $x \in Z \setminus H$, $Z \in Z_{\Delta}(I)$ and $H \in \Delta$. Hence ϕ_f is continuous whenever $f \in A_I^{\Delta}$. \square

Theorem 3.2. A_I^{Δ} is a clopen set in $C(X)_{\Delta}$ with respect to the u_I^{Δ} -topology.

Proof. Can be done similarly as in Theorem 2.1.

Lemma 3.1. A_I^{Δ} is the component of $\underline{0}$ in $C(X)_{\Delta}$ with respect to the u_I^{Δ} -topology.

Proof. It can be easily seen that $A_I^{\Delta} = \bigcup_{f \in A_I^{\Delta}} \phi_f(\mathbb{R})$ and $\underline{0} \in \bigcap_{f \in A_I^{\Delta}} \phi_f(\mathbb{R})$. Hence A_I^{Δ}

is connected (as ϕ_f is continuous for $f \in A_I^{\Delta}$) and also A_I^{Δ} is a clopen set in $C(X)_{\Delta}$ with respect to the u_I^{Δ} -topology. So A_I^{Δ} is a maximal connected set containing $\underline{0}$. Hence A_I^{Δ} is the component of $\underline{0}$ in the u_I^{Δ} -topology. \square

Since in a topological ring, the component of 0 is an ideal, in view of the following example we can make a remark that $C(X)_{\Delta}$ with the u_{I}^{Δ} -topology is not a topological ring.

Example 3.1. Consider $X=\mathbb{R}$ with the usual topology of reals and $\Delta=\{A\subseteq X:A \text{ is countable}\}$. Let $S=\{\chi_{\{x\}}:x\in X\}$ and I=< S>. Then I is a free Z_{Δ} -ideal generated by S and for any $g\in I$, $Z_{\Delta}(g)=X\setminus A$, where A is a finite subset of X (where an ideal I is said to be free if $\bigcap_{f\in I}Z_{\Delta}(f)=\emptyset$). Now we show that A_I^{Δ} is not an ideal of $C(X)_{\Delta}$. Take the function $f:\mathbb{R}\to\mathbb{R}$ defined by,

$$f(x) = \begin{cases} x, & x \neq n \\ n+1, & x = n. \end{cases}$$

Clearly $f\in C(X)_{\Delta}$. But there does not exist any $Z\in Z_{\Delta}(I)$ and $H\in \Delta$ such that f is bounded on $Z\setminus H$. This implies that $f\notin A_I^{\Delta}$. Therefore $\underline{1}\in A_I^{\Delta}$ whereas $1.f\notin A_I^{\Delta}$, which implies that A_I^{Δ} is not an ideal. Hence $C(X)_{\Delta}$ with the u_I^{Δ} -topology is not a topological ring.

In fact, we can say that

Remark 3.1. For any free Z_{Δ} -ideal $I, C(X)_{\Delta}$ with the u_I^{Δ} -topology may not be a topological ring.

We next have the nature of quasicomponent of $\underline{0}$ in $C(X)_{\Delta}$ with the $u_{_I}^{^{\Delta}}$ -topology as follows.

Theorem 3.3. The component and the quasicomponent of $\underline{0}$ in $C(X)_{\Delta}$ with the u_{τ}^{Δ} -topology are identical.

Proof. By Lemma 3.1, we have that A_I^{Δ} is the component of $\underline{0}$ in $C(X)_{\Delta}$ with the u_I^{Δ} -topology. So it is sufficient to prove that the quasicomponent of $\underline{0}$ is contained in A_I^{Δ} . As A_I^{Δ} is a clopen set in $C(X)_{\Delta}$ with the u_I^{Δ} -topology and the quasicomponent of a point is the intersection of all clopen sets containing it, it thus follows that the quasi-component of $\underline{0}$ is contained in A_I^{Δ} . Hence the component and the quasicomponent of $\underline{0}$ in $C(X)_{\Delta}$ with the u_I^{Δ} -topology are identical. \square

Proposition 3.1. The pseudo-norm topology on A_I^{Δ} is identical with the relative u_I^{Δ} -topology on it.

