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Abstract. In this paper, canonical biholomorphically projective and equitorsion canon-
ical biholomorphically projective mappings are defined. Some relations between corre-
sponding curvature tensors of the generalized Riemannian spaces GRy and GRn are
obtained. At the end, invariant geometric object of equitorsion canonical biholomor-
phically projective mapping is found.
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1. Introduction and preliminaries

Differentiable manifolds GRy with nonsymmetric metric tensor and GAy with
nonsymmetric affine connection have been studied in many papers, as well as their
mappings [1-6,8,9,11-15].

A generalized Riemannian space GRy in the sense of Eisenhart’s definition [3]
is a differentiable N-dimensional manifold, equipped with a non-symmetric metric
tensor g;;. Connection coefficients are given by [10]

(1.1) F;ik = g"2T, ik,

where ||g2]| = |lgi;|I7", 955 = 3(9i5 +95i), and Tijx = 5(gjik — Gik,i + ik, ), Where,

9gij

for example, g = 3.#. We suppose that det ||g;;|| # 0, det ||g;;|| # 0. Generally,
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we have Fé. e 7 F}; i and the symmetric and antisymmetric part of I‘;- . are given by
the formulas

i Lo i i i Lo i i
(1.2) Ui, = §(Fjlc + %) = Siks ik = §(ij —T%;) =T
The magnitude T;k is the torsion tensor of the space GRy. Obviously,

In a generalized Riemannian space one can define four kinds of covariant deriva-
tives [8]. For example, for a tensor aj in GRy we have

i i i P __ TP i i i p__ P i
Wl = A + I‘pmaj ijap, @ = + I‘mpaj I‘mjap,
1 2
(14) at, =at 4T o —TP o' ot =qa' +T o —T? ¢
jlm = %jm pmj mj<p? JJLm - %im mp™j jm“p>

3

. da’
where | (¢ = 1,2,3,4) denotes a covariant derivative of the kind 0 and af ,,, = 3 L
0 ' "

In the case of the space GRy we have five independent curvature tensors [8]

]l%ijmn = Fé’m,n - Fé’n,m + F?mrén - F?nF;er
7 1 7 P i P 7
‘I;jmn - ij,n - Fnj,m + FTﬂanp - I‘njrrnpv
7 . al % P % P 1 % 7
(1 5) ‘[;ijmn - ij,n - Fnj,m + ijrnp - Fnjrpm + ngn(rpj - Fjp)V
. . i . » ] P i ) )
ézzjmn - 1_‘;WL,n - F;],m + ijF?er - Fn]F;m —+ F%m(rzp] - F;p)7
‘[;ijmn = §(ij,n + ij,n - an,m - ]'—‘nj,m

+Ir? TPt TP T TP T ).

jm= pn jn= mp mj— pn nj— pm

Let GRy and GRy be two generalized Riemannian spaces. We will observe
these spaces in the common system of coordinates defined by the mapping f :
GRy — GRy. If T}; and T, are connection coefficients of the spaces GRy and

S . =h . . .
GRy, respectively, then P[JL- =Ty — F?j is the deformation tensor of the connection
for a mapping f.

_ The relations between corresponding curvature tensors of the spaces GRy and
GRy are obtained in [10] as follows:
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Tijmn = ?l]mn + P]Zmln - ;nlm + meP;n - Pjpnpjgm + QTTZr)ij?p’
R jn = Bn + Pfﬁgln - Zjlm + PriPrp = PPy + 210, Py,
o Bln = Rljn + P;an - ;jlm + P! PL — PPl +2P%, (T + P;vj)7
R = Bl + Pimin = Pagim + i Prp = P P + 25 (T3 + By,
1 ) ) ) )
5 ijn = ]E?l]mn + 5( ;min - Pj?nlm + P:n]ln - :Ljim

+PP P — PP PL +PP.P. — PP,

jm= pn Jgn= mp mj= np nj- pm

where Pf; is a deformation tensor for a mapping f, P[;. is its antisymmetric part,

A\

and TZZL is a torsion tensor.
2. Canonical biholomorphically projective mappings

In paper [7], we define biholomorphically projective mappings between two gen-
eralized Riemannian spaces with almost complex structures that are equal in a
common system of coordinates. In that case,

—h 2
(2.1) Ty =Tl + 968} + oG F ) + 7 F7) + €,
and the deformation tensor has the form
2
h h h h h
(2.2) Pij =03 + o) + 767 + &,

where (i7) is a symmetrization without division by indices ¢ and j, 1;, o; and 7; are

vectors, I%‘Z = F;LFZ‘}, and fihj is an antisymmetric tensor.

