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MINIMIZATION OF A NONDIFFERENTIABLE FUNCTION: AN
ALGORITHM USING TRUST REGION TECHNIQUE AND CONJUGATE

SUBGRADIENT METHOD

Milanka Gardašević-Filipović and Nada Djuranović-Miličić

Abstract. In this paper we present a method for minimization of a nondifferentiable
function. The method uses trust region strategy combined with a conjugate subgradient
method. It is proved that the sequence of points generated by the algorithm has an
accumulation point which satisfies the first order necessary and sufficient conditions.
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1. Introduction

The following minimization problem is considered:

min
x∈Rn

f (x)(1.1)

where f : Rn → R∪{+∞} is a convex and not necessary differentiable function with
a nonempty set X∗ of minima.

Nonsmooth optimization problems, in general, are difficult to solve, even when
they are unconstrained. For nonsmooth programs, many approaches have been
presented so far and they are often restricted to the convex unconstrained case. In
general, the various approaches are based on combinations of the following three
methods: (i) subgradient methods (see [9], [15], [27], [28]); (ii) bundle techniques
(see [14], [16], [18], [20], [25]), (iii) Moreau-Yosida regularization (see [5], [6], [7],
[8], [13], [19], [22], [23]). A good overview can be found in [1] and [21].

The algorithm we are going to present here combines the trust region method
with the conjugate subgradient method. We build our iterative method on the
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following idea. If we, on the k -th iteration, approximate the objective function f
of the problem (1.1) by a function Φ then it is reasonable to assume that it could be
possible to define some neighborhood about xk where the approximation function
Φ of the objective function f agrees with the objective function in some sense. Then
it would be appropriate to choose for the next iteration the minimizer of the appro-
ximation function Φ, that is to apply a trust region technique. If the approximation
function Φ of the objective function f does not agree with the objective function
in an appropriate degree then we proceed to solve problem (1.1) by conjugate su-
bgradient method (instead of bundle philosophy which is used in [12]) for solving
the latter problem.

In the second section some basic theoretical preliminaries are given. In the third
section a model algorithm is suggested. In the fourth section the convergence of
the algorithm is proved.

2. THEORETICAL PRELIMINARIES

Throughout the paper we will use the following notation. A vector s refers to a col-
umn vector, and ∇ denotes the gradient operator ( ∂∂x1

, ∂∂x2
, ..., ∂∂xn

)T. The Euclidean
product is denoted by 〈., .〉 and ||.|| is the associated norm.

The domain of a given function f : Rn → R ∪ {+∞} is the set dom( f ) = {x ∈
Rn| f (x) < +∞}. We say f is proper if its domain is nonempty. The point x∗ =
ar�minx∈Rn f (x) refers to the minimum point of a given function f : Rn → R∪{+∞}.
A vector � ∈ Rn is said to be a subgradient of a given proper convex function
f : Rn → R∪ {+∞} at a point x ∈ Rn if the inequality f (z) ≤ f (x)+ �T (̇z− x) holds for
all z ∈ Rn. The set of all subgradients of f (x) at the point x, called the subdifferential
at the point x, is denoted by ∂ f (x). The subdifferential ∂ f (x) is a nonempty set if
and only if x ∈ dom( f ) and the set ∂ f (x) is bounded for ∀x ∈ B ⊂ dom( f ), where B is
compact. If a proper convex function f : Rn → R∪ {+∞} is a differentiable function
at a point x ∈ dom( f ), then ∂ f (x) = {∇ f (x)}.

Proposition 2.1. Let f : Rn → R ∪ {+∞} be a proper convex function. The condition
0 ∈ ∂ f (x) is a first order necessary and sufficient condition for a global minimizer at x ∈ Rn.
This can be stated alternatively as:

max
�∈∂ f (x)

sT� ≥ 0,∀s ∈ Rn, ||s|| = 1.

Proof. See in [10] , [17] or [24]

In [10] it is proved that for the sequence xk → x′, defined by xk = x′ + εksk, such that
εk > 0, εk → 0 and sk → s if �k ∈ ∂ f (xk) then all accumulation points of the sequence
{�k} lie in the set ∂ f (x′), where f : S→ R ∪ {+∞} is a convex function defined on a
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convex set S ⊆ Rn.