Proof. For $f \in A_I^\Delta$, we have that $A_I^\Delta \cap u_I^\Delta(f,\frac{\epsilon}{2}) \subseteq B(f,\epsilon)$, for all $\epsilon>0$. So the relative topology on A_I^Δ induced by the u_I^Δ -topology is stronger than the pseudonorm topology on A_I^Δ . Again if $f \notin A_I^\Delta$, then $u_I^\Delta(f,\epsilon) \cap A_I^\Delta = \emptyset$, for any $\epsilon>0$. Also for $f \in A_I^\Delta$, $B(f,\epsilon) \subseteq u_I^\Delta(f,\epsilon) \cap A_I^\Delta$, for all $\epsilon>0$. So the pseudo-norm topology on A_I^Δ is stronger than the relative u_I^Δ -topology on it. Hence the pseudo-norm topology on A_I^Δ is identical with the relative u_I^Δ -topology on A_I^Δ . \square

Next we investigate about the connectedness of $C(X)_{\Delta}$ with the u_I^{Δ} -topology. Also, we give a complete description of the connected ideals of $C(X)_{\Delta}$ with the u_I^{Δ} -topology.

Proposition 3.2. The u_I^{Δ} -topology on $C(X)_{\Delta}$ is connected if and only if $A_I^{\Delta} = C(X)_{\Delta}$.

Proof. Let the u_I^{Δ} -topology on $C(X)_{\Delta}$ be connected. As A_I^{Δ} is a clopen set in $C(X)_{\Delta}$ with the u_I^{Δ} -topology, we must have $A_I^{\Delta} = C(X)_{\Delta}$.

Conversely, let $A_I^\Delta=C(X)_\Delta$. As the u_I^Δ -topology on A_I^Δ is identical with the pseudo-norm topology on the same and since the pseudo-norm topology is connected, so the u_I^Δ -topology on $C(X)_\Delta$ must be connected. \square

Proposition 3.3. If $A_I^{\Delta} = C(X)_{\Delta}$, then $C(X)_{\Delta}$ with the u_I^{Δ} -topology is locally connected.

Proof. Since the pseudo-norm topology on A_I^{Δ} is ideantical with the u_I^{Δ} -topology, it is sufficient to show that $u_I^{\Delta}(\underline{0},\epsilon)$ is a connected open set, for any $\epsilon>0$. As $A_I^{\Delta}=C(X)_{\Delta}$, by Theorem 3.1, the map $\phi_f:\mathbb{R}\to C(X)_{\Delta}$ defined by $\phi_f(r)=r.f$ is continuous for all $f\in C(X)_{\Delta}$. Now $u_I^{\Delta}(\underline{0},\epsilon)=\bigcup_{f\in u_I^{\Delta}(\underline{0},\epsilon)}\phi_f([-1,1])$ and

 $\underline{0} \in \bigcap_{f \in u_I^{\Delta}(\underline{0}, \epsilon)} \phi_f([-1, 1]). \text{ This implies that } u_I^{\Delta}(\underline{0}, \epsilon) \text{ is connected. Hence the } u_I^{\Delta}-$

topology on $C(X)_{\Delta}$ is locally connected. \square

Theorem 3.4. $I_{\psi_{\Delta}}(X)$ is the maximal connected ideal containing $\underline{0}$ in the space $C(X)_{\Delta}$ endowed with the u_{λ}^{Δ} -topology.