Motivated by the form of deformation tensor (2.2), we will define new types of
mappings. Let GRy and GRy be two generalized Riemannian spaces with almost
complex structures F* and F!, respectively, where F* = F in the common system
of coordinates defined by the mapping f : GRy — GRy, and assume that it holds
Fl # adl, where a is scalar invariant.

The mapping f : GRy — GRy is canonical biholomorphically projective map-

L. . . . —h .
ping if in the common coordinate system connection coefficients I‘?j and I';; satisfy
the relation

h h h Zh h
(2.3) Ly =15 o6 Fy) + 76 F) + &5,
where (ij) is a symmetrization without division by indices ¢ and j, o; and 7; are

2
h _ h g h - . .
vectors, F) = F'F}l, and & is an antisymmetric tensor.
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Let Pi};- be deformation tensor with respect to the canonical biholomorphically
projective mapping f : GRy — GRy. Then, we have

2
h h h h

Below we will find the relations between corresponding curvature tensors of the
spaces GRy and GRy.

According to relations (1.5), (1.6) and (2.4), for the curvature tensor of the first
kind we have

— . 2. 3. . .
7 _ Dt . % 7 a2 . 7
]l%jmn - ]ﬁjmn + 0j (U<nFm> + 7—<7LF1Tn,>) + UJF<m|n> + O.J\<”Fm>
1 1
4
+o F' v o, Fl —o,F +7i(c }37” + TenFE )
<m|n>L"j md jin nt j|m J\¥<nt m> <ns m>
1 1 1

(2 5) X 2. 2. 2. 2
. i i i i i
+Tj\<nFm> +7-ij\71 - T”Fj\m +TjF<m\n> +T<m|">Fj

1 1 1 1 1

+ Up]:pi + Tpfpi + S;ngfm + S]pm pn - an Z;m N S;mffn

1 jmn 2 jmn

% P i P i i i
+ £j<mln> + imSpn — SinSpm + 2T£@n(8]p + é-jp)a

where (ij) is a symmetrization without division, < 4j > is an antisymmetrization
without division by indices ¢, 7, and

2h h p 3h h p 179 4h h P 17q T 7 i 21'
Fir=F)F, F} =F)F)F, F}=FFFIF, Sjp:a(jFp)+T(jFp)
) . . 2 . .2
(2.6) ffinn =o0,F%, F, . + O’<mel>F]P + 7, F2 Frs + 7'<meL>F§-’,
. 2 2 2 2. 2. 2
.72-':;;1” =0,;F%, F, . + J<mF;>FJP + 7, F2 Flo + T<szL>F§.

Based on the facts given above, we have obtained the following statement.

Theorem 2.1. A canonical biholomorphically projective relation between the
curvature tensors of the first kind of the generalized Riemannian spaces GRy and
GRy is given by the formula (2.5), where T[JL- 18 the torsion tensor and we denoted
with respect to the (2.6).

From relations (1.5), (1.6) and (2.4), for the curvature tensor of the second kind,
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we get:
7 7 2i Bi 7 7
ijn = IQ%jmn + Uj(0<nFm> + 7_<77«Fm>> + JjF<m|n> + O—jL<nFm>
2
. . . 3. 4 .
+ J<m|n>F;' + O—mF;'\n - JnF;’hn + Tj(0—<nF7;n +T<nF2n>)
2 2 2

(2.7) 2. 2. 2. 2.

7 7 7 7 %
+Tm j‘niTnFj\m+Tj‘<nFm>+Tj <m\n>+7—<m|n>Fj
2 2 2

Oy F s+ T F i & Syt + Sy = Sty — il

jimn
+£m]|n_ n]\m+£ nj rznp+2T7€)m(S;p+£;Jj)7
where Fh Fh Fh ]-'ffnn, ]-'ifnn, S}, are determined by the formula (2.6). Therefore,

the following theorem is valid.

