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Abstract. Weak almost contact structures, defined by the author and R.Wolak, allo-
wed us to take a new look at the theory of contact manifolds. The paper surveys recent
results (concerning geodesic and Killing fields, rigidity and splitting theorems, Ricci-
type solitons and Einstein-type metrics, etc.) in this new field of Riemannian geometry.
Keywords: weak almost contact structures, contact manifolds, geodesic fields, Killing
fields, Ricci-type solitons, Einstein-type metrics, Riemannian geometry.

1. Introduction

Contact and Kähler Riemannian geometry is of growing interest due to its im-
portant role in mechanics, [2,20]. Sasakian manifolds (normal contact metric man-
ifolds) and, more generally, K-contact manifolds have become an important and
active subject, especially after the appearance of the fundamental treatise [4] of
C.Boyer and K.Galicki. On a K-contact manifold M(f, ξ, η, g) the vector field ξ is
Killing (the Lie derivative £ξ g = 0), and geodesic (∇ξ ξ = 0). The restriction of f
to f(TM) determines a complex structure, and the structure group of TM reduces
to U(n) × 1. If a plane in TM contains ξ, then its sectional curvature is called
ξ-sectional curvature. The ξ-sectional curvature of a K-contact manifold is equal
to one. Two important subclasses of K-contact manifolds are

(1.1) (∇Xf)Y =

{
g(X,Y ) ξ − η(Y )X , Sasakian,

0 , cosymplectic.
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Any cosymplectic manifold is locally the product of a Kähler manifold and R.
A Riemannian manifold (M2n+1, g) with a contact 1-form η (i.e., η ∧ (dη)n ̸= 0) is
Sasakian, if its cone M×R>0 with the metric t2g+dt2 is a Kähler manifold. We get
∇X ξ = − 1

2 fX on Sasakian manifolds, and ∇X ξ = 0 on cosymplectic manifolds.

Nearly Kähler manifolds [12] are defined by the condition that the symmet-
ric part of ∇J vanishes, in contrast to the Kähler case where ∇J = 0. Nearly
Sasakian/cosymplectic manifolds are defined similarly – by a constraint on the sym-
metric part of the tensor f – starting from Sasakian/cosymplectic manifolds:

(1.2) (∇Xf)Y +(∇Y f)X =

{
2 g(X,Y )ξ − η(Y )X − η(X)Y , nearly Sasakian,

0 , nearly cosymplectic.

In dimensions greater than 5, every nearly Sasakian manifold is Sasakian, and a
nearly cosymplectic manifold M2n+1 splits into R × F 2n or B5 × F 2n−4, where F
is a nearly Kähler manifold and B is a 5-dimensional nearly cosymplectic manifold.
These structures appeared in the study of harmonic almost contact manifolds. For
nearly Sasakian/cosymplectic manifolds we get g(R ξ,Z fX, fY ) = 0, see [8, 17],
where RX,Y Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z is the Riemann tensor; thus,

(1.3) RX,Y Z ⊥ ξ (X,Y, Z ⊥ ξ)− the distribution ker η is curvature invariant .

For example, the distribution ker η of any 1-form η on Rm satisfies (1.3).

The Ricci tensor is given by Ric(X,Y )= trace (Z → RZ,XY ) =
∑

i g(Rei,XY, ei),

where (ei) is any local orthonormal basis of TM . The Ricci operator Ric♯ associated
with the Ricci tensor is given by Ric(X,Y ) = g(Ric♯ X,Y ). The scalar curvature of
(M, g) is given by r = traceg Ric. On some compact manifolds there are no Einstein
metrics, which motivates the study of generalizations of such metrics. The genera-
lized Ricci soliton is given for some smooth vector field V and real c1, c2 and λ by

(1.4) (1/2)£V g = −c1V
♭ ⊗ V ♭ + c2 Ric+λ g.

If V = ∇f in (1.4) for some f ∈ C∞(M), then by the definition Hessf (X,Y ) =
1
2 (£∇f g)(X,Y ), we get the generalized gradient Ricci soliton equation, see [5]:

(1.5) Hessf1 = −c1df2 ⊗ df2 + c2 Ric+λ g

for some f1, f2 ∈ C∞(M) and real c1, c2 and λ. For different values of c1, c2, λ,
equation (1.4) is a generalization of Einstein metric, Ric+λ g = 0 (c1 = 0, c2 =
−1, V = 0), Killing equation (c1 = c2 = λ = 0), Ricci soliton equation (c1 =
0, c2 = −1), etc., see [11]. In [6], Cho-Kimura defined η-Ricci soliton on a contact
metric manifold M2n+1(f, ξ, η, g) by the following equation:

(1.6) (1/2)£V g +Ric + λ g + µ η ⊗ η = 0,

where λ, µ ∈ R. For µ = 0, (1.6) gives a Ricci soliton; moreover, if V = 0, then
(1.6) gives an Einstein manifold. A contact metric manifold is called η-Einstein, if
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Ric = a g + b η ⊗ η is true, where a, b ∈ C∞(M), see [31, p. 285] for a, b ∈ R. Note
that a and b can be non-constant for an η-Einstein Kenmotsu manifold, see [15].

Many articles study the questions: How interesting Ricci-type solitons are for
contact metric manifolds? When an almost contact metric manifold equipped with
a Ricci-type soliton carries Einstein-type metrics?

In [27,30], we introduced metric structures on a smooth manifold that generalize
the almost contact, Sasakian, cosymplectic, etc. metric structures. Such so-called
“weak” structures (the complex structure on the contact distribution f(TM) is
replaced by a nonsingular skew-symmetric tensor) allow us to take a fresh look at
the theory of classical structures and find new applications. A weak almost contact
structure on a smooth manifoldM2n+1 is defined by a (1, 1)-tensor field f of rank 2n,
a vector field ξ, a 1-form η and a nonsingular (1, 1)-tensor field Q satisfying, see [30],

(1.7) f2 = −Q+ η ⊗ ξ, η(ξ) = 1, Q ξ = ξ.

A “small” (1,1)-tensor Q̃ = Q− id measures the difference between a weak almost
contact structure and an almost contact one. We assume that a 2n-dimensional
distribution ker η is f -invariant (as in the classical theory [2], where Q = id).

If there exists a Riemannian metric g such that

(1.8) g(fX, fY ) = g(X,QY )− η(X) η(Y ), X, Y ∈ XM ,

then (f,Q, ξ, η, g) is called a weak almost contact metric structure, and g is a com-
patible metric. Putting Y = ξ in (1.8) and using Qξ = ξ, we get g(X, ξ) = η(X);
moreover, the tensor f is skew-symmetric and the tensor Q is self-adjoint.

Remark 1.1. (i) The concept of an almost para-contact structure is closely related to
an almost contact structure and an almost product structure, see [9]. Similarly to (1.7),
we define a weak almost para-contact structure by f2 = Q − η ⊗ ξ, Q ξ = ξ, see [30].
(ii) A weak almost contact structure admits a compatible Riemannian metric if f admits
a skew-symmetric representation, i.e., for any x ∈M there exist a neighborhood Ux ⊂M
and a frame {ek} on Ux, for which f has a skew-symmetric matrix.

A weak contact metric structure is a weak almost contact metric structure satis-
fying dη = Φ, where the 2-form Φ is defined by Φ(X,Y ) = g(X, fY ), X, Y ∈ XM .
For a weak contact metric structure (f,Q, ξ, η, g), the 1-form η is contact. A weak
almost contact structure is normal if the tensor N (1) = [f, f ] + 2 dη ⊗ ξ vanishes.