Proof. Obviously $\underline{0} \in I_{\psi_{\Delta}}(X)$. Let J be a connected ideal containing $I_{\psi_{\Delta}}(X)$. Then there exists $f \in J \setminus I_{\psi_{\Delta}}(X)$ such that $fg \notin A_I^{\Delta}$, for some $g \in C(X)_{\Delta}$. Again A_I^{Δ} is a clopen set in the u_I^{Δ} -topology. But $fg \in J \setminus A_I^{\Delta}$ and $\underline{0} \in A_I^{\Delta} \cap J$. This contradicts the fact that J is connected. Hence $I_{\psi_{\Delta}}(X)$ is the maximal connected ideal containing 0. \square

Proposition 3.4. For an ideal J in $C(X)_{\Delta}$ with the u_{I}^{Δ} -topology, the following statements are equivalent:

- (i) J is a connected ideal.
- (ii) $J \subseteq A_I^{\Delta}$.
- (iii) $J \subseteq I_{\psi_{\Lambda}}(X)$.

Proof. $(i) \Rightarrow (ii)$: Let J be a connected ideal of $C(X)_{\Delta}$. Since A_I^{Δ} is the component of $\underline{0}$ in $C(X)_{\Delta}$ with the u_I^{Δ} -topology, this implies that $J \subseteq A_I^{\Delta}$.

 $(ii)\Rightarrow (i)$: Let $J\subseteq A_I^{\Delta}$. As the map $\phi_f:\mathbb{R}\to C(X)_{\Delta}$ defined by $\phi_f(r)=r.f$ is continuous in the u_I^{Δ} -topology (by Theorem 3.1), for all $f\in J$ and $J=\bigcup_{f\in J}\phi_f(\mathbb{R})$,

it follows that J is connected.

 $(ii) \Rightarrow (iii)$: Let $J \subseteq A_I^{\Delta}$. If possible, let there exist $f \in J \setminus I_{\psi_{\Delta}}(X)$. Then there exists $g \in C(X)_{\Delta}$ such that $fg \notin A_I^{\Delta}$. But $fg \in J \subseteq A_I^{\Delta}$, a contradiction. Hence $J \subseteq A_I^{\Delta}$.

 $(iii) \Rightarrow (ii)$: Let $J \subseteq I_{\psi_{\Delta}}(X)$. As $I_{\psi_{\Delta}}(X) \subseteq A_I^{\Delta} \subseteq C(X)_{\Delta}$, it follows that $J \subseteq A_I^{\Delta}$. \square

Proposition 3.5. Let $J \subseteq C(X)_{\Delta}$ be an ideal containing the Z_{Δ} -ideal I. Then int $J = \emptyset$ with respect to the u_I^{Δ} -topology on $C(X)_{\Delta}$.

Proof. Since the $u_{_{I}}^{^{\Delta}}$ -topology on $C(X)_{_{\Delta}}$ is weaker than the $m_{_{I}}^{^{\Delta}}$ -topology on the same and by Proposition 2.2, $int\ J=\emptyset$ with respect to the $m_{_{I}}^{^{\Delta}}$ -topology on $C(X)_{_{\Delta}}$, $int\ J=\emptyset$ with respect to the $u_{_{I}}^{^{\Delta}}$ -topology on $C(X)_{_{\Delta}}$ also. \square

Now for the coincidence of the u_I^{Δ} -topology and the m_I^{Δ} -topology on $C(X)_{\Delta}$, we define $U_I^{\Delta^{++}} = \{u \in C(X)_{\Delta} : u(x) > \lambda, \text{ for all } x \in Z \setminus H, \text{ for some } Z \in Z_{\Delta}(I) \text{ and } H \in \Delta, \lambda > 0\}.$

Proposition 3.6. For any Z_{Δ} -ideal I in $C(X)_{\Delta}$, the u_{I}^{Δ} -topology coincides with the m_{I}^{Δ} -topology if and only if $U_{I}^{\Delta^{+}} \subseteq U_{I}^{\Delta^{++}}$.

