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1. Introduction and Preliminaries

The notion of partial metric space was introduced by Matthews [26, 27] in 1992.
In fact, a partial metric space is a generalization of metric space in which each
object does not necessarily have to have a zero distance from itself. Nonzero self-
distance makes perfect sense in the setting of Computer Science, in particular, in
the Domain Theory and Semantics (see, e.g., [15], [24], [32]-[34]). In the paper
[27], Matthews proved an analog of the well-known Banach contraction mapping
principle [10] in the context of complete partial metric space. After this result,
many authors focused on partial metric spaces and its topological properties (see,
e.g. [1]-[3], [5]-[8], [13], [14], [16]-[22], [28], [35]).
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Abstract. In this paper, we derive some fixed point results via integral-type contractive
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The purpose of the present paper is to prove some fixed point results via integral-
type contractive conditions having rational terms in the framework of partial metric
spaces. Moreover, we give some consequences of the established results. Also, we
provide some illustrative examples to validate the results. An application to the
Fredholm integral equation is also given. Our results extend, generalize and enrich
several previously published results from the existing literature.

The definition of partial metric space is given by Matthews (see, e.g. [26, 27])
as follows.

Definition 1.1. Let Y ̸= Ø be a set and p : Y × Y → [0,+∞) be a self mapping
satisfies the following conditions:

(P1) j = k ⇔ p(j, j) = p(k, k) = p(j, k),

(P2) p(j, j) ≤ p(j, k),

(P3) p(j, k) = p(k, j),

(P4) p(j, k) ≤ p(j, l) + p(l, k)− p(l, l),

for all j, k, l ∈ Y . Then p is called a partial metric on Y and the pair (Y, p) is a
called partial metric space (in short PMS).

Remark 1.1. It is clear that if p(j, k) = 0, then from (P1), (P2), and (P3), j = k. But
if j = k, p(j, k) may not be 0.

Example 1.1. ([8])

(1) Let Y = [0,+∞) and p : Y × Y → [0,+∞) be given by p(j, k) = max{j, k} for all
j, k ∈ Y . Then (Y, p) is a partial metric space.

(2) Let I denote the set of all intervals [u, v] for any real numbers u ≤ v. Let p : I×I →
[0,+∞) be a function such that

p
(
[u, v], [p, q]

)
= max{v, q} −min{u, p}.

Then (I, p) is a partial metric space.

Example 1.2. ([12]) Let Y = R and p : Y ×Y → [0,+∞) be given by p(j, k) = emax{j,k}

for all j, k ∈ Y . Then (Y, p) is a partial metric space.

Each partial metric p on Y generates a T0 topology τp on Y with the family
of open p-balls {Bp(x, µ) : x ∈ Y, µ > 0} where Bp(x, µ) = {z ∈ Y : p(x, z) <
p(x, x)+µ} for all x ∈ Y and µ > 0. Similarly, closed p-ball is defined as Bp[x, µ] =
{z ∈ Y : p(x, z) ≤ p(x, x) + µ} for all x ∈ Y and µ > 0.

Definition 1.2. (see, e.g. [26, 27]) Let (Y, p) be a partial metric space.

(A) A sequence {un} converges to a point u ∈ Y whenever limn→∞ p(u, un) =
p(u, u).

(B) A sequence {un} in Y is called Cauchy whenever

lim
m,n→∞

p(um, un) exists (and is finite).
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(C) A partial metric space (Y, p) is said to be complete if every Cauchy sequence
{un} in Y converges, with respect to τp, to a point u ∈ Y , such that

lim
m,n→∞

p(um, un) = p(u, u).

(D) A mapping g : Y → Y is said to be continuous at u0 ∈ Y if for every ε > 0,
there exists α > 0 such that g

(
Bp(u0, α)

)
⊂ Bp

(
g(u0), ε

)
.

There is a close relationship between metrics and partial metrics. Indeed, if p is
a partial metric on Y , then the function dp : Y × Y → R+ given by

dp(j, k) = 2p(j, k)− p(j, j)− p(k, k),(1.1)

is a (usual) metric on Y . Moreover,

lim
n→∞

dp(u, un) = 0 ⇔ lim
n→∞

p(u, un) = lim
n,m→∞

p(un, um) = p(u, u).(1.2)

The following lemmas play an important role in the proof of our main result.

Lemma 1.1. (see, e.g. [26, 27]) Let (Y, p) be a partial metric space.