A weak almost contact metric structure is called a weak K-structure if it is
normal and dΦ = 0. We define two subclasses of weak K-manifolds as follows:
weak cosymplectic manifolds if dη = 0, and weak Sasakian manifolds if dη = Φ.
Omitting the normality condition, we get the following: a weak almost contact
metric structure is called a weak almost cosymplectic structure if dη = Φ is valid;
and a weak almost Sasakian structure if Φ and η are closed forms.

In [27], we proved rigidity results: a weak Sasakian structure is the Sasakian
structure and a weak almost contact metric structure satisfying ∇f = 0 is a weak
cosymplectic structure. For this, we calculated the derivative ∇f , using a new
tensor N (5), see (2.1), in addition to classical tensors N (i) (i = 1, 2, 3, 4).
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Example 1.1. Let M2n+1(φ,Q, ξ, η) be a weak almost contact manifold. Consider the
product manifold M̄ =M2n+1 × R, and define tensor fields f̄ and Q̄ on M̄ putting

f̄(X, a∂1) = (fX − a ξ, η(X)∂1), Q̄(X, a ∂1) = (QX, a∂1), a ∈ C∞(M).

Hence, f̄(X, 0) = (fX, 0), Q̄(X, 0) = (QX, 0) for X ∈ ker f , f̄(ξ, 0) = (0, ∂1), Q̄(ξ, 0) =
(ξ, 0) and f̄(0, ∂1) = (−ξ, 0), Q̄(0, ∂1) = (0, ∂1). Then it is easy to verify that f̄ 2 = −Q̄.
The tensors N (i) (i = 1, 2, 3, 4) appear when we use the integrability condition [f̄ , f̄ ] = 0
of f̄ to express the normality condition N (1) = 0 of a weak almost contact structure.

The relationships between some classes of weak structures is summarized in
the following diagram (known for classical structures):∣∣∣∣ weak almost

contact metric

∣∣∣∣ Φ=dη−→
∣∣∣∣weak contact

metric

∣∣∣∣ ξ -Killing−→
∣∣∣∣ weak
K-contact

∣∣∣∣ N (1)=0−→
∣∣∣∣ weak
Sasakian

∣∣∣∣ .
In [30], we prove that in the case of a weak structure, the partial Ricci flow,
∂g/∂t = −2 (Ric⊥(g)−Φ id⊥) where Φ : M → R, reduces to ODE’s, (d/dt)Ric⊥ =
4Ric⊥(Ric⊥ −Φ id⊥), and that weak structures with positive partial Ricci curvature
retract to the classical structures with positive constant partial Ricci curvature.

We define a weak almost Hermitian structure on a Riemannian manifold of even
dimension, (M2n, g), equipped with a skew-symmetric (1,1)-tensor f by condition
f 2 < 0. Such (g, f) is a weak Kählerian structure, if ∇f = 0, where ∇ is the
Levi-Civita connection, and a weak nearly Kählerian structure, if (∇Xf)X = 0.
Weak nearly Sasakian/cosymplectic manifolds are defined by a similar condition
(1.2) together with (1.8) in the same spirit starting from Sasakian/cosymplectic
manifolds, see [25].

A distribution D ⊂ TM is totally geodesic if and only if ∇XY + ∇Y X ∈
D (X,Y ∈ D) – this is the case when any geodesic of M that is tangent to D
at one point is tangent to D at all its points, e.g., [29, Section 1.3.1]. Any such inte-
grable distribution defines a totally geodesic foliation. A foliation, whose orthogonal
distribution is totally geodesic, is said to be a Riemannian foliation.

At first glance, the results in [27,30] suggest that weak structures are not “far”
from classical ones. But it turns out that weak nearly Sasakian/cosymplectic mani-
folds are relatively “far” from classical ones. In [22, 24, 25], we gave examples of
(4n+1)-dimensional proper weak nearly Sasakian manifolds and found conditions:

(∇X Q̃)Y = 0 (X ∈ TM, Y ∈ ker η),(1.9)

RQ̃X,Y Z ∈ ker η (X,Y, Z ∈ ker η),(1.10)

(trivial for Q̃ = 0) under which weak nearly cosymplectic manifolds split and weak
nearly Sasakian manifolds are Sasakian – which generalizes the results in [17]. We do

not extend (1.9) for Y = ξ, since then at any point either ∇ξ = 0 or Q̃ = 0. By

(1.10) and the first Bianchi identity, we obtain RX,Y Q̃Z ∈ ker η (X,Y, Z ∈ ker η).

The notion of a warped product is popular in differential geometry as well as in
general relativity. Some solutions of Einstein field equations are warped products
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and some spacetime models are warped products. Z. Olszak [19] characterized in
terms of warped products a class of almost contact manifolds, known as β-Kenmotsu
manifolds for β = const > 0 (defined by K. Kenmotsu [15], when β = 1), given by

(1.11) (∇Xf)Y = β{g(fX, Y ) ξ − η(Y ) fX}.

In [28] we extended results on Ricci-type solitons and Einstein-type metrics from
Kenmotsu to weak β-Kenmotsu case.

Several authors studied the problem of finding skew-symmetric parallel 2-tensors
(different from almost complex structures) on a Riemannian manifold and classified
them, e.g., [13], or proved that some spaces do not admit them, e.g., [16]. The idea
of considering the bundle of almost-complex structures compatible with a given
metric led to the twistor construction and then to twistor string theory. Thus, we
delegate further research into the study of the bundles of weak Hermitian and weak
almost contact structures that are compatible with a given metric.

This article surveys our recent results in [21–28,30].

2. Preliminaries

Here, we discuss the basic properties of weak structures.

By (1.7), ker η is Q-invariant and the following equalities are true:

f ξ = 0, η ◦ f = 0, η ◦Q = η, [Q, f ] := Q ◦ f − f ◦Q = 0.

Recall the following formulas with the Lie derivative £ in the Z-direction:

(£Zf)X = [Z, fX]− f [Z,X], (£Z η)X = Z(η(X))− η([Z,X]),

(£Z g)(X,Y ) = g(∇X Z, Y ) + g(∇Y Z,X).

The Nijenhuis torsion of f and the exterior derivative of η and Φ are given by

[f, f ](X,Y ) = f2[X,Y ] + [fX, fY ]− f [fX, Y ]− f [X, fY ],

dη(X,Y ) = (1/2) {X(η(Y ))− Y (η(X))− η([X,Y ])},
dΦ(X,Y, Z) = (1/3)

{
X Φ(Y, Z) + Y Φ(Z,X) + Z Φ(X,Y )

−Φ([X,Y ], Z)− Φ([Z,X], Y )− Φ([Y, Z], X)
}
.

The following tensors on almost contact manifolds are well known, see [2]:

N (2)(X,Y ) = (£fX η)Y − (£fY η)X = 2 dη(fX, Y )− 2 dη(fY,X),

N (3)(X) = (£ξf)X = [ξ, fX]− f [ξ,X],

N (4)(X) = (£ξ η)X = ξ(η(X))− η([ξ,X]) = 2 dη(ξ,X).

The following statement is based on [2, Theorem 6.1], i.e., Q = idTM .



