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Abstract. In this article we will classify general relativistic vacuum constraint equa-
tions on a Riemannian manifold using a method based on the pointwise decomposition
of tensor products (reducible with respect to the action of the orthogonal group) into
irreducible components. Each selected class of equations will be described.
Keywords: compact Riemannian manifold, Ricci tensor, orthogonal decomposition,
general relativistic constraint equations.

1. Introduction

The method of classifying tensor structures on an n-dimensional (n ≥ 2) pseudo-
Riemannian (or Riemannian) manifold (M, g) based on the decomposition of tensor
products (reducible with respect to the action of the pseudo-orthogonal or orthog-
onal group O(g)) into pointwize irreducible components has become traditional in
differential geometry (see, e.g., [12, 18, 24, 25, 28]). This method is also used in
theoretical physics (see, e.g., [6, 15, 23]). For example, in [6], Einstein-Cartan man-
ifolds were classified based on the irreducible decomposition of the torsion tensor
of an affine-metric connection (irreducible with respect to the action of the Lorentz
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Corresponding Author: Sergey E. Stepanov. E-mail addresses: Josef.Mikes@upol.cz (J. Mikeš),
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group). Current results in this modern research direction in General Relativity
Theory have been systematized in [6].

In the present paper, we return to the work [23] by one of the authors and con-
sider the proposed classification of the Einstein equations based on the aforemen-
tioned method. We will apply this classification to the general relativistic vacuum
coupling equations (see, for example, [7, 8, 13]; [2, pp. 47-48]).

2. The general relativistic vacuum constraint equations

Let (M̄, ḡ) be a spacetime of dimension n ≥ 3 solving the Einstein field equations
(see [2, 4, 7])

Ric− 1
2 s̄ ḡ + 2Λg = κT(2.1)

where we denote by ḡ the metric tensor with Lorentzian signature (−+ · · ·+), we
also denote by Ric and s̄ the Ricci tensor and the scalar curvature of ḡ, respectively.

We use the letter κ to denote a positive constant whose value (and physical
dimensions) depends on the specific conventions one adopts. In addition, as is
customary in the physical literature, T stands for the stress-energy tensor of the
sources, while Λ represents the cosmological constant.

In the present paper, we focus on the vacuum case; that is, we consider the field
equations with no sources (T = 0) and set Λ = 0 for the cosmological constant.
Consequently, (M̄, ḡ) is a Ricci-flat spacetime (see [7]). In this case, (M̄, ḡ) is
a special case of an Einstein manifold (see [3, p. 44]). An example of a Ricci-
flat spacetime is the Schwarzschild spacetime, which describes a static black hole.
In this geometry, the Ricci tensor is zero everywhere, but the spacetime is most
certainly not flat.

On the other hand, let (M, g) be an n-dimensional (n ≥ 2) Riemannian manifold
with the Levi-Civita connection ∇ consistent with g. In the present paper, we
consider the vacuum constraint equations on (M, g) (see [2, pp. 47-48] and [11]):{

s− g(K,K) + (tracegK)2 = 0;
divgK − d(tracegK) = 0,

(2.2)

where s is the scalar curvature of (M, g) and K ∈ C∞(S2M) is a symmetric bi-
linear differential form defined on (M, g). The well-known problem is to construct
solutions of the general relativistic vacuum constraint equations (see, for exam-
ple, [7,8,13], [2, pp. 47- 48]). In turn, recall here that Bonnet’s classical result on a
local solution has the following form (see [7]): Given an initial data triple (M, g,K)
there exists a vacuum spacetime (M̄, ḡ), the local spacetime development, such that
(M, g) is a spacelike hypersurface of M̄ and g,K are the intrinsic metric and ex-
trinsic curvature (i.e. first and second fundamental forms) induced by ḡ on M .
In this case, the Levi-Civita connection ∇ on the spacelike hypersurface (M, g) is
compatible with the induced metric g.
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Let K̄ := K− (tracegK)g, then for this notation the second equation from (2.2)
can be rewritten in the form δK̄ = 0 for the divergence operator δ defined by (see
[13, p. 434])

(δK̄)(Z) := −traceg[(X,Y ) → (∇XK̄)(Y,Z)]

for arbitrary vector fields X,Y, Z on M .