(E) A sequence {un} in (Y, p) is a Cauchy sequence ⇔ {un} is a Cauchy sequence
in the metric space (Y, dp),

(F ) (Y, p) is complete ⇔ the metric space (Y, dp) is complete. Moreover,

lim
n→∞

dp(un, u) = 0 ⇔ p(u, u) = lim
n→∞

p(un, u) = lim
n,m→∞

p(un, um).

Lemma 1.2. ([19]) Let (Y, p) be a partial metric space.

(G) If j, k ∈ Y , p(j, k) = 0, then j = k,

(H) If j ̸= k, then p(j, k) > 0.

(I) If un → z as n → ∞ in a partial metric space (Y, p) with p(z, z) = 0, then
limn→∞ p(un, y) = p(z, y) for all y ∈ Y (see [14]).

Definition 1.3. ([25]) Let {un}n∈N be a non-negative sequence such that limn→∞ un =
a. Then

lim
n→∞

∫ un

0

ϕ(t) dt =

∫ a

0

ϕ(t) dt,

where ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable
on each compact subset of [0,+∞), and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0.

Definition 1.4. ([25]) Let {un}n∈N be a non-negative sequence. Then

lim
n→∞

∫ un

0

ϕ(t) dt = 0,

if and only if limn→∞ un = 0, where ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable
mapping which is summable on each compact subset of [0,+∞), and such that for
each ε > 0,

∫ ε
0
ϕ(t)dt > 0.
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Definition 1.5. (altering distance function, [23]) The function ψ : [0,+∞)→ [0,+∞)
is called an altering distance function if the following properties are satisfied:

(1) ψ is continuous and monotone non-decreasing,

(2) ψ(t) = 0 if and only if t = 0.

In 2002, Branciari [11] obtained a fixed point result for a single mapping satis-
fying an integral type inequality. This celebrated result can be stated as follows.

Theorem 1.1. ([11]) Let (Y, d) be a complete metric space, h ∈ [0, 1), and let
g : Y → Y be a mapping such that for each j, k ∈ Y ,∫ d(gj,gk)

0

ϕ(t)dt ≤ h

∫ d(j,k)

0

ϕ(t)dt,

where ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable
on each compact subset of [0,+∞), and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0,

then g has a unique fixed point s ∈ Y , such that for each r ∈ Y , limn→∞ gn(r) = s.

After this remarkable result of Branciari [11], a lot of interesting research work
on fixed point theorems involving more general contractive conditions of integral
type was obtained in [4, 9, 29, 30, 31].

2. Main Results

In this section, we shall prove fixed point theorems for integral type contraction
having rational terms and altering distance function in the setting of partial metric
spaces.

Theorem 2.1. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:∫ ψ(p(Fu,Fv))

0

ϕ(t)dt ≤ µ

∫ Θp(u,v)

0

ϕ(t)dt,(2.1)

for all u, v ∈ Y , where Θp(u, v) is given by

Θp(u, v) = max
{
ψ(p(u, v)), ψ(p(u, Fu)), ψ(p(v, Fv)),

ψ
(p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)

)
, ψ

(p(u, Fu)p(v, Fu)
1 + p(u, v)

)}
,

µ ∈ [0, 1), ψ is an altering distance function and ϕ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable on each compact subset of [0,+∞),
and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Then F has a unique fixed point in Y .

Moreover, p(z, z) = 0.
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Proof. Let u0 be an arbitrary point in Y . We construct the sequence {un} in Y as
follows

un+1 = Fun, n = 0, 1, 2, 3, . . . .

If there exists n such that un = un+1 = Fun, then un is a fixed point of F and the
proof is finished. So, we assume that un ̸= un+1 for all n ≥ 0. Putting u = un−1

and v = un in (2.1) and using condition p(z, z) = 0 and the property of ψ, we have∫ ψ(p(un,un+1))

0

ϕ(t)dt =

∫ ψ(p(Fun−1,Fun))

0

ϕ(t)dt

≤ µ

∫ Θp(un−1,un)

0

ϕ(t)dt,(2.2)

where

Θp(un−1, un) = max
{
ψ(p(un−1, un)), ψ(p(un−1, Fun−1)), ψ(p(un, Fun)),

ψ
(p(un, Fun)(1 + p(un−1, Fun−1))

1 + p(un−1, un)

)
,

ψ
(p(un−1, Fun−1)p(un, Fun−1)

1 + p(un−1, un)

)}
= max

{
ψ(p(un−1, un)), ψ(p(un−1, un)), ψ(p(un, un+1)),

ψ
(p(un, un+1)(1 + p(un−1, un))

1 + p(un−1, un)

)
,

ψ
(p(un−1, un)p(un, un)

1 + p(un−1, un)

)}
= max

{
ψ(p(un−1, un)), ψ(p(un−1, un)), ψ(p(un, un+1)),

ψ(p(un, un+1)), 0
}

= max
{
ψ(p(un−1, un)), ψ(p(un, un+1))

}
.(2.3)

The following cases arise.