The directional derivative of a real function defined on Rn at the point x′ ∈ Rn in the
direction s ∈ Rn, denoted by f ′(x′, s), is f ′(x′, s) = limt↓0

f ′(x′+ts)− f (x′)
t when this limit

exists. For a real convex function a directional derivative at the point x′ ∈ Rn in the
direction s exists in any direction s ∈ Rn (see theorem 2.1.3, page 10 in [21]). In [10]
it is proved that if the sequence xk → x′, defined by xk = x′ + εksk, such that εk > 0,
εk → 0 and sk → s, then it holds that f ′(x′, s) = limk→+∞

f ′(xk)− f (x′)
εk

= max�∈∂ f (x′) sT�,
where f : S→ R∪{+∞} is a convex function defined on a convex set S ⊆ Rn. Hence,
it follows that if the function f is convex then f (x′+ ts) = f (x′)+ t f ′(x′, s)+o(t) holds,
which can be considered as one linearization of the function f (see in [11]). It also
follows that the first order necessary and sufficient condition for a global mini-
mizer of the convex function f at the point x ∈ Rn can be stated alternatively as
max�∈∂ f (x) sT� ≥ 0,∀s ∈ Rn, ||s|| = 1 (see in [2]).

Lemma 2.1. Let fi : Rn → R ∪ {+∞} for i ∈ I = {1, 2, ..., n}, n ∈ N be convex functions,
and f (x) = maxi∈{1,2,...,n} fi(x). Then the function f is a convex function, and its subdiffer-
ential at the point x ∈ Rn, is given by ∂ f (x) =

{∑
i∈Î λi�i

∣∣∣ ∑i∈Î λi = 1, λi ≥ 0, �i ∈ ∂ fi(x),

for i ∈ Î
}
, where Î is the set Î = {i ∈ I

∣∣∣ f (x) = fi(x)}.
Proof. See in [24]

3. A MODEL ALGORITHM

We suppose that at the k-th iteration, there is an index set Ik = {1, 2, ..., k}, and we
store information as a bundle Bk = {(xi, f (xi), �i) | i ∈ Ik }, i.e. a set of triplets
indexed by Ik consisting of the generic point xi, the value f (xi) of the objective
function f at the point xi, and an arbitrary subgradient �i ∈ ∂ f (xi).

Each triplet in the bundle Bk defines one linearization fi(x) of the objective
function given as follows:

fi(x) = f (xi) + �T
i (x − xi),where i ∈ Ik.(3.1)

If f is a convex function then f (x) = maxz∈Rn{ f (z) + �T(x − z)} holds (proved in [4]),
where � ∈ ∂ f (z). Hence, it is reasonable to consider the next function

f̂k(x) = max
0≤i≤k

fi(x) = max
0≤i≤k
{ f (xi) + �T

i (x − xi)}(3.2)

which is known as a cutting plane function [1].

It is easy to see that f (x) ≥ f̂k+1(x) ≥ fk(x) for all x ∈ Rn.
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Now, let us consider the next function:

Φk(x) = f̂k(x) +
1
2
||xk − x||2(3.3)

Clearly, we have that Φk(xk) = f̂k(xk) holds. Function f̂k(x) is a polyhedral function
(piecewise linear function) and hence it is a closed convex function. More than that,
f̂k(x) could be considered as a composition of two type of functions - the maximum
function and the linear functions, i.e. max0≤i≤k fi(x). Then the function defined by
(3.3) is a sum of one differentiable convex quadratic function and maximum of the
linear functions. So, the function defined by (3.3) is a closed convex nonsmooth
function.

If z ∈ ∂Φk(x) then z ∈ ∂ f̂k(x) + ∂( 1
2 ||xk − x||2). Hence, z ∈ ∂ f̂k(x) + x − xk and

z = �̂ + x − xk for some �̂ ∈ ∂ f̂k(x). Since f̂k(x) is a polyhedral function we have,
according to Lemma 2.1, that �̂ =

∑
i∈Îk
λi�i, where Î = {i ∈ Ik| f̂k(x) = fi(x)} and

�i ∈ ∂ f (xi), i ∈ Îk,
∑

i∈Îk
λi = 1, λi ≥ 0, i.e. �̂ is a convex combination of the subgradi-

ents from the bundle Bk.

