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1. Introduction

Finding solutions of non-linear equations is one of the most important problems
in numerical analysis. There is a vast literature about this topic , see [3], [5], [8].
Despite this, the development of new methods is still an actual problem with the
aim of efficiently solving as wide a class of nonlinear equations as possible. In this
paper we propose two new iterative methods for finding a simple real or complex
solution of a non-linear equation f(x) = 0.

In Figure (1.1) we showed geometrical interpretations of three different iterative
methods for finding the exact simple real zero of the function f .
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Abstract. In this paper we present two new variants of Homeier’s iterative method for 
finding simple, real or complex, solution of nonlinear equations. Increasing the order of 
convergence from three to four is achieved by one additional term. Through many 
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The first approximation yn is obtained by the well-known Newton’s method
(order of convergence two) and represents the intersection of the tangent at the
point (xn, f(xn)) with the x-axis

yn = xn − f(xn)

f ′(xn)
.

The second approximation xn+1 is obtained by Ostrowski’s method (order of
convergence four) as the intersection of the straight line yCD through the points
C(xn+yn

2 , 1
2f(xn)) and D(yn, f(yn)) with the x-axis

xn+1 = xn − f(xn)

f ′(xn)

(
1 +

f(xn − f(xn)
f ′(xn)

)

f(xn)− 2f(xn − f(xn)
f ′(xn)

)

)
.(1.1)

The third approximation is obtained by Homeier’s third order method [3] and
represents the intersection of the x-axis and the line yC = f ′(yn)(x−xn+yn

2 )+ 1
2f(xn)

that passes through point C which is parallel to the tangent at the point D

xn+1 = xn − f(xn)

2f ′(xn)

(
1 +

f ′(xn)

f ′(xn − f(xn)
f ′(xn)

)

)
= xn − IM.(1.2)

To improve the local order of convergence of Homeier’s method, we combine (1.2)

Fig. 1.1: Three different approximations of the exact zero

and two other methods. In Section 2. we showed that the order of convergence of
the new methods is four. Their good features in difficult cases, as well as global
convergence analysis using basin of attraction are given in Section 3..

2. The new methods and analysis of convergence

In the sequel we use some abbreviations: en+1 = xn+1 − α, en = xn − α,

u(x) =
f(x)

f ′(x)
, L(x) =

f(x)f ′′(x)

(f ′(x))2
Ck =

f (k)(α)

k!f ′(α)
(k = 2, 3, . . .)
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and definition of the order of convergence r, the asymptotic error constant AEC
and error relation:

AEC = lim
n→∞

xn+1 − α

(xn − α)r
⇒ en+1 = AEC ern +O(er+1

n )

We improve Homeier’s iterative method (1.2) as a combination with an additional
term IM(k), k = 1, 2, in order to obtain methods with a higher order of convergence

xn+1 = xn − θIM− (1− θ)IM(k), k = 1, 2.(2.1)

In the last relation IM(1) represents the correction of Super-Halley’s method [2]

xn+1 = xn − u(xn)
(
1 +

L(xn)

2(1− L(xn))

)
= xn − IM(1)(2.2)

and IM(2) is the correction of Chebyshev’s method [8]

xn+1 = xn − u(xn)
(
1 +

1

2
L(xn) +

1

2
(L(xn))

2
)
= xn − IM(2).(2.3)

Theorem 2.1. Let f(x) be sufficiently smooth in the neighborhood of the simple
real or complex zero α. If IM, IM(1) and IM(2) are defined by (1.2), (2.2) and (2.3)
then for θ = 2

3 the order of convergence of the methods (2.1) is four.

Proof. In our estimations we use Taylor expansions of f(xn), f
′(xn), f

′′(xn)
and f ′(xn − u(xn)) about α. According to (1.2), (2.2) and (2.3), using computer
algebra system Mathematica, it is not difficult to find error relations of (2.1)

en+1 = (
3

2
θ − 1)C3e

3
n + (θD + (1− θ)Dk)e

4
n +O(e5n), k = 1, 2,

where we use notations D = 3
2C2C3, D1 = C2 − 3C3 and D2 = C3

2 − 3C4.
From previous error relation we conclude that if θ = 2

3 the order of convergency of
iterative method (2.1) is four.

In this way we found two new iterative methods of the fourth order:

Homeier-Super Halley method (HSH)

xn+1 = xn − u(xn)

3

(
2 +

f ′(xn)

f ′(xn − u(xn))
+

L(xn)

2(1− L(xn))

)
(2.4)

and Homeier-Chebyshev method (HCh)

xn+1 = xn − u(xn)

3

(
2 +

f ′(xn)

f ′(xn − u(xn))
+

1

2
L(xn) +

1

2
(L(xn))

2
)
.(2.5)
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Table 3.1: The error norms en (n = 1, 2, 3) where A(−q) means A× 10−q

f(x) en (HSH) (HCh) (Ostr) (Kiss)
e1 1.00(-5) 1.05(-5) 1.37(-5) 9.30(-5)

f1(x) e2 2.39(-24) 1.64(-23) 1.58(-22) 1.80(-18)
e3 7.76(-99) 9.50(-95) 2.78(-90) 2.55(-73)

e1 2.24(-4) 8.35(-3) 4.44(-4) 2.71(-4)
f2(x) e2 9.28(-16) 2.01(-8) 1.48(-14) 2.00(-15)

e3 2.75(-61) 6.71(-31) 1.84(-56) 5.99(-60)

e1 1.38(-6) 3.56(-7) 5.14(-7) 7.76(-7)
f3(x) e2 5.11(-28) 6.05(-31) 3.69(-30) 2.78(-29)

e3 9.46(-114) 5.02(-126) 9.78(-123) 4.59(-119)