If max
{
ψ(p(un−1, un)), ψ(p(un, un+1))

}
= ψ(p(un, un+1)), then from equation

(2.3), we obtain∫ ψ(p(un,un+1))

0

ϕ(t)dt ≤ µ

∫ ψ(p(un,un+1))

0

ϕ(t)dt,

which is a contradiction, since 0 < µ < 1. Thus, we conclude that∫ ψ(p(un,un+1))

0

ϕ(t)dt ≤ µ

∫ ψ(p(un−1,un))

0

ϕ(t)dt.(2.4)
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Continuing the same process as above, we get∫ ψ(p(un,un+1))

0

ϕ(t)dt ≤ µ

∫ ψ(p(un−1,un))

0

ϕ(t)dt ≤ µ2

∫ ψ(p(un−2,un−1))

0

ϕ(t)dt

≤ · · · ≤ µn
∫ ψ(p(u0,u1))

0

ϕ(t)dt.(2.5)

Passing to the limit as n→ ∞ in equation (2.5), we obtain

lim
n→∞

∫ ψ(p(un,un+1))

0

ϕ(t)dt = 0, since 0 < µ < 1.(2.6)

Hence, by the property of integral ϕ (by Definition 1.4), we obtain

lim
n→∞

ψ(p(un, un+1)) = 0.(2.7)

Again by the properties of altering distance function ψ, we obtain

lim
n→∞

p(un, un+1) = 0.(2.8)

Due to equation (1.1), we have dp(un, un+1) ≤ 2p(un, un+1). Therefore

lim
n→∞

dp(un, un+1) = 0.(2.9)

Now, we prove that

lim
n,m→∞

p(un, um) = 0.

Suppose the contrary, that is,

lim
n→∞

p(un, um) ̸= 0.

Then there exists ε > 0 for which we can find two subsequences {um(s)} and {un(s)}
of {un} such that n(s) is the smallest integer for which

n(s) > m(s) > s, p(um(s), un(s)) ≥ ε,(2.10)

and

p(un(s)−1, um(s)) < ε.(2.11)

From equations (2.10) and (2.11), we have

ε ≤ p(un(s), um(s))

≤ p(un(s), un(s)−1) + p(un(s)−1, um(s))− p(un(s)−1, un(s)−1)

≤ p(un(s), un(s)−1) + p(un(s)−1, um(s))

< ε+ p(un(s), un(s)−1).(2.12)
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Taking the limit as s→ ∞ and using equation (2.9), we obtain

lim
s→∞

p(un(s), um(s)) = ε.(2.13)

By the triangle inequality, we have

p(un(s), um(s)) ≤ p(un(s), un(s)−1) + p(un(s)−1, um(s))− p(un(s)−1, un(s)−1)

≤ p(un(s), un(s)−1) + p(un(s)−1, um(s))

≤ p(un(s), un(s)−1) + p(un(s)−1, um(s)−1) + p(um(s)−1, um(s))(2.14)

−p(um(s)−1, um(s)−1)

≤ p(un(s), un(s)−1) + p(un(s)−1, um(s)−1) + p(um(s)−1, um(s)),

and

p(un(s)−1, um(s)−1) ≤ p(un(s)−1, un(s)) + p(un(s), um(s)−1)− p(un(s), un(s))

≤ p(un(s)−1, un(s)) + p(un(s), um(s)−1)

≤ p(un(s)−1, un(s)) + p(un(s), um(s)) + p(um(s), um(s)−1)(2.15)

−p(um(s), um(s))

≤ p(un(s)−1, un(s)) + p(un(s), um(s)) + p(um(s), um(s)−1).