The algorithm we are going to present constructs a sequence {xk} in Rn in the
following way. On the k-th iteration, we consider the function defined by (3.3) as
an approximation of the objective function f about the point xk i.e. Φk(x) = f̂k(x)+
1
2 ||xk − x||2. For the next iteration it would be appropriate to choose xk+1 = xk + δk,
where the correction δk minimizes Φk(x) for all x = xk + δk ∈ Ωk, where Ωk denotes
the trust region. Namely, Ωk denotes the neighborhood about the point xk where
the function defined by (3.3) approximates the objective function of the problem
(1.1). Hence, we have that the function defined by (3.3) can be written as:

Φk(xk + δ) := f̂k(xk + δ) +
1
2
||δ||2 =(3.4)

max
1≤i≤k
{ f (xi) + �(xi)T(xk + δ − xi)} + 1

2
||δ||2.

It is convenient to consider the case Ωk = B(xk, hk) for some positive hk, i.e. δk is a
solution of the subproblem

min
δ
Φk(xk + δ) subject to ||δ|| ≤ hk.(3.5)

If Φk(xk + δ) attains its minimum at δk, then we have that 0 ∈ ∂Φk(xk + δk), i.e.
0 ∈ ∂ f̂ (xk + δk) + δk.
Since δk has to satisfy the condition ||δk|| ≤ hk, we consider the following problem.
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For a given �i ∈ ∂ f (xi), i ∈ Îk compute λi as a solution of the next problem:

max ||
∑

i∈Îk

λi�i|| such that
∑

i∈Îk
λi = 1, λi ≥ 0.(3.6)

We can choose the radius hk as a maximum value of the objective function in the
problem (3.6), i.e. such that the next equality:

hk = max∑
i∈Îk λi=1,λi≥0

||
∑

i∈Îk

λi�i||(3.7)

holds. Under the assumption (3.7) the subproblem (3.5) has a solution. Namely,
the next theorem holds.

Theorem 3.1. If the point xk is given and hk is chosen such that the equality (3.7) holds,
then the subproblem (3.5) has the unique solution. More than that, this solution is the
solution of the problem min δ∈Rn Φk(xk + δ).

Proof. At the given point xk the objective function for the subproblem (3.5)
has a subgradient �̂(xk + δ) + δ ∈ ∂Φ(xk + δ), where �̂(xk + δ) := �̂ =

∑
i∈Îk
λi�i for

�i ∈ ∂ f (xi), i ∈ Îk and
∑

i∈Îk
λi = 1, λi ≥ 0, and

Îk =
{
i ∈ Ik

∣∣∣ f̂k(xk + δ) = fi(xk + δ) = f (xi) + �T
i (xk + δ − xi)}.

If the point xk + δk is a minimum point of Φk(xk + δ) on Rn then by Proposition
2.1 it follows that 0 ∈ ∂Φk(xk + δk) and hence δk = −�̂(xk + δk) = −∑i∈Îk

λi�i, for
�i ∈ ∂ f (xi), i ∈ Îk and

∑
i∈Îk
λi = 1, λi ≥ 0, where Îk = {i ∈ Ik| f̂k(xk + δk) = fi(xk + δk)}.

Because of the equality (3.7), we have that

hk = max∑
i∈Îk λi=1,λi≥0

||
∑

i∈Îk

λi�i|| ≥ ||
∑

i∈Îk

λi�i|| = ||�̂|| = || − δk||

hold. So, it follows that δk = −�̂ is a solution of the subproblem (3.5). The solution
is unique since Φk is a strongly convex function (as a sum of maximum of linear
functions and strongly convex quadratic function)

Corollary 3.1. If the point xk is given and hk is chosen such that

hk = max∑
i∈Ik λi=1,λi≥0

||
∑

i∈Ik

λi�i||

holds (we use the whole index set Ik instead of the Îk used in (3.7)), then the subproblem
(3.5) has the unique solution. More than that, this solution is the solution of the problem
minδ∈Rn Φk(xk + δ).
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Proof. If we choose hk such that the condition (3.7) holds, then, by Theorem
3.1, the solution of the problem (3.5) there exists. More precisely, there exists the
solution of the problem (3.5) over the set

S0 =
{
δ
∣∣∣ ||δ|| ≤ hk, hk = max∑

i∈Îk λi=1,λi≥0
||
∑

i∈Îk

λi�i||
}
.