826 V. Rovenski

Proposition 2.1. Let a weak almost contact structure be normal. Then N (3) =
N (4) = 0 and N (2)(X,Y ) = η([Q̃X, fY ]); moreover, the vector field ξ is geodesic.

Proposition 2.2. For a metric weak almost contact structure we get

2 g((∇Xf)Y,Z) = 3 dΦ(X, fY, fZ)− 3 dΦ(X,Y, Z) + g(N (1)(Y, Z), fX)

+N (2)(Y, Z) η(X) + 2 dη(fY,X) η(Z)− 2 dη(fZ,X) η(Y ) +N (5)(X,Y, Z),

where a skew-symmetric with respect to Y and Z (0,3)-tensor N (5) is defined by

N (5)(X,Y, Z) = (fZ) (g(X, Q̃Y ))− (fY ) (g(X, Q̃Z)) + g([X, fZ], Q̃Y )

− g([X, fY ], Q̃Z) + g([Y, fZ]− [Z, fY ]− f [Y, Z], Q̃X).(2.1)

For particular values of the tensor N (5) we get

N (5)(X, ξ, Z) = −N (5)(X,Z, ξ) = g(N (3)(Z), Q̃X),

N (5)(ξ, Y, Z) = g([ξ, fZ], Q̃Y )− g([ξ, fY ], Q̃Z),

N (5)(ξ, ξ, Y ) = N (5)(ξ, Y, ξ) = 0.

Theorem 2.1. (i) On a weak K-contact manifold the vector field ξ is Killing and
geodesic, N (1)(ξ, ·) = N (5)(ξ, · , ·) = N (5)( · , ξ, ·) = N (5)(· , ξ, ·) = 0, £ ξQ =
∇ξQ = 0, ∇ξf = 0, ∇X ξ = −fX, and

g((∇Xf)Y, Z) = dη(fY,X) η(Z)− dη(fZ,X) η(Y )

+
1

2
η([Q̃Y, fZ]) η(X) +

1

2
N (5)(X,Y, Z).

(ii) For a weak almost Sasakian structure, the tensors N (2) and N (4) vanish;
moreover, N (3) vanishes if and only if ξ is a Killing vector field, and

g((∇Xf)Y, Z) =
1

2
g(N (1)(Y, Z), fX)

+ g(fX, fY ) η(Z)− g(fX, fZ) η(Y ) +
1

2
N (5)(X,Y, Z).(2.2)

In particular, ξ is a geodesic vector field and g((∇ξf)Y, Z) = 1
2 N

(5)(ξ, Y, Z).

(iii) For a weak almost cosymplectic manifold, we get N (2) = N (4) = 0, N (1) =
[f, f ], and ξ is geodesic. Moreover, N (3) = 0 if and only if ξ is a Killing vector field.

3. The rigidity of Sasakian structure
and characteristic of a cosymplectic structure

Here, we present rigidity results for weak Sasakian manifolds and characterize
weak cosymplectic manifolds in the class of weak almost contact metric manifolds.
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Proposition 3.1. For a weak Sasakian structure, (2.2) reduces to

g((∇Xf)Y, Z) = g(QX,Y ) η(Z)− g(QX,Z) η(Y )

+ η(X)
(
η(Y ) η(Z)− η(Y ) η(Z)

)
+

1

2
N (5)(X,Y, Z).

The equality N (3) = 0 is valid for weak Sasakian manifolds, since it is true for
Sasakian manifolds, see Theorem 3.1. We get the rigidity of the Sasakian structure.

Theorem 3.1. A weak almost contact metric structure is a weak Sasakian struc-
ture if and only if it is a Sasakian structure.

Proposition 3.2. Let (f,Q, ξ, η, g) be a weak cosymplectic structure. Then

2 g((∇Xf)Y, Z) = N (5)(X,Y, Z).(3.1)

In particular, using (3.1) and (1.7), we get g(∇X ξ, QZ) = − 1
2 N

(5)(X, ξ, fZ).

Recall that a K-structure is a cosymplectic structure if and only if f is parallel.
Our following theorem generalizes this result.

Theorem 3.2. A weak almost contact metric structure with ∇f = 0 is a weak
cosymplectic structure with N (5) = 0.

Example 3.1. Let M be a 2n-dimensional smooth manifold and f̄ : TM → TM an
endomorphism of rank 2n such that∇f̄ = 0. To construct a weak cosymplectic structure on
M×R orM×S1, take any point (x, t) of either space and set ξ = (0, d/dt), η = (0, dt) and

f(X,Y ) = (f̄X, 0), Q(X,Y ) = (−f̄ 2X, Y ).

where X ∈Mx and Y ∈ {Rt, S1
t}. Then (1.7) holds and Theorem 3.2 can be used.

4. Weak K-contact structure

Here, we generalize some properties of K-contact manifolds to weak K-contact
case. We characterize weak K-contact manifolds among all weak contact metric
manifolds by the following well known property of K-contact manifolds, see [2]:

(4.1) ∇ ξ = −f.

Theorem 4.1. A weak contact metric manifold is weak K-contact (that is ξ is a
Killing vector field) if and only if (4.1) is valid.

A Riemannian manifold with a unit Killing vector field and the property RX,ξ ξ=
X (X⊥ ξ) is a K-contact manifold, e.g., [2]. We generalize this in the following
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Theorem 4.2. A Riemannian manifold (M 2n+1, g) admitting a unit Killing field
ξ with positive ξ-sectional curvature is a weak K-contact manifold M(f,Q, ξ, η, g)
with the tensors: η = g(·, ξ), f = −∇ ξ, see (4.1), and QX = RX, ξ ξ (X ∈ ker η).

Example 4.1. By Theorem 4.2, we can search for examples of weak K-contact (not
K-contact) manifolds among Riemannian manifolds of positive sectional curvature that
admit unit Killing vector fields. Indeed, let M be an ellipsoid of R2n+2,

M =
{
(u1, . . . , u2n+2) ∈ R2n+2 :

∑n+1

i=1
u2
i + a

∑2n+1

i=n+2
u2
i = 1

}
, 0 < a = const ̸= 1,

where n > 1 is odd. The sectional curvature of (M, g) is positive. It follows that

ξ = (−u2, u1, . . . ,−un+1, un,−
√
a un+3,

√
a un+2, . . . ,−

√
a u2n+2,

√
a u2n+1)

is a Killing vector field on R2n+2, whose restriction toM has unit length. Since ξ is tangent
toM , so ξ is a unit Killing vector field on (M, g), see [7, p. 5]. For n = 1, we get a weak K-
contact manifoldM3 =

{
u2
1+u

2
2+au

2
3+au

2
4 = 1

}
⊂ R4 with ξ = (−u2, u1,−

√
a u4,

√
a u3).

Proposition 4.1. For a weak K-contact manifold, the following equalities hold:

Rξ,X = ∇Xf, R ξ,X ξ = f2X, Ric(ξ, ξ) = trace Q = 2n+ trace Q̃.

If a Riemannian manifold admits a unit Killing vector field ξ, then K(ξ,X) >
0 (X ⊥ ξ, X ̸= 0), thus Ric(ξ, ξ) > 0; moreover, Ric(ξ, ξ) ≡ 0 if and only if ∇ξ ≡ 0.
In the case of K-contact manifolds, K(ξ,X) = 1, see [2, Theorem 7.2].

Corollary 4.1. For a weak K-contact manifold, the ξ-sectional curvature is

K(ξ,X) = g(QX,X) > 0 (X ∈ D, ∥X∥ = 1);

therefore, for the Ricci curvature we get Ric(ξ, ξ) > 0.