3. Invariantly defined seven classes of the general relativistic vacuum
constraint equations

Consider the subbundle K(M) ⊂ T ∗M⊗S2M on a Riemannian manifold (M, g),
such that T (X,Y, Z) = T (X,Z, Y ) and

∑n
k=1 T (Xk, Xk, Z) = 0 for any T ∈ K(M),

arbitrary vector fields X,Y, Z and a local orthonormal basis {X1, . . . , Xn} of vector
fields on M .

In [23, 25], we proved that K(M) has pointwise irreducible decomposition (irre-
ducible with respect to the action of orthogonal group O(n))

K(M) = K1(M)⊕ K2(M)⊕ K3(M),

where

K1(M) = {T ∈ K(M)|T (X,Y, Z) + T (Y, Z,X) + T (Z,X, Y ) = 0},

K2(M) = {T ∈ K(M)|T (X,Y, Z)− T (Y,X,Z) = 0},

K3(M) = {T ∈ K(M)|T (X,Y, Z) =

1
(n−1)(n+2) [(n+ 1)T23(X)g(Y,Z) + T23(Y )g(X,Z)− T23(Z)g(X,Y )]},

T23(Z) =

n∑
k=1

T (Z,Xk, Xk) = 0(3.1)

for arbitrary vector fields X,Y, Z and {X1, . . . , Xn} is a local orthonormal basis of
vector fields on M .

If we take a data triple (M, g,K), where (M, g) is a Riemannian manifold and
K̄ = K − (tracegK)g, then by (2.2) we conclude ∇K̄ ∈ K(M). In this case, the
covariant derivative ∇K̄ of a symmetric bilinear differential form K̄ is a cross-
section of relevant invariant subbundles K1(M),K2(M) and K3(M), their direct
sums K1(M) ⊕ K2(M), K1(M) ⊕ K3(M), K2(M) ⊕ K3(M) and the subbundle
K1(M) ∩ K2(M) ∩ K3(M).

To this pointwise irreducible decomposition of ∇K̄ there corresponds a rough
classification of the general relativistic vacuum constraint equations in which each
class includes the equation (2.2) for which ∇K̄ is a cross-section of one of the invari-
ant subbundles K1(M),K2(M) and K3(M) or of their direct sums. We supplement
this list with an additional class for which ∇K̄ is a cross-section of the subbundle
K1(M) ∩ K2(M) ∩ K3(M).
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Theorem 3.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). Then
the seven classes of the vacuum constraint equations (2.2) defined on (M, g) can
be singled out invariantly, where covariant derivatives of K̄ = K − (tracegK)g are
cross-sections of the corresponding invariant subbundles K1(M),K2(M) and K3(M),
their direct sums K1(M)⊕K2(M), K1(M)⊕K3(M), K2(M)⊕K3(M) and the sub-
bundle K1(M) ∩ K2(M) ∩ K3(M).

4. The class K1 ⊕ K2 and TT -tensors

Let (M, g,K) be a data triple, where (M, g) is a Riemannian manifold and
K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). The class
K1⊕K2 of the vacuum constraint equations (2.2) is selected via condition (see [25])

n∑
k=1

(∇K̄)(Xk, Xk, Z) = 0,
n∑

k=1

(∇K̄)(Z,Xk, Xk) = 0(4.1)

where {X1, . . . , Xn} is a local orthonormal basis of vector fields. Therefore, if the
covariant derivative of K̄ = K − (tracegK)g is a cross-section of the subbundles
K1(M)⊕ K2(M), then

n∑
k=1

(∇K)(Xk, Xk, Z) = 0,
n∑

k=1

(∇K)(Z,Xk, Xk) = 0.(4.2)

Obviously, the opposite statement is also true. In turn, if we consider (M, g) as a
spacelike hypersurface of a vacuum spacetime (M̄, ḡ), then K is the second funda-
mental forms of (M, g). In this case, H := tracegK is called the mean curvature of
(M, g) (see [3, p. 38]). Therefore, in our case (M, g) is a spacelike hypersurface of
constant mean curvature. As a result, the following theorem holds.