Taking the limit as s→ ∞ in equations (2.14) and (2.15) and using equations (2.9)
and (2.13), we obtain

lim
s→∞

p(un(s)−1, um(s)−1) = ε.(2.16)

Again, we have

p(un(s)−1, um(s)−1) ≤ p(un(s)−1, um(s)) + p(um(s), um(s)−1)

−p(um(s), um(s))

≤ p(un(s)−1, um(s)) + p(um(s), um(s)−1),(2.17)

and

p(un(s)−1, um(s)) ≤ p(un(s)−1, un(s)) + p(un(s), um(s))

−p(un(s), un(s))
≤ p(un(s)−1, un(s)) + p(un(s), um(s)).(2.18)

Taking the limit as s → ∞ in equations (2.17), (2.18) and using equations (2.9),
(2.13) and (2.16), we obtain

lim
s→∞

p(un(s)−1, um(s)) = ε.(2.19)

Now from equation (2.1), we have∫ ψ(p(um(s),un(s)))

0

ϕ(t)dt =

∫ ψ(p(Fum(s)−1,Fun(s)−1))

0

ϕ(t)dt

≤ µ

∫ Θp(um(s)−1,un(s)−1)

0

ϕ(t)dt,(2.20)
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where

Θp(um(s)−1, un(s)−1) = max
{
ψ(p(um(s)−1, un(s)−1)), ψ(p(um(s)−1, Fum(s)−1)),

ψ(p(un(s)−1, Fun(s)−1)),

ψ
(p(un(s)−1, Fun(s)−1)(1 + p(um(s)−1, Fum(s)−1))

1 + p(um(s)−1, un(s)−1)

)
,

ψ
(p(um(s)−1, Fum(s)−1)p(un(s)−1, Fum(s)−1)

1 + p(um(s)−1, un(s)−1)

)}
= max

{
ψ(p(um(s)−1, un(s)−1)), ψ(p(um(s)−1, um(s))),

ψ(p(un(s)−1, un(s))),

ψ
(p(un(s)−1, un(s))(1 + p(um(s)−1, um(s)))

1 + p(um(s)−1, un(s)−1)

)
,

ψ
(p(um(s)−1, um(s))p(un(s)−1, um(s))

1 + p(um(s)−1, un(s)−1)

)}
.

By equations (2.9), (2.13), (2.16), (2.19) and using the properties of ψ, we have

lim
s→∞

Θp(um(s)−1, un(s)−1) = max
{
ψ(ε), 0, 0, 0, 0

}
= ψ(ε).(2.21)

Now, passing to the limit as s → ∞ in equation (2.20) and using equation (2.21),
property of ψ and Definition 1.3, we obtain∫ ψ(ε)

0

ϕ(t)dt ≤ µ

∫ ψ(ε)

0

ϕ(t)dt,

which is a contradiction, since 0 < µ < 1. So, we have∫ ψ(ε)

0

ϕ(t)dt = 0.

Again by the property of integral ϕ, we obtain ψ(ε) = 0 and so by the property of
ψ, we have ε = 0, which is a contradiction, since ε > 0. Hence, we have

lim
n,m→∞

p(un, um) = 0.

Since limn,m→∞ p(un, um) exists and is finite, we conclude that {un} is a Cauchy
sequence in partial metric space (Y, p).

Due to equation (1.1), we have dp(un, um) ≤ 2p(un, um). Therefore

lim
n,m→∞

dp(un, um) = 0.(2.22)

Thus, by Lemma 1.1, {un} is a Cauchy sequence in both (Y, dp) and (Y, p).
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Since (Y, p) is complete partial metric space, then there exists t ∈ Y such that
limn→∞ p(un, t) = p(t, t). Since limn,m→∞ p(un, um) = 0, then again by Lemma
1.1, we have p(t, t) = 0. Now, we shall prove that t is a fixed point of F . Suppose
that Ft ̸= t. From equation (2.1) and Lemma 1.2 (I), we have∫ ψ(p(un,F t))

0

ϕ(t)dt =

∫ ψ(p(Fun−1,F t))

0

ϕ(t)dt

≤ µ

∫ Θp(un−1,t)

0

ϕ(t)dt,(2.23)

where

Θp(un−1, t) = max
{
ψ(p(un−1, t)), ψ(p(un−1, Fun−1)), ψ(p(t, F t)),

ψ
(p(t, F t)(1 + p(un−1, Fun−1))

1 + p(un−1, t)

)
,

ψ
(p(un−1, Fun−1)p(t, Fun−1)

1 + p(un−1, t)

)}
= max

{
ψ(p(un−1, t)), ψ(p(un−1, un)), ψ(p(t, F t)),

ψ
(p(t, F t)(1 + p(un−1, un))

1 + p(un−1, t)

)
,

ψ
(p(un−1, un)p(t, un)

1 + p(un−1, t)

)}
.