If we choose hk = max∑
i∈Ik λi=1,λi≥0 ||∑i∈Ik

λi�i||, i.e. if we use the whole index set

Ik instead of the Îk used in (3.7), then we have to solve the problem (3.5) on the
larger set

S =
{
δ
∣∣∣ ||δ|| ≤ hk, hk = max∑

i∈Ik λi=1,λi≥0
||
∑

i∈Ik

λi�i||
}

such that S0 ⊆ S (since Îk ⊆ Ik). So, if a solution there exists on the subset S0, then a
solution there exists on the set S, where S0 ⊆ S.

The solution is unique sinceΦk is a strongly convex function (as a sum of maximum
of linear functions and strongly convex quadratic function)

On the k-th iteration we denote by � fk = f (xk) − f (xk + δk) the actual reduction
of the function f (.), and by � Φk = f (xk) − Φk(xk + δk) the predicted reduction.
Hence, the ratio rk =

� fk
�Φk

measures the accuracy to which Φk(xk + δ) approximates
f (xk + δ). The ratio rk plays an important role in selecting a new iteration point xk+1
and updating the trust-region radius hk. If the ratio is close to 1, it means that there
is good agreement. If the ratio is close to zero or negative then we quit the trust
region and find the next iteration by a conjugate subgradient method.

We will present the algorithm now.

Algorithm

• Step 0: Let β and η be constants such that 0.5 < β < 1 and 0 < η < 1 . Let ε, γ
and μ be real positive numbers small enough. Suppose that we have a given
initial point x1 ∈ Rn. For a given x1 ∈ Rn calculate �1 = �(x1) ∈ ∂ f (x1). Set
k = 1 and I0 = Ø,B0 = Ø.

• Step 1: For a given xk calculate fk = f (xk).

Set Ik = {k} ∪ Ik−1\Sk, where Sk = {i ∈ Ik−1

∣∣∣ ||xi − xk|| ≥ μ}.
Set Bk = {(xi, f (xi), �i)

∣∣∣ i ∈ Ik}.
Solve the problem (3.6) with Ik instead of Îk and denote by hk its solution.
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• Step 2: Solve the problem (3.5) minδ∈Rn Φk(xk+δ) and denote by δk its solution.
Denote by

Îk = { i ∈ Ik

∣∣∣ f̂k(xk + δk) = fi(xk + δk) = f (xi) + �T
i (xk + δk − xi) }

• Step 3: If ||δk|| < ε then stop. Otherwise, solve the problem min ||∑i∈Îk
λi�i||

such that
∑

i∈Îk
λi = 1, λi ≥ 0, and denote by λ(k)

i its solution. If ||λ(k)
i �i|| ≤ ε,

then stop. Otherwise go to Step 4.

• Step 4: Calculate f (xk + δk), φ(xk + δk),� fk,� φk, rk.

• Step 5: If rk < β then go to Step 6.
Otherwise set xk+1 = xk + δk and calculate

�k+1 = �(xk+1) ∈ ∂ f (xk+1).

Set k = k + 1 and go to Step 1.

• Step 6: Set δ̄(k) = −∑i∈Îk
λ(k)

i �i. Compute αk > γ > 0 such that αk||δ̄k|| ≤ εημ
holds.
Compute �k+1 ∈ ∂ f (xk + αkδ̄k).

• Step 7: If the inequality �T
k+1δ̄k ≤ − η2 ||δ̄k||2 holds then set xk+1 = xk + αkδ̄k, else

set xk+1 = xk.
Set k = k + 1 and go to Step 1.