Theorem 4.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). The
corresponding vacuum constraint equations (2.2) belongs to the class K1⊕K2 if and
only if equations (4.2) hold. Furthermore, if (M, g) is a spacelike hypersurface of a
vacuum spacetime (M̄, ḡ) with the second fundamental forms K, then it a spacelike
hypersurface of constant mean curvature.

We recall that a symmetric divergence free and traceless covariant two-tensor is
called TT -tensor (see, for instance, [11]). As a consequence of a result of Bourguignon-
Ebin-Marsden (see [3, p. 132]) the space of TT -tensors is an infinite-dimensional vec-
tor space on any compact Riemannian manifold (M, g). Such tensors are of funda-
mental importance in stability analysis in General Relativity (see, for instance, [10]
and [16]) and in Riemannian geometry (see, for instance, [3, p. 346-347] and [5]).
In turn, if K is a TT -tensor, then the covariant derivative of K̄ = K − (tracegK)g
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is a cross-section of the subbundles K1(M)⊕ K2(M). At the same time, from (2.2)
we deduce s = g(K,K). Moreover, if we consider (M, g) as a spacelike hypersurface
of a vacuum spacetime (M̄, ḡ). In this case, H := tracegK = 0 and hence (M, g)
is a maximal spacelike hypersurface (that is, with zero mean curvature). The im-
portance of these spacelike hypersurfaces in General Relativity is well-known and
a summary of several reasons justifying this opinion can be found, for instance,
in [16]. As a result, we have the following corollary.

Corollary 4.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a TT -tensor on (M, g). Then corresponding vacuum
constraint equations (2.2) belongs to the class K1⊕K2 and the scalar curvature s of
(M, g) has the form s = g(K,K). Furthermore, if (M, g) is a spacelike hypersur-
face of a vacuum spacetime (M̄, ḡ) with the second fundamental forms K, then it a
maximal spacelike hypersurface.

5. The class K2 ⊕ K3 and Codazzi tensors

The class K2 ⊕ K3 of the vacuum constraint equations (2.2) is selected via con-
dition (see [25])

(∇XK̄)(Y, Z)− (∇Y K̄)(X,Z) =

= 1
n−1

[
n∑

k=1

(∇K̄)(X,Xk, Xk)g(Y,Z)−
∑n

k=1(∇K̄)(Y,Xk, Xk)g(X,Z)

]
,

n∑
k=1

(∇K̄)(Xk, Xk, Z) = 0

(5.1)

for arbitrary vector fields X,Y, Z on M and a local orthonormal basis {X1, . . . , Xn}
of vector fields on M . Using the identity K̄ = K− (tracegK)g, we can rewrite (5.1)
in the following form:

(∇XK)(Y, Z)− (∇Y K)(X,Z) =

= 1
n−1

[
n∑

k=1

(∇K)(X,Xk, Xk)g(Y, Z)−
n∑

k=1

(∇K)(Y,Xk, Xk)g(X,Z)

]
.

(5.2)

It is well-known from [3, pp. 436-440]) that a symmetric 2-tensor field B on
(M, g) is called a Codazzi tensor if (∇XB)(Y, Z)− (∇Y B)(X,Z) = 0 for arbitrary
tangent vectors X,Y, Z. In this case, B = K− 1

n−1 (tracegK)g is a Codazzi tensor.
Following theorem was proved.

Theorem 5.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). The
corresponding vacuum constraint equations (2.2) belongs to the class K2⊕K3 if and
only if K − 1

n−1 (tracegK)g is a Codazzi tensor.
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The following local result is well-known (see [3, p. 436]): an arbitrary Codazzi
tensor B ∈ C∞(S2M) defined on a Riemannian manifold (M, g) of constant cur-
vature C has the form B = ∇df + Cfg for an arbitrary function f ∈ C∞(M). In
our case, B = K − 1

n−1 (tracegK)g. Therefore, on a Riemannian manifold (M, g)
of constant curvature C, the symmetric bilinear differential form K from the data
triple (M, g,K) of the class K2 ⊕ K3 has the form K = ∇df + (∆f − (n − 1)Cf)g
for the function f ∈ C∞(M) and its Laplacian ∆f = traceg(∇df). Therefore, the
following statement holds.

Corollary 5.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold of constant curvature C and K ∈ C∞(S2M) be a symmetric bilinear differen-
tial form on (M, g). If the corresponding vacuum constraint equations(2.2) belongs
to the class K2, then K = ∇df + (∆f − (n− 1)Cf)g for the function f ∈ C∞(M).