Using Theorem 4.2 and Corollary 4.1, we show that a weak K-contact structure
can be deformed (by the partial Ricci flow) to a K-contact structure, see [30].

Corollary 4.2. A weak K-contact manifold M(f,Q, ξ, η, g0) admits a smooth fa-
mily of metrics gt (t ∈ R), such that M(ft, Qt, ξ, η, gt) are weak K-contact manifolds
with certainly defined ft and Qt; moreover, gt converges exponentially fast, as t →
−∞, to a limit metric ĝ that gives a K-contact structure.

The following theorem generalizes a well known result, e.g., [31, Proposition 5.1].

Theorem 4.3. A weak K-contact manifold with conditions (∇Ric)(ξ, ·) = 0 and
trace Q = const is an Einstein manifold of scalar curvature r = (2n+ 1) trace Q.

Remark 4.1. For a weak K-contact manifold, by ∇ξf = 1
2
N (5)(ξ, Y, Z) = 0 and

Proposition 4.1, we get the equality (well known for K-contact manifolds, e.g., [2]):
Ric♯(ξ) =

∑ 2n
i=1(∇eif) ei, where (ei) is any local orthonormal basis of ker η; and for

contact manifolds we have
∑ 2n

i=1(∇eif) ei = 2n ξ. For K-contact manifolds, this gives
Ric♯(ξ) = 2n ξ, and Ric(ξ, ξ) = 2n; moreover, the last condition characterizes K-contact
manifolds among all contact metric manifolds.
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The Ricci curvature of any K-contact manifold satisfies the condition

(4.2) Ric(ξ,X) = 0 (X ∈ D).

Quasi Einstein manifolds are defined by the condition Ric(X,Y ) = a g(X,Y ) +
b µ(X)µ(Y ), where a and b ̸= 0 are real scalars, and µ is a 1-form of unit norm.

The next our theorem generalizes [11, Theorem 3.1] on Ricci type solitons.

Theorem 4.4. Let a weak K-contact manifold with trace Q = const satisfy (1.5)
with c1a ̸= −1 for a = λ+c2 trace Q. If (4.2) is true, then f = const. Furthermore,

– if c1a ̸= 0, then Hessf2 = 1
a df2 ⊗ df2 − c2

c1a
Ric− λ

c1a
g; if c1a ̸= −1, then

f2 = const; and if c2 ̸= 0, then (M, g) is an Einstein manifold.

– if a = 0 and c1 ̸= 0, then 0 = c2 Ric−c1 df2⊗df2+λ g. If c2 ̸= 0 and f2 ̸= const,
then we get a gradient quasi Einstein manifold.

– for c1 = 0, then c2 Ric+λ g = 0, and for c2 ̸= 0 we get an Einstein manifold.

Quasi contact metric manifolds (introduced by Y. Tashiro) are an extension of
contact metric manifolds. In [26], we study a weak analogue of quasi contact metric
manifolds and provide new criterions for K-contact and Sasakian manifolds.

We pose the following questions. Is the condition “the ξ-sectional curvature
is positive” sufficient for a weak almost contact metric manifold to be weak K-
contact? Does a weak almost contact metric manifold of dimension > 3 have some
positive ξ-sectional curvature? Is a compact weak K-contact Einstein manifold a
Sasakian manifold? When a weak almost contact manifold equipped with a Ricci-
type soliton structure, carries a canonical (for example, with constant sectional
curvature or Einstein-type) metric? Is a compact weak K-contact Einstein manifold
a Sasakian manifold? Is a compact weak K-contact manifold admitting a generalized
Ricci soliton structure a Sasakian manifold? To answer these questions, we need to
generalize some deep results about contact manifolds to weak contact manifolds.

5. Weak Nearly Sasakian/Cosymplectic Manifolds

The following result generalizes Proposition 3.1 in [3] and Theorem 5.2 in [1].

Theorem 5.1. (i) Both on weak nearly Sasakian and weak nearly cosymplectic
manifolds the vector field ξ is geodesic; moreover, if the condition (1.9) is valid, then
the vector field ξ is Killing. (ii) There are no weak nearly cosymplectic structures
with the condition (1.9), which are weak contact metric structures.

Theorem 5.2. For a weak nearly cosymplectic manifold, ∇ξ = 0 if and only if
the manifold is locally a metric product of R and a weak nearly Kähler manifold.
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Proposition 5.1. Let a weak almost contact manifold M(f,Q, ξ, η) satisfy (1.9)
and Q | ker η = λ id| ker η for a positive function λ ∈ C∞(M). Then, λ = const and

(f̃ , ξ, η) is an almost-contact structure on M , where f̃ is given by

(5.1) f =
√
λ f̃ .

Moreover, if a weak nearly Sasakian/cosymplectic structure (f,Q, ξ, η, g) satisfies
(5.1) and

(5.2) g| ker η = λ− 1
2 g̃| ker η, g(ξ, ·) = g̃(ξ, ·),

then (f̃ , ξ, η, g̃) is a nearly Sasakian/cosymplectic structure.

Example 5.1. Let M(f,Q, ξ, η, g) be a three-dimensional weak almost-contact metric
manifold. The tensor Q has on the plane field ker η in the form λ id ker η for some positive
function λ ∈ C∞(M). Suppose that (1.9) is true, then λ = const and this structure
reduces to the almost-contact metric structure (f̃ , ξ, η, g̃) satisfying (5.1) and (5.2).

Let (1.2) hold forM(f,Q, ξ, η, g). By Proposition 5.1(ii), M(f̃ , ξ, η, g̃) is nearly cosym-
plectic or nearly Sasakian, respectively. Since dimM = 3, we obtain Sasakian (Theo-
rem 5.1 in [18]) or cosymplectic (see [14]) structures (f̃ , ξ, η, g̃), respectively.

We generalize rigidity Theorem 3.2 in [3].

Theorem 5.3. For a weak nearly Sasakian structure satisfying (1.9), normality
(N (1) = 0) is equivalent to a weak contact metric property (dη = Φ). Therefore, a
normal weak nearly Sasakian structure satisfying (1.9) is Sasakian.

Proposition 5.2. A 3-dimensional weak nearly cosymplectic structure satisfying
(1.9) reduces to cosymplectic one.

Example 5.2. Let a 3-dimensional weak nearly Sasakian manifold M(f,Q, ξ, η, g) satis-
fy (1.9). By (1.7), Q has on the plane field ker η the form λ id ker η for some positive λ ∈ R.
This structure reduces to the nearly Sasakian structure (f̃ , ξ, η, g̃), where f̃ = λ− 1

2 f ,

g̃| ker η = λ
1
2 g| ker η, g̃(ξ, ·) = g(ξ, ·). Since dimM = 3, the structure (f̃ , ξ, η, g̃) is Sasakian.

Next, we will study weak nearly Sasakian/cosymplectic hypersurfaces in weak
nearly Kähler manifolds (generalizing nearly Kähler manifolds).