Remark 1. Now we see in detail how to implement Step 2 of Algorithm. The
problem minδ∈Rn Φk(xk + δ) to be solved at Step 2, by Corollary 3.1, can be written
in the following way:

min
δ∈Rn,v∈R

{v + 1
2
||δ||2}subject to f (xi) + �(xi)T(xk + δ − xi) ≤ v, i ∈ Ik.

The above problem has a nonlinear structure and a nonempty feasible region, and
by duality solving the above problem is equivalent to finding multipliers λk

i for
i ∈ Ik that solve the quadratic problem

min
δ∈Rn,v∈R

{1
2
||
∑

i∈Ik

λi�(xi)||2 +
∑

i∈Ik

λi[ f (xi) + �(xi)T(xi − xk)]}
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subject to
∑

i∈Ik
λi = 1, λi ≥ 0 for i ∈ Ik. If the multipliers λk

i for i ∈ Ik solve the above
problem then the solution of the problem minδ∈Rn Φk(xk + δ) is δk = −∑i∈Ik

λk
i �(xi).

The set Îk is the set of indices i ∈ Ik such that λk
i ≥ 0.

Remark 2. It is possible to consider ek
i := f (xk)− fi(xk) = f (xk)− f (xi)− �T

i (xk − xi)
named linearization error, and rewrite the polyhedral function in the form f̂k(x) =
maxi∈Ik fi(x) = f (xk)+mini∈Ik ek

i . In that case the bundle consists of
(
� j, ek

j

)
instead of

(xj, f (xj), � j), and that can be a way to cope with a finite storage.

Remark 3. Note that the passing to the next iteration is faster at Step 5 (the case
rk ≥ β , i.e. when the quadratic approximation (defined by (3.4)) of the objective
function is in the trust region) than at Step 7. Namely, in the first case (rk ≥ β) we
made a step in the direction δk = −∑i∈Îk

λi�i such that
∑

i∈Îk
λi = 1, λi ≥ 0. In the

second case rk < β at Step 7, when �T
k+1δ̄k ≤ − η2 ||δ̄k||2 holds, we made a step in the

direction δ̄k = −∑i∈Îk
λk

i �i, where λk
i is a solution of the problem min ||∑i∈Îk

λi�i||
such that

∑
i∈Îk
λi = 1, λi ≥ 0, with a step lenght αk ∈ (0, ημ) or we do not move at

all, when �T
k+1δ̄k ≤ − η2 ||δ̄k||2 does not hold . The moving at the Step 7 is in the spirit

of the conjugate subgradients method [29], so this Algorithm has a faster part (case
rk ≥ β) than the conjugate subgradients algorithm (ref. [26], page 617).

4. CONVERGENCE PROOF

Lemma 4.1. Let {xk} be a sequence generated by the Algorithm such that xk → x′, xk =

x′ + αksk, sk → s, αk ↓ 0, where ||sk|| = 1. Then f̂k(xk) − f̂k(x′) = o(αk) holds. More than
that then limk→+∞ f̂k(xk) = f (x′) holds.

Proof. We denote by fk = f (xk), f ′ = f (x′), �k = �(xk) ∈ ∂ f (xk) and �′ = �(x′) ∈
∂ f ′.
SinceΦk is a convex function we have thatΦk(x′+αksk) = Φk(x′)+αkΦk′ (x′, sk)+o(αk)
holds. Hence, it follows that:

Φk(x′ + αksk) = Φk(x′) + αk max
�∈∂Φk(x′)

�Tsk + o(αk)(4.1)

If z ∈ ∂Φk(x′) such that zTsk = max�∈∂Φk(x′) �
Tsk then z = �̂ + x′ − xk and �̂ =∑

i∈Îk
λi�i, where Îk =

{
i ∈ Ik

∣∣∣ f̂k(x) = fi(x)
}

and �i ∈ ∂ f (xi), i ∈ Îk,
∑

i∈Îk
λi =

1, λi ≥ 0. Hence, from (4.1) it follows that:

f̂k(xk) = Φk(xk) = Φ(x′ + αksk) = Φk(x′) + αkzTsk + o(αk) = Φk(x′) + zT(xk − x′) + o(αk)