6. The class K1 ⊕ K3 and Killing tensors

The class K1 ⊕ K3 of the vacuum constraint equations (2.2) is selected via con-
dition (see [25])

(∇XK̄)(Y,Z) + (∇Y K̄)(Z,X) + (∇ZK̄)(X,Y ) =

1
n+2 {∇X(tracegK̄)g(Y, Z) +∇Y (tracegK̄)g(Z,X) +∇Z(tracegK̄)g(X,Y )}

(6.1)

for arbitrary tangent vector fields X,Y, Z on M . It is well-known from [24]) that a
symmetric bilinear 2-form B on (M, g) is called a symmetric Killing tensor if

(∇XB)(Y, Z) + (∇Y B)(Z,X) + (∇ZB)(X,Y ) = 0(6.2)

for arbitrary vector fields X,Y, Z on M . In this case, B = K − 1
n+2 (tracegK)g is

a symmetric Killing tensor. Following theorem was proved.

Theorem 6.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). The
corresponding vacuum constraint equations (2.2) belongs to the class K1⊕K3 if and
only if K − 1

n+2 (tracegK)g is a symmetric Killing tensor.

On the other hand, let (M, g) be a compact Riemannian manifold of dimension
n ≥ 2 of nonpositive sectional curvature, then every symmetric Killing tensor of
rank k is parallel. In addition, if M is connected and there is a point x0 ∈ M such
that all sectional curvatures at x0 are negative then every symmetric Killing tensor
is of the form Cgk for some constant C (see [9]). From this statement we conclude
that the following corollary holds.

Corollary 6.1. Let (M, g,K) be a data triple, where (M, g) is a compact Rieman-
nian manifold of nonpositive sectional curvature. If (M, g,K) belongs to the class
K1 ⊕ K3, then K is parallel. In addition, if M is connected and there is a point
x0 ∈ M such that all sectional curvatures at x0 are negative then K has the form
Cg for some constant C.
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We recall the following result: if (M, g) is a Riemannian manifold of constant
curvature, then there exist a local coordinate system x1, . . . , xn in which the compo-
nents φij of an arbitrary symmetric Killing tensor φ ∈ C∞(S2M) can be expressed
in the form (see [27])

φij = e2f(Aijklx
kxl +Bijkx

k + Cij)

where f = 1
2(n+1) ln(det g) and Aijkl, Bijk and Cij are constants which satisfy the

following identities:

Aijkl = Ajikl, Aijkl = Aijlk, Aijkl +Aikjl = 0,

Bijk = Bjik, Bijk +Bikj = 0, Cij = Cji.

Therefore, we can conclude that

Kij = e2f
{
(Aijkl +

1
2g

mrAmrkl)x
kxl + (Bijkx

k + 1
2g

mrBmrk)x
k + (Cij +

1
2g

mrCmr)
}

since B = K − 1
n+2 (tracegK)g is a symmetric Killing tensor. Therefore, the

following corollary holds.

Corollary 6.2. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold of constant curvature and K ∈ C∞(S2M) be a symmetric bilinear differential
form on (M, g). If the corresponding vacuum constraint equations (2.2) belongs to
the class K1, then there exist a local coordinate system x1, . . . , xn in which the local
components Kij of K have the form

Kij = e2f
{
(Aijkl +

1
2 g

mrAmrkl)x
kxl + (Bijkx

k + 1
2 g

mrBmrk)x
k + (Cij +

1
2 g

mrCmr)
}

where f = 1
2(n+1) ln(det g) and Aijkl, Bijk and Cij are constant which satisfy the

following identities:

Aijkl = Ajikl, Aijkl = Aijlk, Aijkl +Aikjl = 0,

Bijk = Bjik, Bijk +Bikj = 0, Cij = Cji.

for the contravariant components gij of the metric tensor g and some constant C.

7. The class K1 and integrals of geodesic equations

The class K1 of the vacuum constraint equations (2.2) is selected via conditions

(∇XK̄)(Y, Z) + (∇Y K̄)(Z,X) + (∇ZK̄)(X,Y ) = 0(7.1)

and
n∑

k=1

(∇K̄)(Xk, Xk, Z) = 0,(7.2)



806 J. Mikeš, S. E. Stepanov and I. I. Tsyganok

where {X1, . . . , Xn} is a local orthonormal basis of vector fields.