Taking the limit as n→ ∞ in the above and using p(t, t) = 0 and the properties of
ψ, we obtain

lim
n→∞

Θp(un−1, t) = max
{
0, 0, ψ(p(t, F t)), ψ(p(t, F t)), 0

}
= ψ(p(t, F t)).

Taking the limit as n → ∞ in equation (2.23) and using equation (2.24) and the
property of ψ, we obtain∫ ψ(p(t,F t))

0

ϕ(t)dt ≤ µ

∫ ψ(p(t,F t))

0

ϕ(t)dt,

which is a contradiction, since 0 < µ < 1. Therefore, we have∫ ψ(p(t,F t))

0

ϕ(t)dt = 0.

Hence, by the property of integral ϕ, we conclude that ψ(p(t, F t)) = 0. Now, by the
property of ψ, we obtain p(t, F t) = 0 and so Ft = t, that is, t is a fixed point of F .
Now, we shall show that the fixed point of F is unique. Assume that t′ is another
fixed point of F such that t ̸= t′. Then from equation (2.1) and using condition
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p(t, t) = 0 and the property of ψ, we have∫ ψ(p(t,t′))

0

ϕ(t)dt =

∫ ψ(p(Ft,Ft′))

0

ϕ(t)dt

≤ µ

∫ Θp(t,t
′)

0

ϕ(t)dt,(2.24)

where

Θp(t, t
′) = max

{
ψ(p(t, t′)), ψ(t, F t)), ψ(p(t′, F t′)),

ψ
(p(t′, F t′)(1 + p(t, F t))

1 + p(t, t′)

)
, ψ

(p(t, F t)p(t′, F t)
1 + p(t, t′)

)}
= max

{
ψ(p(t, t′)), ψ(p(t, t)), ψ(p(t′, t′)),

ψ
(p(t′, t′)(1 + p(t, t))

1 + p(t, t′)

)
, ψ

(p(t, t)p(t′, t)
1 + p(t, t′)

)}
= max

{
ψ(p(t, t′)), 0, 0, 0, 0

}
= ψ(p(t, t′)).

Using the above value in equation (2.24), we obtain∫ ψ(p(t,t′))

0

ϕ(t)dt ≤ µ

∫ ψ(p(t,t′))

0

ϕ(t)dt,

which is a contradiction, since 0 < µ < 1 and p(t, t′) > 0. Therefore, we obtain∫ ψ(p(t,t′))

0

ϕ(t)dt = 0.

Thus, regarding the property of integral ϕ, we conclude that ψ(p(t, t′)) = 0. Again
by the property of ψ, we obtain p(t, t′) = 0 and so t = t′. This proves the uniqueness
of fixed point. The proof is completed.

3. Consequences of Theorem 2.1

If we take ϕ(t) = 1 for all t ≥ 0 in Theorem 2.1, then we have the following
result.

Corollary 3.1. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:

ψ(p(Fu, Fv)) ≤ µΘp(u, v),(3.1)

for all u, v ∈ Y , where µ ∈ [0, 1), ψ is an altering distance function and Θp(u, v) is
as in Theorem 2.1. Then F has a unique fixed point in Y . Moreover, p(z, z) = 0.
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If we take ϕ(t) = 1 for all t ≥ 0 and ψ(t) = t for all t > 0 in Theorem 2.1, then
we have the following result.

Corollary 3.2. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:

p(Fu, Fv) ≤ µ∆p(u, v),(3.2)

where

∆p(u, v) = max
{
p(u, v), p(u, Fu), p(v, Fv),

p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
,
p(u, Fu)p(v, Fu)

1 + p(u, v)

}
,

for all u, v ∈ Y and µ ∈ [0, 1) is a constant. Then F has a unique fixed point in Y .
Moreover, p(z, z) = 0.

Corollary 3.3. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:

p(Fu, Fv) ≤ Λp(u, v),(3.3)

where

Λp(u, v) = A1 p(u, v) +A2 p(u, Fu) +A3 p(v, Fv)

+A4
p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
+A5

p(u, Fu)p(v, Fu)

1 + p(u, v)
,

for all u, v ∈ Y and A1, A2, A3, A4, A5 are nonnegative reals such that A1 + A2 +
A3 +A4 +A5 < 1. Then F has a unique fixed point in Y . Moreover, p(z, z) = 0.