= max
0≤i≤k

{
f (xi) + �(xi)T(x′ − xi)

}
+

1
2
||xk − x′||2 + (�̂ + x′ − xk)T(xk − x′) + o(αk)

= f (xi) + �(xi)T(x′ − xi) +
1
2
||αksk||2 +

(∑

i∈Îk

λi�i − αksk

)T
(αksk) + o(αk), for some i ∈ Îk
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= f (xi) + �(xi)T(x′ − xi) − 1
2
||αksk||2 +

(∑

i∈Îk

λi�i

)T
(αksk) + o(αk), i ∈ Îk

= f̂k(x′) − 1
2
α2

k +
(∑

i∈Îk

λi�i

)T
(αksk) + o(αk) = f̂k(x′) + o(αk).

So, we get that f̂k(xk) − f̂k(x′) = o(αk) holds.
As k → +∞ we have that limk→+∞ f̂k(xk) = limk→+∞

{
max1≤i≤k

(
fi + �T

i (xk − xi)
)
}.

Since f (x) ≥ f̂k+1(x) ≥ f̂k(x) for any x ∈ Rn it follows that the sequence { f̂k(x)} is an
increasing and bounded above. The sequence xk → x′ and starting from k large
enough infinitely many points of this sequence lies in the neighbourhood of the
point x′. Hence, according to the fact that f (x′) = maxz∈Rn

{
f (z) + �T(x′ − z)

}
where

� ∈ ∂ f (z), we can state that f (x′) = limk→+∞
{
max1≤i≤k

(
fi + �T

i (xk − xi)
)
}.

If we suppose contrary, that is f (x′) > limk→+∞
{
max1≤i≤k

(
fi + �T

i (xk − xi)
)
}, then we

have that
f (x′) > max

1≤i≤k

(
fi + �T

i (xk − xi)
)
≥ fk + �T

k (xk − xk) = fk

holds for every k. Hence, as k → +∞ we get f (x′) > f (x′) (because of convexity of
the function f )

Lemma 4.2. Let {xk} be a sequence generated by the Algorithm such that xk → x′, xk =
x′ + αksk, sk → s, αk ↓ 0, where ||sk|| = 1. Then limk→+∞ φk(xk) = f (x′).

Proof. As k → +∞ by Lemma 4.1 and Φk(x) = f̂k(x) + 1
2 ||xk − x||2 we have that

limk→+∞Φk(xk) = limk→+∞ f̂k(xk) = f (x′) holds

If we denote by Φ∞(x) = f̂∞(x) + 1
2 ||x′ − x||2 then we have Φ∞(x′) = f̂∞(x′) = f (x′).

Now we can prove the main result of this paper.

Theorem 4.1. Let {xk} be a sequence generated by the Algorithm such that xk ∈ B ⊂
Rn, ∀k where B is compact. Then there exists an accumulation point x∞ of the sequence
{xk} satisfying the first order necessary and sufficient conditions, that is the following

0 ∈ ∂ f∞(4.2)

holds (where ∂ f∞ = ∂ f (x∞) ).

Proof. Since the set B is compact and xk ∈ B, it follows that the sequence {xk}
has an accumulation point x∞. Hence it follows that there exists a convergent
subsequence xk → x∞, k ∈ K. The Algorithm generates a subsequence for which
either:
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(i) rk < β and hence ||δ̄k|| → 0, k ∈ K1 ⊆ K or
(ii) rk ≥ β and inf(hk) > 0, k ∈ K2 ⊆ K
is fulfilled. We will prove that (4.2) holds in either case (i) or (ii). In the case (i) we
have that rk < β, k ∈ K1, and at Step 6 we calculate �k+1 = �(xk+1) ∈ ∂ f (xk + αkδ̄k),
where αk > γ > 0 is such that αk||δ̄k|| ≤ ημ holds. Since �k+1 is a subgradient of the
function f we have that:

f (z) ≥ f (xk + αkδ̄k) + �T
k+1(z − xk − αkδ̄k)(4.3)

holds for every z ∈ Rn. If the inequality

�T
k+1δ̄k ≤ −η2 ||δ̄k||2(4.4)

holds at Step 7, then from (4.3) we have (for z = xk):

f (xk) ≥ f (xk + αkδ̄k) + αk(−�T
k+1δ̄k) ≥ f (xk + αkδ̄k) +

αkη

2
||δ̄k||2(4.5)