Using the identity K̄ = K − (tracegK)g, we can rewrite (6.1) in the following
form:

(∇XK)(Y,Z) + (∇Y K)(Z,X) + (∇ZK)(X,Y ) =

= ∇X(tracegK)g(Y, Z) +∇Y (tracegK)g(Z,X) +∇Z(tracegK)g(X,Y ).
(7.3)

From condition (2.2),(7.2) and (7.3) can be deduced that d(tracegK) = 0 and hence
tracegK = const. Then equations (7.3) can be rewritten in the form

(∇XK)(Y, Z) + (∇Y K)(Z,X) + (∇ZK)(X,Y ) = 0(7.4)

for arbitrary vector fields X,Y, Z on M . The reverse is also true. Namely, if
tracegK = const and (8.6) is satisfied, then the second equation from (2.2) becomes
an identity.

If we consider (M, g) as a spacelike hypersurface of a vacuum spacetime (M̄, ḡ),
then K is the second fundamental forms of (M, g). In our case (M, g) is a spacelike
hypersurface of constant mean curvature (see [17]).

On the other hand, an arbitrary symmetric Killing tensor φ ∈ C∞S2M along
each geodesic line γ = γ(t) satisfies the condition φ(X,X) = const, whereX = dγ/dt
and t ∈ J ⊂ R is a canonical parameter such that ∇XX = 0. In this case, one says
that the equations of geodesics admit a quadratic first integral (see [1,14]). There-
fore, the symmetric bilinear differential form K of (M, g,K) determines a quadratic
first integral of the equations of geodesics.

Following theorem was proved:

Theorem 7.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a symmetric bilinear differential form on (M, g). The
corresponding vacuum constraint equations (2.2) belongs to the class K1 if and only
if tracegK =const and the equations of geodesic lines admit a first quadratic inte-
gral K(X,X) =const, where X = dγ/dt for an arbitrary geodesic line γ = γ(t) of
(M, g). Furthermore, if (M, g) is a spacelike hypersurface of a vacuum spacetime
(M̄, ḡ) with the second fundamental forms K, then its mean curvature is constant.

We recall our local result: if (M, g) is a Riemannian manifold of constant curva-
ture, then there exists a local coordinate system x1, . . . , xn in which the components
Kij of K can be expressed in the form

φij = e2f (Aijklx
kxl +Bijkx

k + Cij)

where f = 1
2(n+1) ln(det g) and Aijkl, Bijk and Cij are constants which satisfy the

well-known identities. Therefore, we can conclude that Kij = e2f (Aijklx
kxl +

Bijkx
k +Cij), where gij(Aijklx

kxl +Bijkx
k +Cij) = C · e−2f for the contravariant

components gij of the metric tensor g and the constant C = tracegK. Therefore,
the following corollary holds.
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Corollary 7.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold of constant curvature and K ∈ C∞(S2M) be a symmetric bilinear differential
form on (M, g). If the corresponding vacuum constraint equations (2.2) belongs to
the class K1, then there exist a local coordinate system x1, . . . , xn in which the lo-
cal components Kij of K have the form Kij = e2f (Aijklx

kxl +Bijkx
k +Cij) where

f = 1
2(n+1) ln(det g) and Aijkl, Bijk and Cij are constant which satisfy the following

identities:
Aijkl = Ajikl, Aijkl = Aijlk, Aijkl +Aikjl = 0,

Bijk = Bjik, Bijk +Bikj = 0, Cij = Cji.

gij(Aijklx
kxl +Bijkx

k + Cij) = C · e−2f

for the contravariant components gij of the metric tensor g and C = tracegK.

Let K ∈ C∞(Sp
0M) be a symmetric traceless Killing tensor on (M, g). In this

case, we proved the following theorem (see [26]): On a simply connected com-
plete Riemannian manifold (M, g) of nonpositive sectional curvature, any symmet-
ric traceless Killing tensor φ ∈ C∞(Sp

0M), p ≥ 2, such that
∫
M

∥φ∥qdvg < ∞ for
at least one q ∈ (0,∞) is a parallel tensor field. If, in addition, the volume of the
manifold is infinite, then there exist no nonzero traceless Killing p-tensors on it for
p ≥ 2. From this theorem we conclude that the following corollary holds.