Example 5.3. Let (M̄, f̄ , ḡ) be a weak nearly Kähler manifold:(∇̄X f̄)X = 0 (X ∈ TM̄).
To build a weak nearly cosymplectic structure (f,Q, ξ, η, g) on the product M = M̄ × R
of (M̄, ḡ) and a Euclidean line (R, ∂t), we take any point (x, t) of M and set

ξ = (0, ∂t), η = (0, dt), f(X, ∂t) = (f̄X, 0), Q(X, ∂t) = (−f̄ 2X, ∂t), X ∈ TxM̄

(similarly to Example 3.1). Note that if ∇̄X f̄
2 = 0 (X ∈ TM̄), then (1.9) holds.
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The scalar second fundamental form b of a hypersurface M ⊂ (M̄, ḡ) with a unit
normalN is related with∇ and the Levi-Civita connection∇ induced on theM met-
ric g via the Gauss equation ∇XY = ∇XY + b(X,Y )N (X,Y ∈ TM). The Wein-
garten operator AN : X 7→ −∇XN is related with b via the equality ḡ(b(X,Y ), N) =
g(AN (X), Y ) (X,Y ∈ TM). A hypersurface is called totally geodesic if b = 0. A hy-
persurface is called quasi-umbilical if b(X,Y ) = c1 g(X,Y ) + c2 µ(X)µ(Y ), where
c1, c2 ∈ C∞(M) and µ ̸= 0 is a one-form.

Lemma 5.1. A hypersurface (M, g) with a unit normal N in a weak Hermitian
manifold (M̄, f̄ , ḡ) inherits a weak almost-contact structure (f,Q, ξ, η, g) given by

ξ = f̄ N, η = ḡ(f̄ N, ·), f = f̄ + ḡ(f̄ N, ·)N, Q = −f̄ 2 + ḡ(f̄ 2N, ·)N.

The following theorem generalizes the fact (see [3]) that a hypersurface of a
nearly Kähler manifold is nearly Sasakian or nearly cosymplectic if and only if it is
quasi-umbilical with respect to the (almost) contact form.

Theorem 5.4. Let M be a hypersurface with a unit normal N of a weak nearly
Kähler manifold (M̄2n+2, f̄ , ḡ). Then, the induced structure (f,Q, ξ, η, g) on M is
(i) weak nearly Sasakian; (ii) weak nearly cosymplectic. This is true if and only if
M is quasi-umbilical with the scalar second fundamental form

(i) b(X,Y ) = g(X,Y ) + (b(ξ, ξ)− 1) η(X) η(Y ); (ii) b(X,Y ) = b(ξ, ξ) η(X) η(Y ).

In both cases, ANf + fAN = 2f is true, and (1.9) follows from the condition
((∇X f̄2)Y )⊤ = 0 (X,Y ∈ TM, Y ⊥ ξ).

6. Splitting of weak nearly cosymplectic manifolds

Here, we show that a weak nearly cosymplectic manifold satisfies (1.3), if we
assume a weaker condition (1.10). Then, we show the splitting of weak nearly
cosymplectic manifolds satisfying (1.9) and (1.10) and generalize some well known
results. We also characterize 5-dimensional weak nearly cosymplectic manifolds.

We define a (1,1)-tensor h = ∇ξ on M as in the classical case, e.g., [8]. Note
that h = 0 if and only if ker η is integrable, i.e., [X,Y ] ∈ ker η (X,Y ∈ ker η).
Since ξ is a geodesic vector field, we get h ξ = 0 and h(ker η) ⊂ ker η. Since ξ is
a Killing vector field, the tensor h is skew-symmetric: g(hX, X) = g(∇X ξ,X) =
1
2 (£ξ g)(X,X) = 0. We also get η ◦ h = 0 and d η(X, ·) = ∇X η = g(hX, ·).

Lemma 6.1. For a weak nearly cosymplectic manifold M(f,Q, ξ, η, g) we obtain

(∇X h) ξ = −h2X, (∇X f) ξ = −f hX.

Moreover, if the condition (1.9) is true, then

h f + f h = 0 (h anticommutes with f),(6.1)

hQ = Qh (h commutes with Q).(6.2)
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Lemma 6.2. For a weak nearly cosymplectic manifold we get the equality

g(RfX,Y Z, V ) + g(RX,fY Z, V ) + g(RX,Y fZ, V ) + g(RX,Y Z, fV ) = 0.

Moreover, if the conditions (1.9) and (1.10) are true, then g(R ξ,Z fX, fY ) = 0.

Lemma 6.3. Let a weak nearly cosymplectic manifold satisfy (1.9)–(1.10), then

g((∇X f)Y, fhZ) = η(X) g(hY, hQZ)− η(Y ) g(hX, hQZ).

Lemma 6.4. For a weak nearly cosymplectic manifold satisfying (1.10), we get

(∇X h)Y = g(h2X,Y ) ξ − η(Y )h2X,(6.3)

R ξ,XY = −(∇X h)Y, Ric (ξ, Z) = −η(Z) trh2.(6.4)

In particular, ∇ξ h = 0 and tr(h2) = const. By (6.3)–(6.4), we get

g(R ξ,XY, Z) = −g((∇X h)Y,Z) = η(Y ) g(h2X,Z)− η(Z) g(h2X,Y ).

The following proposition generalizes [17, Proposition 4.2].

Proposition 6.1. For a weak nearly cosymplectic manifold satisfying (1.9) and
(1.10), the eigenvalues and their multiplicities of the operator h2 are constant.

By Proposition 6.1, the spectrum of the self-adjoint operator h2 has the form

(6.5) Spec(h2) = {0,−λ2
1, . . .− λ2

r},

where λi is a positive real number and λi ̸= λj for i ̸= j. If X ̸= 0 is an eigenvector
of h2 with eigenvalue −λ2

i , then X, fX, hX and h fX are orthogonal nonzero eigen-
vectors of h2 with eigenvalue −λ2

i . Since h(ξ) = 0, the eigenvalue 0 has multiplicity
2p + 1 for some p > 0. Denote by D0 the smooth distribution of the eigenvectors
with eigenvalue 0 orthogonal to ξ. Let Di be the smooth distribution of the eigen-
vectors with eigenvalue −λ2

i . Thus, D0 and Di belong to ker η and are f -invariant
and h-invariant. The following proposition generalizes [17, Proposition 4.3].

Proposition 6.2. Let a weak nearly cosymplectic manifold satisfy (1.9)–(1.10),
and let the spectrum of the self-adjoint operator h2 have the form (6.5). Then,

(a) each distribution [ξ]⊕Di (i = 1, . . . , r) is integrable with totally geodesic leaves.

Moreover, if the eigenvalue 0 of h2 is not simple, then

(b) the distribution D0 is integrable with totally geodesic leaves, and each leaf of
D0 is endowed with a weak nearly Kähler structure (f̄ , ḡ) satisfying ∇̄(f̄ 2) = 0;

(c) the distribution [ξ]⊕D1 ⊕ . . .⊕Dr is integrable with totally geodesic leaves.

Proposition 6.3. For a weak nearly cosymplectic (non-weak-cosymplectic) ma-
nifold, h ≡ 0 if and only if the manifold is locally isometric to the Riemannian
product of a real line and a weak nearly Kähler (non-weak-Kähler) manifold.
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We generalize Theorem 4.5 in [17] on splitting of nearly cosymplectic manifolds.

Theorem 6.1. Let M 2n+1(f,Q, ξ, η, g) be a weak nearly cosymplectic (non-weak-
cosymplectic) manifold of dimension 2n + 1 > 5 with conditions (1.9) and (1.10).
Then M is locally isometric to one of the Riemannian products: R× M̄ 2n or B5 ×
M̄ 2n−4, where M̄(f̄ , ḡ) is a weak nearly Kähler manifold satisfying ∇̄(f̄ 2) = 0, and
B5 is a weak nearly cosymplectic (non-weak-cosymplectic) manifold satisfying (1.9)
and (1.10). If M is complete and simply connected, then the isometry is global.