Proof. Follows from Corollary 3.2, by noting that

A1 p(u, v) +A2 p(u, Fu) +A3 p(v, Fv) +A4
p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)

+A5
p(u, Fu)p(v, Fu)

1 + p(u, v)

≤ (A1 +A2 +A3 +A4 +A5)max
{
p(u, v), p(u, Fu), p(v, Fv),

p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
,
p(u, Fu)p(v, Fu)

1 + p(u, v)

}
= µ max

{
p(u, v), p(u, Fu), p(v, Fv),

p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
,
p(u, Fu)p(v, Fu)

1 + p(u, v)

}
,

where µ = A1 +A2 +A3 +A4 +A5 < 1.
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If we take ψ(t) = t for all t > 0 in Theorem 2.1, then we have the following
result.

Corollary 3.4. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:∫ p(Fu,Fv)

0

ϕ(t)dt ≤ µ

∫ Mp(u,v)

0

ϕ(t)dt,(3.4)

for all u, v ∈ Y , where Mp(u, v) is given by

Mp(u, v) = max
{
p(u, v), p(u, Fu), p(v, Fv),

p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
,
p(u, Fu)p(v, Fu)

1 + p(u, v)

}
,

µ ∈ [0, 1), and ϕ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which
is summable on each compact subset of [0,+∞), and such that for each ε > 0,∫ ε
0
ϕ(t)dt > 0. Then F has a unique fixed point in Y . Moreover, p(z, z) = 0.

If we take

max
{
p(u, v), p(u, Fu), p(v, Fv),

p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)
,

p(u, Fu)p(v, Fu)

1 + p(u, v)

}
= p(u, v),

in Corollary 3.4, then we have the following result.

Corollary 3.5. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:∫ p(Fu,Fv)

0

ϕ(t)dt ≤ µ

∫ p(u,v)

0

ϕ(t)dt,(3.5)

for all u, v ∈ Y , where µ ∈ [0, 1) is a constant and ϕ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable on each compact subset of [0,+∞),
and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Then F has a unique fixed point in Y .

Remark 3.1. Corollary 3.5 extends and generalizes Theorem 1.1 of Branciari [11] from
complete metric spaces to complete partial metric spaces.

If we take ϕ(t) = 1 for all t ≥ 0 in Corollary 3.5, then we obtain the following
result.
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Corollary 3.6. ([26], Theorem5.3) Let (Y, p) be a complete partial metric space
and F : Y → Y be a mapping satisfying the following contractive condition:

p(Fu, Fv) ≤ µ p(u, v),(3.6)

for all u, v ∈ Y , where µ ∈ [0, 1) is a constant. Then F has a unique fixed point in
Y .

Remark 3.2. Corollary 3.6 extends and generalizes well-known Banach contraction map-
ping principle [10] from complete metric spaces to complete partial metric spaces.

Corollary 3.7. Let (Y, p) be a complete partial metric space and F : Y → Y be a
mapping satisfying the following contractive condition:∫ ψ(p(Fu,Fv))

0

ϕ(t)dt ≤ ν1

∫ ψ(p(u,v))

0

ϕ(t)dt+ ν2

∫ ψ(p(u,Fu))

0

ϕ(t)dt

+ν3

∫ ψ(p(v,Fv))

0

ϕ(t)dt+ ν4

∫ ψ

(
p(v,Fv)(1+p(u,Fu))

1+p(u,v)

)
0

ϕ(t)dt

+ν5

∫ ψ

(
p(u,Fu)p(v,Fu)

1+p(u,v)

)
0

ϕ(t)dt,

for all u, v ∈ Y , where ν1, ν2, ν3, ν4, ν5 are nonnegative reals such that ν1 + ν2 +
ν3 + ν4 + ν5 < 1, ψ is an altering distance function and ϕ : [0,+∞) → [0,+∞) is a
Lebesgue-integrable mapping which is summable on each compact subset of [0,+∞),
and such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Then F has a unique fixed point in Y .

Moreover, p(z, z) = 0.