Corollary 7.2. On a simply connected complete Riemannian manifold (M, g) with
nonpositive sectional curvature and infinite volume there is not the data triple
(M, g,K) of the class K1 such that K is a traceless symmetric bilinear differen-
tial form and

∫
M

∥K∥qdvg < ∞ for at least one q ∈ (0,∞). On the other hand,
if on a simply connected complete Riemannian manifold (M, g) with nonpositive
sectional curvature there is the data triple (M, g,K) of the class K1 such that∫
M

∥K∥qdvg < ∞ for at least one q ∈ (0,∞), then K is a parallel tensor field.

8. The class K2 and bilinear symmetric harmonic forms

Class K2 of the vacuum constraint equations (2.2) is selected via condition
(see [23])

(∇XK̄)(Y,Z)− (∇Y K̄)(X,Z) = 0(8.1)

and
n∑

k=1

(∇K̄)(Xk, Xk, Z) = 0,(8.2)

where X,Y, Z are arbitrary vector fields and {X1, . . . , Xn} is a local orthonormal
basis of vector fields on M . From (8.1) and (8.2) we deduce

n∑
k=1

(∇K̄)(Z,Xk, Xk) = 0.(8.3)
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Equations (8.1) are known as Codazzi equations (see, for details, [3, pp. 436-440]).
Using the identity K̄ = K− (tracegK)g, we can rewrite (8.1) in the following form:

(∇XK)(Y, Z)− (∇Y K)(X,Z) =

= ∇X(tracegK)g(Y, Z)−∇Y (tracegK)g(X,Z).
(8.4)

And furthermore, we can rewrite (8.6) as follows:

n∑
k=1

(∇K)(Z,Xk, Xk) = 0(8.5)

and hence tracegK = const. In this case, equations (8.4) can be rewritten in the
form

(∇XK)(Y, Z)− (∇Y K)(X,Z) = 0.(8.6)

At the same time, from (8.6) we deduce that δK = 0 since d(tracegK) = 0.
In this case, equations (2.2) are satisfied automatically. It is well-known that a
symmetric 2-tensor field B on (M, g) is called a Codazzi tensor if (∇XB)(Y, Z) −
(∇Y B)(X,Z) = 0 for arbitrary tangent vectors X,Y, Z. In addition, B is called
harmonic if B is a Codazzi tensor with constant trace (see [27, p. 350] and [28]).

Remark 1 (see [19, p. 350]). Simple examples of bilinear symmetric harmonic
forms are the second fundamental form of a hypersurface with constant mean cur-
vature of a Riemannian manifold of constant sectional curvature and the Ricci tensor
of a locally conformal flat Riemannian manifold of constant scalar curvature.

Any one can be find in [21] other properties of bilinear symmetric harmonic
forms. Following theorem was proved.

Theorem 8.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a bilinear symmetric differential form on (M, g). The
corresponding vacuum constraint equations (2.2) belongs to the class K2 if and only
if K is harmonic. Furthermore, if (M, g) is a spacelike hypersurface of a vacuum
spacetime (M̄, ḡ) with the second fundamental forms K, then its mean curvature is
constant.

In turn, we proved that every harmonic symmetric bilinear form B ∈ C∞(S2M)
on a compact Riemannian manifold (M, g) with nonpositive sectional curvature is
parallel. In addition, if M is connected and there is a point x0 ∈ M such that all
sectional curvatures at x0 are positive then every harmonic symmetric bilinear form
is zero (see [21]). Therefore, we can formulate the corollary.

Corollary 8.1. Let (M, g,K) be a data triple, where (M, g) is a compact Rie-
mannian manifold of nonnegative sectional curvature. If (M, g,K) belongs to the
class K2, then K is parallel. In addition, if M is connected and there is a point
x0 ∈ M such that all sectional curvatures at x0 are positive, then K is zero.
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The following local result is well-known (see [3, p. 436]): an arbitrary Codazzi
tensor B ∈ C∞(S2M) defined on a Riemannian manifold (M, g) of constant cur-
vature C has the form B = ∇df + Cfg for an arbitrary function f ∈ C∞(M).
Therefore, on a Riemannian manifold (M, g) of constant curvature C, the symmet-
ric bilinear differential form K from the data triple (M, g,K) of the class K2 has
the form K = ∇df + Cfg for the function f ∈ C∞(M) that is a solution to the
Poisson equation ∆f + nCfg = const. Therefore, the following statement holds.