The following theorem generalizes Theorem 4.4 in [17].

Theorem 6.2. Let M(f,Q, ξ, η, g) be a weak nearly cosymplectic manifold with
conditions (1.9)–(1.10) such that 0 is a simple eigenvalue of h2. Then dimM = 5.

7. Characterization of Sasakian manifolds

Here, we give examples of proper weak nearly Sasakian manifolds, present two
theorems characterizing Sasakian manifolds in the class of weak almost contact
metric manifolds satisfying conditions (1.9)–(1.10). On a weak nearly Sasakian
manifold satisfying (1.9), the unit vector field ξ is Killing (£ξ g = 0). Therefore,
ξ-curves determine a Riemannian geodesic foliation.

Example 7.1. We construct proper weak nearly Sasakian manifolds from a pair of clas-
sical structures with the same ξ, η and g. Assume 0 6 i < n and define a manifold

M = {(x0, x1, . . . , x4n) ∈ R4n+1 : x4i+2x4i+4 ̸= 0}

with standard coordinates (x0, x1, . . . , x4n). The vector fields X0 = ξ = −∂0, X4i+1 =
2
(
x4i+2∂0 − ∂4i+1

)
, X4i+2 = ∂4i+2, X4i+3 = 2

(
x4i+4∂0 − ∂4i+3

)
, X4i+4 = ∂4i+4 are

pointwise linearly independent. The non-vanishing Lie brackets are [X4i+1, X4i+2] =
[X4i+3, X4i+4] = 2 ξ. Define a Riemannian metric of M by g(Xi, Xj) = δij , or,

g = dx20 +
∑

i

{
(1/4− x24i+2)dx

2
4i+1 + dx24i+2 + (1/4− x24i+4)dx

2
4i+3 + dx24i+4

}
.

Set η = −dx0 and define a (1,1)-tensor f1 onM by f1X0 = 0, f1X4i+1 = X4i+2, f1X4i+2 =
−X4i+1, f1X4i+3 = X4i+4, f1X4i+4 = −X4i+3. Thus, (f1, ξ, η, g) is an almost contact
metric structure on M . The non-zero derivatives ∇XaXb are

∇X4i+1X4i+2 = −∇X4i+2X4i+1 = ξ, ∇X4i+1ξ = ∇ξX4i+1 = −X4i+2,

∇X4i+2ξ = ∇ξX4i+2 = X4i+1, ∇X4i+3ξ = ∇ξX4i+3 = −X4i+4,

∇X4i+4ξ = ∇ξX4i+4 = X4i+3, ∇X4i+3X4i+4 = −∇X4i+4X4i+3 = ξ.(7.1)

Thus (f1, ξ, η, g) is a Sasakian structure. In particular, the distribution ker η is curva-
ture invariant. Define a tensor f2 on M by f2X4i+1 = X4i+4, f2X4i+4 = −X4i+1,
f2X0 = 0, f2X4i+3 = X4i+2, f2X4i+2 = −X4i+3. It is easy to check that (f2, ξ, η, g)
is an almost contact metric structure on M . Using (7.1), we find that (∇Y f2)Y = 0 and
(∇f2)(X4i+1, ξ) = −X4i+3 ̸= 0, i.e., (f2, ξ, η, g) is a proper nearly cosymplectic structure.
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To construct a weak nearly Sasakian structure using the two above structures, we define
a tensor f := cos(t) f1 +sin(t) f2 for small t > 0. A tensor ψ := f1 f2 + f2 f1 is self-adjoint
with the following nonzero components:

ψX4i+1 = −2X4i+3, ψX4i+2 = −2X4i+4, ψX4i+3 = −2X4i+1, ψX4i+4 = −2X4i+2.

Thus Q = id − sin(t) cos(t)ψ ̸= id and (f,Q, ξ̃, η̃, g̃) is a weak nearly Sasakian structure,
where g̃ = µ2g, ξ̃ = µ−1ξ, η̃ = µ η and µ = cos(t). Since the distribution ker η is curvature
invariant and R̃ = µ2R, then (f,Q, ξ̃, η̃, g̃) satisfies (1.10); but (f,Q, ξ̃, η̃, g̃) does not satisfy
(1.9); for example, (∇̃X4i+3Q)X4i+2 = sin(2 t) ξ ̸= 0.

Here, we generalize some properties of nearly Sasakian manifolds to the case of
weak nearly Sasakian manifolds satisfying (1.9) and (1.10). Define a (1,1)-tensor
field h on M , as in the classical case, by h = ∇ξ + f . We get η ◦ h = 0 and
h(ker η) ⊂ ker η. Since ξ is a geodesic field, we also get h ξ = 0. Since ξ is a Killing
and f is skew-symmetric, the tensor h is skew-symmetric:

g(hX, X) = g(∇X ξ,X) + g(fX,X) = (1/2) (£ξ g)(X,X) = 0,

and ∇X η = g((h− f)X, ·) holds. The ker η is integrable if and only if h = f , and
in this case, our manifold is locally the metric product (splits along ξ and ker η).

Lemma 7.1. For a weak nearly Sasakian manifold M 2n+1(f,Q, ξ, η, g) we obtain

(∇Xh) ξ = −h(h− f)X, (∇Xf) ξ = −f(h− f)X.

Moreover, if (1.9) is true, then

h f + f h = −2 Q̃, hQ = Qh (h commutes with Q),

h2f = fh2, hf2 = f2h, h2f2 = f2h2.

Proposition 7.1. Let a weak nearly Sasakian manifold satisfy (1.9)–(1.10), then

g(R ξ,Z fX, fY ) = 0, hence, ker η is a curvature invariant distribution.

Lemma 7.2. For a weak nearly Sasakian manifold M 2n+1(f,Q, ξ, η, g) with con-
ditions (1.9) and (1.10), we obtain

R ξ,XY = −(∇X (h− f) )Y,(7.2)

(∇X (h− f))Y = g((h− f)2X,Y ) ξ − η(Y ) (h− f)2X,(7.3)

Ric (ξ, Z) = −η(Z) (tr (h2 + Q̃)− 2n).(7.4)

In particular, tr(h2+Q̃) = const, Ric (ξ, ξ) = const > 0 and ∇ξ h = ∇ξ f = fh+Q̃.
By (7.2)–(7.3), we get g(R ξ,XY,Z) = η(Y ) g((h−f)2X,Z)−η(Z) g((h−f)2X,Y ).

Proposition 7.2. For a weak nearly Sasakian manifold with the property (1.9),
the equality h = 0 holds if and only if the manifold is Sasakian.
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Proposition 7.3. For a weak nearly Sasakian manifold with conditions (1.9) and
(1.10), the eigenvalues (and their multiplicities) of the self-adjoint operator h2 are
constant. The spectrum of h2 has the form (6.5): Spec(h2) = {0,−λ2

1, . . .− λ2
r}.

In particular, tr (h2) = const 6 0, and by Lemma 7.2, trQ = const > 0.