Proof. Follows from Theorem 2.1, by noting that

ν1

∫ ψ(p(u,v))

0

ϕ(t)dt+ ν2

∫ ψ(p(u,Fu))

0

ϕ(t)dt+ ν3

∫ ψ(p(v,Fv))

0

ϕ(t)dt

+ν4

∫ ψ

(
p(v,Fv)(1+p(u,Fu))

1+p(u,v)

)
0

ϕ(t)dt+ ν5

∫ ψ

(
p(u,Fu)p(v,Fu)

1+p(u,v)

)
0

ϕ(t)dt

≤ (ν1 + ν2 + ν3 + ν4 + ν5)

∫ Θp(u,v)

0

ϕ(t)dt

= µ

∫ Θp(u,v)

0

ϕ(t)dt,

where µ = ν1 + ν2 + ν3 + ν4 + ν5 < 1 and Θp(u, v) is given by

Θp(u, v) = max
{
ψ(p(u, v)), ψ(p(u, Fu)), ψ(p(v, Fv)),

ψ
(p(v, Fv)(1 + p(u, Fu))

1 + p(u, v)

)
, ψ

(p(u, Fu)p(v, Fu)
1 + p(u, v)

)}
.
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Example 3.1. Let Y = [0, 1] and p(u, v) = max{u, v} for all u, v ∈ Y , then (Y, p) is a
complete partial metric space (PMS). Suppose F : Y → Y is defined by F (u) = u

4
for all

u ∈ Y . Let ϕ : [0,+∞) → [0,+∞) and ψ : [0,+∞) → [0,+∞) be such that ϕ(t) = 1 for all
t ≥ 0 and ψ(t) = t for all t > 0. Without loss of generality, we assume that u ≥ v. Then
we have

p(Fu, Fv) = max
{u
4
,
v

4

}
=
u

4
.(3.7)

On the other hand

max
{
p(u, v), p(u, Fu), p(v, Fv), p(v, Fv)

1 + p(u, Fu)

1 + p(u, v)
,
p(u, Fu)p(v, Fu)

1 + p(u, v)

}
= max

{
u, u, v, v.

1 + u

1 + u
,
uv

1 + u

}
= u.

Combining the observations above, we obtain

p(Fu, Fv) =
u

4
≤ µu,

that is, µ ≥ 1
4
. If we take 0 < µ < 1, then all the conditions of Corollary 3.1 and Corollary

3.2 are satisfied. Hence, F has a unique fixed point, indeed u = 0 is the required point.

Example 3.2. Let Y = [0,∞). Define F : Y → Y by F (u) = 2u for all u ∈ Y . Also,
define p : Y × Y → R+ by p(u, v) = max{u, v} for all u, v ∈ Y , then (Y, p) is a complete
partial metric space (PMS). It is clear that Matthew’s Theorem (Theorem 5.3, [26])
(analog of BCP) does not work. Indeed, without loss of generality, we may assume that
u ≤ v. Then

p(Fu, Fv) = 2v > µ v = µ p(u, v),

for any µ ∈ [0, 1).

However, for µ = 1
3
, we have

p(Fu, Fv) = 2v ≤ 1

3
.2v.

1 + 2u

1 + v

= µ max
{
p(u, v), p(u, Fu), p(v, Fv), p(v, Fv)

1 + p(u, Fu)

1 + p(u, v)
,

p(u, Fu)p(v, Fu)

1 + p(u, v)

}
.

Thus by Corollary 3.2, F has a unique fixed point. Here 0 is the unique fixed point of F .

Example 3.3. Let Y = {1, 2, 3, 4} and p : Y × Y → R be defined by

p(u, v) =


|u− v|+max{u, v}, if u ̸= v,

u, if u = v ̸= 1,
0, if u = v = 1,

for all u, v ∈ Y . Then (Y, p) is a complete partial metric space.

Now, we define a mapping F : Y → Y by

F (1) = 1, F (2) = 1, F (3) = 2, F (4) = 2.
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Now, we have

p(F (1), F (2)) = p(1, 1) = 0 ≤ 3

4
.3 =

3

4
p(1, 2),

p(F (1), F (3)) = p(1, 2) = 3 ≤ 3

4
.5 =

3

4
p(1, 3),

p(F (1), F (4)) = p(1, 2) = 3 ≤ 3

4
.7 =

3

4
p(1, 4),

p(F (2), F (3)) = p(1, 2) = 3 ≤ 3

4
.4 =

3

4
p(2, 3),

p(F (2), F (4)) = p(1, 2) = 3 ≤ 3

4
.6 =

3

4
p(2, 4),

p(F (3), F (4)) = p(2, 2) = 2 ≤ 3

4
.5 =

3

4
p(3, 4).