3. Numerical examples

For comparison purpose, besides the new methods (HSH) (2.4) and (HCh) (2.5)
we tested Ostrowski’s method (1.1) and Kiss’ method [4]

xn+1 = xn − u(xn)
1− 1

2L(xn)

1− L(xn) +
f ′′′(xn)
6f ′(xn)

(u(xn))2
.(3.1)

The choice of Ostovski’s method is due to its similar geometric interpretation with
Homeier’s method (see Figure (1.1)), while Kiss’ method was chosen due to the
same number of functional calculations with the proposed methods.

Choosing nontrivial test functions with real and complex zeros, as Chun and
Neta [1] (Example 1.) and test polynomials in [6] (Examle 2.), we have tested
numerical examples using multi-precision arithmetic employing computer algebra
system Mathematica.

Example 1.The goal of the first example is to demonstrate the convergence speed
of the proposed methods (HSH) and (HCh). From Table (3.1), for a given test
functions

f1(x) = x2 − ex − 3x+ 2 x0 = 0.5 α = 0.257530285439860760

f2(x) = xex
2 − sin2 x+ 3 cosx+ 5 x0 = −1 α = −1.207647827130918927

f3(x) = lnx+
√
x− 5 x0 = 8 α = 8.309432694231571795

and many other tested functions, we conclude that the results obtained by the
proposed methods coincide with the theoretical results given in Theorem 2.1. For
f1(x)− f3(x) the fastest convergence is achieved by one of the proposed methods.

Characteristics of our methods are discussed by basins of attractions, too [7].

Definition 3.1. Let S ⊆ C be a complex domain and let f be a given sufficiently
many times differentiable function in S having simple zeros α1, α2, . . . , αm ∈ S. For
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a given root-finding iteration defined by xk+1 = g(xk), the basin of attraction for
the zero αi is the set (or the union of sets)

Bf,g(αi) = {ξ ∈ S | the iteration xk+1 = g(xk) with x0 = ξ converges to αi}.

We drew basins respecting some rules: each basin have a different color and the
shading is lighter when the number of iterations is smaller. If required accuracy is
not achieved in less than 40 iterations, we paint the considered initial point black.

It is useful that the area of each basin of attraction is as large as possible and
unvaried, with a straight lines as the boundaries. The number of blobs, fractals,
divergent points and the required CPU time to achieve accuracy should be as small
as possible.

As initial points for all tested methods we take equally spaced points within
a rectangle S = {(x, y) | a 6 x 6 b, c 6 y 6 d}. The number of tested points is
denoted with N . The stopping criterion was given by the inequality |xn−α| < 10−6.
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Fig. 3.1: f4(x), (HSH), (HCh), Ostrowski’s, Kiss’ methods, in that order
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Fig. 3.2: f5(x), (HSH), (HCh), Ostrowski’s, Kiss’ methods, in that order
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Fig. 3.3: f6(x), (HSH), (HCh), Ostrowski’s, Kiss’ methods, in that order

Example 2. In our experiments we chose rather challenging task and worked
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with test polynomials f4(x) and f5(x) containing clusters of zeros and Wilkinson’s
polinomial f6(x) that many methods have trouble with:

f4(x) = x5 − 0.00032, 0.2ei2kπ/5, k = 0, 4
f5(x) = (x4 − 0.001x)(x2 + 2x+ 1.01), 0, −1± 0.1i, 0.1ei2kπ/3, k = 0, 2

f6(x) =
∏8

k=1(x− k), 1, 2, 3, 4, 5, 6, 7, 8

Due to many black points in case of Kiss’ method (3.1), we have eliminated it

Table 3.2: (A) normalized CPU time for all points; (B) average number of iterations;
(C) percentage of divergent points.

f(x) (HSH) (HCh) Ostrowski Kiss

A 1.04 1.77 1 3.01
f4(x) B 6.82 10.12 7.51 22.45
N = 360000 C 0 2.297 0.003 15.594

A 1.22 1.95 1 5.88
f5(x) B 7.08 9.56 7.76 22.45
N = 360000 C 0 0.163 0 44.458

A 2.26 3.81 1 18.94
f6(x) B 5.23 7.40 5.98 22
N = 455000 C 0 0.321 0 38.054

from further discussion. There is a great similarity between the characteristics of
the basin of attraction of the (HSH) method and the (1.1) method: there are no
black points, in most of cases the CPU time is almost the same, as well as average
number of iterations necessary to satisfy the termination criterion. Basins of (HCh)
method possess negligible number of black points, but CPU time and average num-
ber of iterations are larger than for previous methods. From Figure (3.1)-(3.3),
according to the size, hue and shapes of basins of attractions in all three cases, for
the new methods we can conclude that most basins consist of a large unvaried area,
which points to a good global convergence and simple structure of the new methods.
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