Denote by [ξ] the 1-dimensional distribution generated by ξ, and byD0 a smooth
distribution of the eigenvectors of h2 with eigenvalue 0 orthogonal to ξ. Denote by
Di a smooth distribution of the eigenvectors of h2 with eigenvalue −λ2

i . Note that
the distributions D0 and Di (i = 1, . . . , r) belong to ker η and are f -invariant and h-
invariant. In particular, the eigenvalue 0 has multiplicity 2p+1 for some p > 0. If X
is a unit eigenvector of h2 with eigenvalue −λ2

i , then by (6.1) and (6.2), X, fX, hX
and h fX are nonzero eigenvectors of h2 with eigenvalue −λ2

i . First, we show that
weak nearly Sasakian manifolds with (1.9)–(1.10) have a foliated structure.

Theorem 7.1. Let M 2n+1(f,Q, ξ, η, g) be a weak nearly Sasakian manifold with
conditions (1.9) and (1.10), and let the spectrum of the self-adjoint operator h2

have the form (6.5), where the eigenvalue 0 has multiplicity 2p+1 for some integer
p > 0. Then, the distribution [ξ]⊕D0 and each distribution [ξ]⊕Di (i = 1, . . . , r)
are integrable with totally geodesic leaves. If p > 0, then

(a) the distribution [ξ] ⊕ D1 ⊕ . . . ⊕ Dr is integrable and defines a (2n-2p+1)-
dimensional Riemannian foliation with totally geodesic leaves;

(b) the leaves of [ξ]⊕D0 are (2p+ 1)-dimensional Sasakian manifolds.

Next, we give some properties of the tensors f and h, and two theorems char-
acterizing Sasakian manifolds in the class of weak almost contact metric manifolds.
First, we consider weak almost contact metric manifolds with the condition (1.9)
and characterize Sasakian manifolds in this class using the property (1.1).

Theorem 7.2. Let M(f,Q, ξ, η, g) be a weak almost contact metric manifold with
conditions (1.1) and (1.9). Then Q = idTM and M(f, ξ, η, g) is Sasakian.

Next, we generalize Proposition 3.1 in [17].

Proposition 7.4. Let a weak nearly Sasakian manifold satisfy (1.9)–(1.10), then

(∇X f)Y = η(X) (fhY + Q̃Y )− η(Y ) (fhX +QX) + g(fhX +QX,Y ) ξ,

(∇X h)Y = η(X) (fhY + Q̃Y )− η(Y )h(h− f)X + g(h(h− f)X,Y ) ξ,

(∇X fh)Y = η(X) (fh2Y − hY + Q̃fY )− η(Y ) g(fh2X −QhX + 2 Q̃fX)

+g(fh2X − hX + Q̃hX, Y ) ξ,

g((∇X f)Y, hZ) = −η(X) g((fh2 + Q̃h)Z, Y ) + η(Y ) g((fh2 − h+ Q̃h)Z,X).

Recall, that for any 2-form β and 1-form η we have

3 (η ∧ β)(X,Y, Z) = η(X)β(Y, Z) + η(Y )β(Z,X) + η(Z)β(X,Y ).
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Proposition 7.5. Let η be a contact 1-form on a smooth manifold M of dimension
2n + 1 > 5 and Λp(M) the vector bundle of differential p-forms on M . Then, the
operator Υdη : β ∈ Λ2(M) → dη ∧ β ∈ Λ4(M) is injective.

Using the above, we generalize Theorem 3.3 in [17].

Theorem 7.3. Let a weak nearly Sasakian manifold M(f,Q, ξ, η, g) (dimM > 5)
satisfy (1.9)–(1.10). Then Q = idTM and the structure (f, ξ, η, g) is Sasakian.

8. Weak β-Kenmotsu manifolds

Recall [19] that the warped product R×σ M̄ (of R and a Kähler manifold (M̄, ḡ))
with the metric g = dt2⊕σ2 ḡ and the function σ > 0 given on (−ε, ε) and satisfying

(8.1) (∂t σ)/σ = β,

admits a β-Kenmotsu structure (ξ, η, f), see (1.11); conversely, any point of a β-
Kenmotsu manifold has a neighbourhood, which is a warped product (−ε, ε)×σ M̄
of an interval and a Kähler manifold, where σ satisfies (8.1).

8.1. Geometry of weak β-Kenmotsu manifolds

The following formulas are true for a weak β-Kenmotsu manifold:

∇X ξ = β{X − η(X) ξ}, dη(ξ, X) = 0 (X ∈ XM ).

Proposition 8.1. A weak β-Kenmotsu manifold M2n+1(f,Q, ξ, η, g) with n > 1
is a weak almost contact metric manifold satisfying N (1)=dη=0 and 3 dΦ = 2βη∧Φ.

The condition dβ ∧ η = 0 follows from (1.11) if dimM > 3, and it does not hold
if dimM = 3. Indeed, by Proposition 8.1, we get 0 = 3 d2Φ = 2 dβ ∧ η ∧ Φ.

Example 8.1. Let (M̄, ḡ) be a Riemannian manifold. A warped product R×σ M̄ is the
product M = R× M̄ with the metric g = dt2 ⊕ σ2(t) ḡ, where σ > 0 is a smooth function
on R. Set ξ = ∂t and denote by D the distribution on M orthogonal to ξ. The Levi-Civita
connections, ∇ of g and ∇̄ of ḡ, are related as follows:

(i) ∇ξ ξ = 0, ∇X ξ = ∇ξX = ξ(log σ)X for X ∈ D.

(ii) π1∗(∇XY ) = −g(X,Y ) ξ(log σ), where π1 :M → R is the orthoprojector.

(iii) π2∗(∇XY ) is the lift of ∇̄XY , where π2 :M → M̄ is the orthoprojector.

Submanifolds {t}×M̄ (called the fibers) are totally umbilical, i.e., the Weingarten operator
Aξ = −∇ξ on D is conformal with the factor −ξ(log σ), see (iii). Note that σ is constant
along the fibers; thus, X(σ) = ξ(σ) η(X) for all X ∈ XM .
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Let (M̄, ḡ, f̄) be a weak Kählerian manifold, and ∂tσ ̸= 0. Then the warped product
R×σ M̄ is a weak β-Kenmotsu manifold with β = (∂tσ)/σ. Indeed, define tensors,

(8.2) f =

(
0 0
0 f̄

)
, Q =

(
0 0
0 −f̄ 2

)
, ξ =

(
∂t
0

)
, η = (dt, 0), g =

(
dt2 0
0 σ2ḡ

)
on M = R× M̄ . Note that X(β) = 0 (X ⊥ ξ).
If X,Y ∈ D, then π2∗((∇Xf)Y ) = (∇̄X f̄)Y = 0 and π1∗((∇Xf)Y ) = −β g(X, fY ).
If X ∈ D and Y = ξ, then (∇Xf)ξ = −f∇X ξ = −β fX. If X = ξ and Y ∈ D, then
(∇ξf)Y = β(fY )− f(βY ) = 0. Also, we get (∇ξf)ξ = 0. By the above, (1.11) is true.

Theorem 8.1. Every point of a weak β-Kenmotsu manifold M(f,Q, ξ, η, g) has a
neighborhood U that is a warped product (−ε, ε)×σ M̄ , where (∂tσ)/σ = β, (M̄, ḡ, f̄)
is a weak Kählerian manifold, and the structure (ξ, η, f,Q, g) is given on U as (8.2).
Thus, the equality X(β) = 0 (X ⊥ ξ) is valid.