Corollary 8.2. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold of constant curvature C and K ∈ C∞(S2M) be a symmetric bilinear differen-
tial form on (M, g). If the corresponding vacuum constraint equations (2.2) belongs
to the class K2, then K = ∇df+Cfg for the function f ∈ C∞(M) that is a solution
of the Poisson equation ∆f + nCfg = const.

Remark 2 In turn, for a symmetric bilinear harmonic differential form B ∈
C∞(S2M) on (M, g) we can also conclude that B = ∇df + Cfg for the function
f ∈ C∞(M) that is a solution of the Poisson equation ∆f + nCfg = const.

9. The class K3 and geodesic mappings

Class K3 of the vacuum constraint equations (2.2) is selected via condition

(∇XK̄)(Y, Z) = 1
(n+2)(n−1) [(n+ 1)∇X(tracegK̄)g(Y,Z)−

∇Y (tracegK̄)g(Z,X)−∇Z(tracegK̄)g(X,Y )]
(9.1)

for arbitrary vector fields X,Y, Z on M . Using the identity K̄ = K − (tracegK)g,
we can rewrite (9.1) in the following form:

(∇XK)(Y,Z) = 1
n+2 [∇X(tracegK)g(Y,Z)+

∇Y (tracegK)g(Z,X) +∇Z(tracegK)g(X,Y )].
(9.2)

Next, we in introduce the symmetric bilinear form B = K − 1
n+2 (tracegK)g,

which, as easily follows from (9.2), satisfy the differential equations

(∇XB)(Y, Z) = θ(Y )g(Z,X) + θ(Z)g(Y,X),(9.3)

where θ(Y ) = 1
2 ∇Y (tracegB). At the same time, by well-known Sinyukov’s theo-

rem (see [22, p. 122], [17, p. 329]), a Riemannian manifold (M, g) bears a bilinear
symmetric differential form B with components satisfying (9.3) if and only if (M, g)
admits a projective diffeomorphism to some Riemannian manifold (M̃, g̃). We re-
call that, by definition, a projective diffeomorphism f : (M, g) → (M̃, g̃) maps the
geodesics of (M, g) to those of (M̃, g̃). Thus, we have proved the following result.

Theorem 9.1. Let (M, g,K) be a data triple, where (M, g) is a Riemannian man-
ifold and K ∈ C∞(S2M) be a bilinear symmetric differential form on (M, g). If
corresponding vacuum constraint equations (2.2) belongs to the class K3, then (M, g)
admits a projective diffeomorphism to another Riemannian manifold (M̃, g̃).
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By (9.2) class K3 of the vacuum constraint equations (2.2) is selected via con-
dition ∇K ∈ C∞(S3M) and hence K is a Codazzi tensor. At the same time,
it is easy to check that B = K − 3

n+2 (tracegK)g is a symmetric Killing tensor.
At the same time, every symmetric Killing two-tensor is parallel on a compact
Riemannian manifold (M, g) of nonpositive sectional curvature. In addition, if
M is connected and there is a point x0 ∈ M such that all sectional curvatures
at x0 are negative then every symmetric Killing two-tensor is of the form Cg for
some constant C. Therefore, in our case from the second equations of (2.2) and
∇B = ∇K − 3

n+2 ∇(tracegK)g = 0 we obtain ∇K = 0. In particular, tracegK =

const and whence K = C̄g for some constant C̄. Then we can formulate the follow-
ing corollary.

Corollary 9.1. Let (M, g,K) be a data triple, where (M, g) is a compact Rieman-
nian manifold of nonpositive sectional curvature and K ∈ C∞(S2M) be a symmetric
bilinear differential form on (M, g). If (M, g,K) belongs to the class K3, then K is
parallel. In addition, if M is connected and there is a point x0 ∈ M such that all
sectional curvatures at x0 are negative, then K = Cg for some constant C
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