Proof. First let $U_I^{\Delta^+} \subseteq U_I^{\Delta^{++}}$. Then it is sufficient to show that the m_I^{Δ} -topology is weaker than the u_I^{Δ} -topology. Let $f \in m_I^{\Delta}(f,u)$, where $f \in C(X)_{\Delta}$ and $u \in U_I^{\Delta^+}$. Since $U_I^{\Delta^+} \subseteq U_I^{\Delta^{++}}$, there exists $\lambda > 0$ such that $u(x) > \lambda$, for all $x \in Z_1 \setminus H_1$, for some $Z_1 \in Z_{\Delta}(I)$ and $H_1 \in \Delta$. We now show that $u_I^{\Delta}(f,\lambda) \subseteq m_I^{\Delta}(f,u)$. Let $g \in u_I^{\Delta}(f,\lambda)$. Then $|g(x) - f(x)| < \lambda$, for all $x \in Z_2 \setminus H_2$, for some $Z_2 \in Z_{\Delta}(I)$ and $H_2 \in \Delta$. This implies that $|g(x) - f(x)| < \lambda < u(x)$, for all $x \in (Z_1 \cap Z_2) \setminus (H_1 \cup H_2)$, where $Z_1 \cap Z_2 \in Z_{\Delta}(I)$ and $H_1 \cup H_2 \in \Delta$. So $g \in m_I^{\Delta}(f,u)$. Hence $u_I^{\Delta}(f,\lambda) \subseteq m_I^{\Delta}(f,u)$.

Conversely, let the $u_{_I}^\Delta$ -topology coincide with the $m_{_I}^\Delta$ -topology on $C(X)_\Delta$ and $u\in U_{_I}^{\Delta^+}$. Then $f\in m_{_I}^\Delta(f,u)$, where $m_{_I}^\Delta(f,u)$ is an open set in the $m_{_I}^\Delta$ -topology, for any $f\in C(X)_\Delta$. Hence there exists $\lambda>0$ such that $u_{_I}^\Delta(f,\lambda)\subseteq m_{_I}^\Delta(f,u)$. Now $f+\frac{\lambda}{2}\in u_{_I}^\Delta(f,\lambda)$ implies that $f+\frac{\lambda}{2}\in m_{_I}^\Delta(f,u)$. Thus $u(x)>\frac{\lambda}{2}$, for all $x\in Z\setminus H$, for some $Z\in Z_\Delta(I)$ and $H\in \Delta$, which implies that $u\in U_{_I}^{\Delta^{++}}$. Hence $U_{_I}^{\Delta^{++}}\subseteq U_{_I}^{\Delta^{++}}$. \square

Next we give several other necessary and sufficient conditions for the coincidence of the $m_{_I}^\Delta$ -topology and the $u_{_I}^\Delta$ -topology on $C(X)_\Delta$.

Theorem 3.5. The following statements are equivalent:

- (i) The $u_{_{I}}^{^{\Delta}}$ -topology and the $m_{_{I}}^{^{\Delta}}$ -topology coincides on $C(X)_{_{\Delta}}$.
- (ii) $C(X)_{\Delta}$ with the $u_{_{I}}^{^{\Delta}}$ -topology is a topological ring.
- (iii) $A_I^{\Delta} = C(X)_{\Delta}$.
- (iv) $I_{\psi_{\Lambda}}(X) = C(X)_{\Lambda}$.
- (v) $C(X)_{\Delta}$ with the u_{τ}^{Δ} -topology is connected.
- *Proof.* $(i)\Rightarrow (ii)$: Obvious, since $C(X)_{\Delta}$ with the $m_{I_{\Delta}}$ -topology is a topological ring.
- $(ii)\Rightarrow (iii)\colon \mathrm{Let}\; C(X)_\Delta$ with the u_I^Δ -topology be a topological ring. Then A_I^Δ is an ideal of $C(X)_\Delta$ (as A_I^Δ is the component of $\underline{0}$ in $C(X)_\Delta$ with the u_I^Δ -topology). Also $\underline{1}\in A_I^\Delta\Rightarrow C(X)_\Delta=A_I^\Delta$.
 - $(iii) \Leftrightarrow (iv)$: Follows from Theorem 2.5.
 - $(iii) \Leftrightarrow (v)$ Follows from Proposition 3.2.
- $(iii) \Rightarrow (i) \text{: To show that the } u_I^\Delta\text{-topology and the } m_I^\Delta\text{-topology coincides on } C(X)_\Delta, \text{ it is sufficient to show that } U_I^{\Delta^+} \subseteq U_I^{\Delta^{++}}. \text{ Now, for all } f \in C(X)_\Delta, f \text{ is bounded on some } Z \setminus H, \text{ where } Z \in Z_\Delta(I) \text{ and } H \in \Delta. \text{ Therefore } C(X)_\Delta = \bigcup_{\epsilon>0} u_I^\Delta(\underline{0},\epsilon). \text{ Let } u \in U_I^{\Delta^+}. \text{ Then } u(x) > 0, \text{ for all } x \in Z_\Delta(g), \text{ for some } Z_\Delta(g) \in Z_\Delta(I), \text{ where } g \in I. \text{ We consider } v = u^2 + g^2. \text{ Then } v \in C(X)_\Delta \text{ and } v(x) > 0, \text{ for all } x \in X. \text{ Hence } v \text{ is a unit of } C(X)_\Delta \text{ and thus } \frac{1}{v} \in C(X)_\Delta. \text{ Therefore there exists } \epsilon > 0 \text{ such that } \frac{1}{v} \in u_I^\Delta(\underline{0},\epsilon). \text{ This implies that } \frac{1}{v(x)} < \epsilon, \text{ for all } x \in Z \setminus H, \text{ for some } Z \in Z_\Delta(I) \text{ and } H \in \Delta. \text{ Therefore } (u^2 + g^2)(x) > \frac{1}{\epsilon}, \text{ for all } x \in Z \setminus H, \text{ for some } Z \in Z_\Delta(I) \text{ and } H \in \Delta. \text{ Thus } u(x) > \frac{1}{\sqrt{\epsilon}}, \text{ for all } x \in (Z \cap Z_\Delta(g)) \setminus H, \text{ where } Z \cap Z_\Delta(g) \in Z_\Delta(I) \text{ and } H \in \Delta. \text{ Hence } u \in U_I^{\Delta^{++}}. \quad \square$

Acknowledgement

The authors are grateful to the referee for his/her valuable suggestions, which significantly improved the initial version of the article.

REFERENCES

- 1. F. Azarpanah, F. Manshoor and R. Mohamadian: Connectedness and compactness in C(X) with the m-topology and generalized m-topology. Topol. Appl. **159** (16) (2012) 3486-3493.
- 2. R. Bharati, A. Debray, S. K. Acharyya and S. Acharyya: A generalization of topology of uniform convergence on C(X). Topol. Appl. **310** (2022) 108041.
- 3. E. K VAN DOUWEN: Nonnormality or hereditary paracompactness of some spaces of real functions. Topol. Appl. 39 (1) (1991) 3–32.

- 4. R. Engelking: General Topology. Sigma series in Pure Mathematics, v. 6, 1989.
- 5. L. GILLMAN and M. JERISON: Rings of Continuous Functions. Springer, London. (1976).
- 6. J. Gomez-Pérez and W.W. McGovern: The m-topology on $C_m(X)$ revisited. Topol. Appl. 153 (2006) 1838–1848.
- E. HEWITT: Rings of real-valued continuous functions I. Trans. Amer. Math. Soc. 48 (64) (1948) 54–99.
- 8. G. Di Maio, L. Holá, D. Holá and D. McCoy: Topology on the space of continuous functions. Topol. Appl. 86 (1998) 105–122.
- 9. R. P. Saha: More on the rings $C(X)_{\Delta}$ and $C^*(X)_{\Delta}$. (communicated).
- 10. R. Sen and R. P. Saha: On an over-ring $C(X)_{\Delta}$ of C(X). Facta Univ. Ser. Math. Inform. **39 (4)** (2024) 721-744.