From Example 8.1 and Theorem 8.1, we obtain the following generalization
of [19, Theorem 2.3]. A weak almost contact metric manifold M(f,Q, ξ, η, g) is a
weak β-Kenmotsu manifold if and only if the following conditions are valid:
– the ξ-trajectories are geodesics and f is ξ-invariant, i.e., £ξf = 0,
– the distribution ker η is integrable and defines a totally umbilical foliation F of
codimension one, whose leaves have constant mean curvature,
– a weak Hermitian structure (ḡ, f̄) induced on a leaf M̄ ∈ F is weak Kählerian.

Example 8.2. Let (M̄, ḡ, f̄) be a weak Kählerian manifold and σ(t) = c et (c = const ̸=
0) a function on a line R. Then the warped product manifold M = R ×σ M̄ has a weak
almost contact metric structure which satisfies (1.11) with β ≡ 1.

Lemma 8.1. The following formulas hold on weak β-Kenmotsu manifolds:

RX,Y ξ = (ξ(β) + β2)(η(X)Y − η(Y )X) (X,Y ∈ XM ),

Ric♯ ξ = −2n(ξ(β) + β2)ξ,

(∇ξ Ric
♯)X = −2βRic♯ X − 2 (ξ(β2) + 2nβ3)X + 2 (1− n) ξ(β2) η(X) ξ,

ξ(r) = −2β (r + 2n(2n+ 1)β2)− 6n ξ(β2), X ∈ XM ;

in particular, if β = const, then (∇ξ Ric
♯)X = −2βRic♯ X − 4nβ3X.

Theorem 8.2. If a weak β-Kenmotsu manifold M(f,Q, ξ, η, g) with β = const ̸=
0 satisfies ∇ξ Ric

♯ = 0, then (M, g) is an Einstein manifold with r = −2n(2n+1)β2.

A 3-dimensional Einstein manifold has constant sectional curvature. Thus, we get

Corollary 8.1. Let M3(f,Q, ξ, η, g) be a weak β-Kenmotsu manifold with β =
const ̸= 0. If ∇ξ Ric

♯ = 0, then M has sectional curvature −β2.
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8.2. η-Ricci solitons on weak β-Kenmotsu manifolds

Here, we study η-Ricci solitons on weak β-Kenmotsu manifolds. We consider
an η-Einstein weak β-Kenmotsu metric as an η-Ricci soliton and characterize the
Einstein metrics in such a wider class of metrics.

Lemma 8.2. Let M2n+1(f,Q, ξ, η, g) be a weak β-Kenmotsu manifold. If g rep-
resents an η-Ricci soliton with the potential vector field V , then for all X ∈ XM :

(£V R)X, ξ ξ = −2 ξ(β)Ric♯ X +
(
4n ξ(β3) + 2 ξ(ξ(β2))

)
X

−
(
8n ξ(β3) + 2(n+ 1) ξ(ξ(β2))

)
η(X) ξ;

moreover, if β = const ̸= 0, then (£V R)X,ξξ = 0.

Lemma 8.3. On an η-Einstein weak β-Kenmotsu manifold M2n+1(f,Q, ξ, η, g),
the expression of Ric♯ is the following:

Ric♯X =
(
ξ(β) + β2 +

r

2n

)
X −

(
(2n+ 1)(ξ(β) + β2) +

r

2n

)
η(X) ξ (X ∈ XM ).

Theorem 8.3. Let M2n+1(f,Q, ξ, η, g), n > 1, be an η-Einstein weak β-Kenmot-
su manifold with β = const ̸= 0. If g represents an η-Ricci soliton with the potential
vector field V , then (M, g) is an Einstein manifold with r = −2n(2n+ 1)β2.

Definition 8.1. A vector field X on a weak contact metric manifold is called a
weak contact vector field, if there exists a smooth function ρ : M → R such that
£X η = ρ η, and if ρ = 0, then X is said to be strict weak contact vector field.

We consider a weak β-Kenmotsu metric as an η-Ricci soliton, whose potential
vector field V is weak contact, or V is collinear to ξ. First, we derive the following.

Lemma 8.4. Let M2n+1(f,Q, ξ, η, g) be a weak β-Kenmotsu manifold. If g repre-
sents an η-Ricci soliton with a potential vector field V , then λ+ µ = 2n(ξ(β)+β2).

Theorem 8.4. Let M2n+1(f,Q, ξ, η, g), n > 1, be a weak β-Kenmotsu manifold
with β = const ̸= 0 and ξ(r) = 0. If g represents an η-Ricci soliton with a weak
contact potential vector field V , then V is strict and (M, g) is an Einstein manifold
with scalar curvature r = −2n(2n+ 1)β2.

Theorem 8.5. Let M2n+1(f,Q, ξ, η, g) be a weak β-Kenmotsu manifold with β =
const ̸= 0 and ξ(r) = 0. Suppose that g represents an η-Ricci soliton with a non-zero
vector field V collinear to ξ: V = δ ξ for a smooth function δ ̸= 0 on M . Then δ =
const and (M, g) is an Einstein manifold with scalar curvature −2n(2n+δ(β−1)).
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In [15], K. Kenmotsu found the following necessary and sufficient condition for
a Kenmotsu manifold M to have constant f -holomorphic sectional curvature H:

4RX,Y Z = (H − 3){g(Y, Z)X − g(X,Z)Y }
+(H + 1){η(X) η(Z)Y − η(Y ) η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y, Z)ξ

+ g(X, fZ)fY − g(Y, fZ)fX + 2g(X, fY )fZ}, X, Y, Z ∈ XM .

The following corollary of Theorem 8.3 illustrates Lemma 8.4 and gives an example
of a weak β-Kenmotsu manifold that admits an η-Ricci soliton.

Corollary 8.2. Let a metric g of a warped product R ×σ N2n, where n > 1,
(∂tσ)/σ = β = const ̸= 0 and N is a weak Kählerian manifold, represent an η-
Ricci soliton with the potential vector field V . Then g has constant f -holomorphic
sectional curvature H = −β2.

We complete Theorem 8.3 by studying the 3-dimensional case.

Lemma 8.5. A weak β-Kenmutsu manifold M3(f,Q, ξ, η, g) with β = const ̸= 0
represents an η-Einstein manifold.

Using Lemma 8.5 and Theorem 8.3, we obtain the following.

Corollary 8.3. If a weak β-Kenmutsu manifold M3(f,Q, ξ, η, g) with β = const ̸=
0 and X(r) = 0 (X ⊥ ξ) represents an η-Ricci soliton (1.6), then (M, g) has
constant sectional curvature −β2.

Lemma 8.6. If a weak β-Kenmutsu manifold M(f,Q, ξ, η, g) with β = const ̸= 0
represents an η-Ricci soliton (1.6) with the potential vector field V , then

(i) 2 (£V ∇)(X, ξ) = −ξ(r) (X − η(X)ξ), where ξ(r) = −2β ( r + 6β2),

(ii) (r + 6β2)
{
g(X,£V ξ)− η(X) η(£V ξ)

}
+X(ξ(r)) + ξ(ξ(r)) η(X)

−4
{
β ξ(r)− 2β2 (λ− 2β2)

}
η(X) = 0, X ∈ XM .

Theorem 8.6. If a weak β-Kenmutsu manifold M3(f,Q, ξ, η, g) with β = const ̸=
0 represents an η-Ricci soliton (1.6) with the potential vector field V , then (M, g)
has constant sectional curvature −β2.
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