Thus, F satisfies all the conditions of Corollary 3.6 with µ = 3
4
< 1. Now by applying

Corollary 3.6, F has a unique fixed point. Here 1 is the unique fixed point of F .

4. An application to the Fredholm integral equation

In this section, we give an application of contraction condition (3.5) of Corollary
3.5 to the Fredholm integral equation:

u(r) = w(r) + λ

∫ b

a

k(r, t)u(t)dt,(4.1)

where u : [a, b] → R with −∞ < a < b < +∞ and k(r, t) is called the kernel of the
integral equation (4.1) with |k(r, t)| ≤M (M > 0).

Let Y = C[a, b] be the class of all real-valued continuous functions on [a, b].
Define F : Y → Y by

F (u)(r) = w(r) + λ

∫ b

a

k(r, t)u(t)dt.

Obviously, u(r) is a solution of the Fredholm integral equation (4.1) if and only if
u(r) is a fixed point of F . Define p : Y × Y → [0,+∞) by

p(u, v) = sup
r∈[a,b]

|u(r)− v(r)|,

for all u, v ∈ Y . Then (Y, p) is a complete partial metric space. Now, we state and
prove our result as follows.

Theorem 4.1. Let (Y, p) be a complete partial metric space. Suppose that the
following:

(1) The mappings w : [a, b] → R and k : [a, b] → R are continuous.

(2) There exists a nonnegative real number λ, such that

|λ| < 1

M(b− a)
.

Then, the Fredholm integral equation (4.1) has a unique solution u : [a, b] → R in
Y .
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Proof. Now, we show that F satisfies the contractive condition (3.5) of Corollary
3.5. Consider

p(Fu, Fv) = sup
r∈[a,b]

|Fu(r)− Fv(r)|

= sup
r∈[a,b]

[∣∣∣w(r) + λ

∫ b

a

k(r, t)u(r)dt

−
(
w(r) + λ

∫ b

a

k(r, t)v(r)dt
)∣∣∣]

= sup
r∈[a,b]

[∣∣∣λ ∫ b

a

k(r, t)[u(r)− v(r)]dt
∣∣∣]

≤ sup
r∈[a,b]

|λ|
∫ b

a

|k(r, t)||u(r)− v(r)|dt

≤ |λ|M sup
r∈[a,b]

|u(r)− v(r)|
∫ b

a

dt

= |λ|M(b− a) p(u, v)

< p(u, v),

which implies ∫ p(Fu,Fv)

0

ϕ(t)dt <

∫ p(u,v)

0

ϕ(t)dt

for all u, v ∈ Y . Consequently, the contractive condition (3.5) is satisfied and the
Fredholm integral equation (4.1) has a unique solution u in Y .

Now, we give an example of Theorem 4.1.

Example 4.1. Let us consider the Fredholm integral equation defined as

u(r) = e+ λ

∫ e

1

ln r

t
u(t)dt.(4.2)

Now we find a solution of the Fredholm integral equation (4.2) with initial condition
u0(r) = 0. We solve this equation for |λ| < 1

e−1
since 1

e−1
< 1 for all 1 ≤ r, t ≤ e. Thus,

we obtain

u1(r) = e,

u2(r) = e+ λ

∫ e

1

ln r

t
e dt = e+ λ e ln r,

u3(r) = e+ λ

∫ e

1

ln r

t
(e+ λ e ln t) dt = e+ λ e ln r +

λ2

2
e ln r,
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u4(r) = e+ λ

∫ e

1

ln r

t
(e+ λ e ln t+

λ2

2
e ln t) dt

= e+ λ e ln r +
λ2

2
e ln r +

λ3

4
e ln r,

· · ·
· · ·

un(r) = e+ λ e ln r
[
1 +

λ

2
+
λ2

4
+ · · ·+ λn

2n

]
→ e+

2λ e

2− λ
ln r.

Thus, this is a solution of the Fredholm integral equation (4.2) for |λ| < 1
e−1

< 1.

5. Conclusion

In the present paper, we prove some fixed point results via integral-type con-
tractive conditions having rational terms and altering distance functions in the
framework of partial metric spaces. Moreover, we give some consequences of the
established results. Also, we provide some illustrative examples to validate the re-
sults. An application to the Fredholm integral equation is also given. Our results
extend, generalize and enrich several previously published results from the existing
literature (see, e.g. [10, 11, 26] and many others).
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