> f (xk + αkδ̄k),

i.e. f (xk) > f (xk+1). Since the sequence { f (xk)}, k ∈ K1, is decreasing and
bounded below on the compact B it follows that f (xk+1)− f (xk)→ 0 as k→ +∞, k ∈
K1. From (4.5) it follows that

f (xk) − f (xk+1) ≥ αkη

2
||δ̄k||2 > γη2 ||δ̄k||2(4.6)

holds, and since f (xk+1) − f (xk) → 0 as k→ +∞, k ∈ K1, then from (4.6) it follows

that ||δ̄k|| → 0 as k → +∞, k ∈ K1. Since ∂ fk is bounded in a neighborhood of x∞
there exists a subsequence for which �k → �∞, k ∈ K3 ⊆ K1, and �∞ ∈ ∂ f∞. At
Step 6 we have that ||δ̄k|| > ε and αk||δ̄k|| ≤ εημ hold, consequently we have that
0 < εαk < αk||δ̄k|| ≤ εημ, and hence it follows that 0 < εαk ≤ εημ hold. Dividing
the last inequalities by ε we get 0 < αk ≤ ημ. Since ||xk+1 − xk|| = αk||δ̄k|| → 0
as k → +∞, k ∈ K1, over the subsequence (because of the boundness of {αk})
then according to the Step 1 of the Algorithm and Lemma 2.1 it follows that
||xi− xk|| → 0, i ∈ Îk, k ∈ K1. It also follows that since ∂ fi for i ∈ Îk are bounded in a
neighborhood of x∞ that there are corresponding subsequences for which �i → �i∞
for i ∈ Îk k ∈ K3, and �i∞ ∈ ∂ f∞. Since ∂ f∞ is a convex set it follows that every convex
combination of points from the set ∂ f∞ belongs to ∂ f∞, i.e. δ̄∞ =

∑
i∈Î∞ λ

(∞)
i �

∞
i ∈ ∂ f∞

, where δ̄k =
∑

i∈Îk
λ(k)

i �i → δ̄∞ =
∑

i∈Î∞ λ
(∞)
i �∞. Since δ̄k → δ̄∞i , k ∈ K3, and

||δ̄k|| → 0, k ∈ K1, it follows that 0 ∈ ∂ f∞ (because of K3 ⊆ K1).

If the inequality (4.4) does not hold at Step 7, i.e. �T
k+1δ̄k > − η2 ||δ̄k||2 we

choose xk+1 = xk and consequently we have that f (xk) − f (xk+1) = 0 holds. Since
||xk+1− xk|| = 0 < μ, at the next iteration we change the set Ik (adding the new k) and
the bundle Bk (adding a new triplet (xk, f (xk), �(xk+1)). In that case we find another



Minimization of a Nondifferentiable Function: An Algorithm 593

solution of the problem (3.6), and consequently we find another solution of the
problem (3.5), because we change the trust region radius. So, for the next iteration
we get a new rk for which either rk < β or rk ≥ β. In that case if rk < β holds, then
at the new iteration condition (4.4) maybe holds. If not, then we compute another
�k+1 = �(xk+1) ∈ ∂ f (xk + αkδ̄k), and try to find another solution. This situation can
be repeated finitely many times.

Suppose contrary, that is, the algorithm is passing infinitely many iterations
when the condition (4.4) does not hold. Then for some k large enough the function
Φk(xk + δ) attains its minimum at the point δk. So, 0 ∈ ∂Φk(xk + δk), i.e. 0 ∈
∂ f̂k(xk + δk)+ δk and 0 = �̂+ δk for some �̂ ∈ ∂ f̂k(xk + δk), i.e. −δk ∈ ∂ f̂k(xk + δk). From
Φk(xk + 0) ≥ Φk(xk + δk) it follows that f̂k(xk) ≥ f̂k(xk + δk) + 1

2 ||δk||2 and by Lemma
4.1 (as k→ +∞) f (xk) ≥ f (xk + δk)+ 1

2 ||δk||2 > f (xk + δk) (since at Step 3 we have that
||δk|| > ε > 0). So, we have the following inequality:

f (xk) > f (xk + δk).(4.7)

Since rk < β holds, i.e. f (xk)− f (xk+δk)
f (xk)−Φk(xk+δk)

< β, it follows that f (xk)−Φk(xk+δk)
f (xk)− f (xk+δk)

> 1
β , i.e.

Φk(xk+δk)− f (xk)
f (xk+δk)− f (xk)

> 1
β . Hence we have that:

1
β
<
Φk(xk + δk) − f (xk)
f (xk + δk) − f (xk)

=
f̂k(xk + δk) + 1

2 ||δk||2 − f (xk)

f (xk + δk) − f (xk)

≤ f (xk + δk) + 1
2 ||δk||2 − f (xk)

f (xk + δk) − f (xk)
(since f (xk + δk) ≥ f̂k(xk + δk))

= 1 +
1
2 ||δk||2

f (xk + δk) − f (xk)

hold, i.e.
1
2 ||δk ||2

f (xk+δk)− f (xk)
> 1
β − 1 > 0, where the last inequality holds since 0.5 < β < 1.

From
1
2 ||δk ||2

f (xk+δk)− f (xk)
> 0 it follows that f (xk + δk) > f (xk) (since ||δk|| > ε > 0) which

contradicts (4.7).

In the case (ii) we have that f1 − f∞ ≥ ∑k∈K2
� fk (where sum is taken over the

subsequence) and by the assumption rk ≥ β, k ∈ K2, implies �Φk → 0, k ∈ K2,
since f1 − f∞ is constant. Let h̄ satisfy the inequality 0 < h̄ < inf(hk) and let δ̄ be the
minimum point of Φ∞(x∞ + δ) on ||δ|| ≤ h̄. Since the point x̄ = x∞ + δ̄ belongs to
the set Ωk = B(xk, hk) for k large enough, k ∈ K2, by the definition of �Φk and the
fact that the minimum over the smaller set is not less than the minimum over the
larger set it follows that

Φk(xk + δ̄) = Φk(xk + x̄ − x∞) ≥ Φk(xk + δk) = fk − �Φk.(4.8)

As k→ +∞, k ∈ K2, since f and Φk are continuous as convex functions, and since
�Φk → 0 and x̄ − xk → δ̄, from (4.8) by Lemma 4.2 we have that:

Φ∞(x∞ + δ̄) ≥ f∞ − 0 = Φ∞(x∞ + 0)
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holds. Notice that since δ = 0 is the minimum point of Φ∞(x∞ + δ) for ||δ|| ≤ h̄
then it follows that δ̄ = 0. Since δ̄ = 0 minimizes Φ∞(x∞ + δ) and since the later
constraint is not active (because of 0 < h̄ < inf(hk)) it follows that the first necessary
condition holds, that is 0 ∈ ∂ f∞(because of Φ∞(x∞ + 0) = f̂∞(x∞) = f (x∞) = f∞).
Since the function f is convex it is also sufficient condition for a global minimum
of the problem (1.1) at the point x∞

5. CONCLUSION

Our algorithm defined above combines the bundle trust region and the conjugate
subgradient method. To our knowledge it is a new approach to solve the nonsmooth
problem defined by (1.1). If we use some other norms in (3.3) then it would be
reasonable to expect some new results.
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A Nondifferentiable Convex Function, Lecture Notes in Engineering and Computer
Science, WCE 2009, VOL. II, 1241-1246, 2009.
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Faculty of Technology and Metallurgy
University of Belgrade
Belgrade, Serbia

nmilicic@tmf.bg.ac.rs


	Introduction
	THEORETICAL PRELIMINARIES
	A MODEL ALGORITHM
	CONVERGENCE PROOF
	CONCLUSION
	ACKNOWLEDGMENT