Theorem 2.2. A canoninal biholomorphically projective relation between the cur-
vature tensors of the second kind of the generalized Riemannian spaces GRy and
GRy is given by the formula (2.7), where Ti}; s the torsion tensor and we denoted
with respect to the (2.6).

Considering relations (1.5), (1.6) and (2.4), for the curvature tensor of the third
kind we have the following:

. 2, 3. . .
i i i i i i
gjmn ‘Zg%jmn + Jj(U<nFm> + 7_<?“LF‘m>) + Jj(Fm|n - n\m)
2 1
+ 010 F = 05 imEr + (Omin — Tnjm) F; +omt, — ok,
2 1 2 1 2 1
3. 4 . 2 2 2 2.
i i i i
(2 8) + Tj(a<nFm> + T<7LFm>) + Tij\n Tt ]\m + TJ\” TJ\mF
. 2

2_ 2 . . .
2 1
+crp]-"

jmn

+ ]m 6 +2(Sp +££m)(Tpl]+£;7j)a

+T,,fp’ +8;,.8h +5P : sp o — Spmbh

jmn

where we denoted with respect to (2.6). In this way, the following theorem is proven.

Theorem 2.3. A canonical biholomorphically projective relation between the cur-
vature tensors of the third kind of the generalized Riemannian spaces GRy and
GRy is given by the formula (2.8), where TZ’; 18 the torsion tensor and we denoted
with respect to the (2.6).
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Using relations (1.5), (1.6) and (2.4), for the curvature tensor of the fourth kind
we have the following;:

2, 3

i % % i
'ﬁijmn ‘?jmn + Uj(0<nFm> + 7—<’ﬂ'Fm>) + J]( m|n - n\m)
1
7 7 7 7
+ 0510 F = 0 mE + (Ompn = Tnfm) F5 + 0mFy 1, — 0nF
2 1 2 1 2 1
3 4 2. 2. 2. 2.
It i i i
—|—Tj(0'<nFm>—|—T<nF S)+Tm j‘n—T7LFj‘m+Tj‘nFm—Tj‘an
(29) 2 1 2 1
2. 2. 2. i pi
i i
+TJ(F7n\n - n|7n) =+ (Tm|7l - Tn\m)Fj +Up‘ijn +Tpf]mn
2

+ Sz 551] + Sp : S]pnﬁzz)m pmfﬁj + g;m\n - :lem
1

where we denoted with respect to (2.6). This proves the next statement.

Theorem 2.4. A canonical biholomorphically projective relation between the cur-
vature tensors of the fourth kind of the generalized Riemannian spaces GRy and
GRy is given by the formula (2.9), where T[]L- 1s the torsion tensor and we denoted
with respect to the (2.6).

From relations (1.5), (1.6) and (2.4), for the curvature tensor of the fifth kind
we get the following:

R]mn é{jmn + 50-7”( jln + Fj(\ln) - 50"(FJ|3771 + Fjlm)
% 1 i 1 i
+ 5 (0<min> + 0cminz)F5 + S (0510 + 0510) Fry = 5(0j1m + 0 jm) F
2 3 4 2 3 4 2 3 4
1 1 2.
+70—j(F m|n>+F<m\n>)+7(T<m\n> +7—<m\n>)Fj
2 2 3 4
2.10 1 2, 1 -V SR
@10} (T + i) o = 5 (T = Tigm) F + ifm(Fjgn + Fp)
12, 12, "
+ 2TJ( <m\n> +F<m|n>) 57—71( ]|m +F]|m) +UP‘ijn +T10]:Jmn

2. 3. 3. 4
i i i i
+ aj(a<7sz> + 7-<"1F1m>) + Tj(0<nFm> + 7-<TLF1m>)
1 . .
i i D i z
+§( jm|n = Snjlm — Jn|m+€mg\n) imSpn Jn
3 3

where we denoted with respect to the (2.6).

Based on the facts given above, we have proved the next theorem related to
curvature tensors of the fifth kind.
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Theorem 2.5. A canonical biholomorphically projective relation between the cur-
vature tensors of the fifth kind of the generalized Riemannian spaces GRy and GRy
is given by the formula (2.10), where TJJL 18 the torsion tensor and we denoted with
respect to the (2.6).

3. Equitorsion canonical biholomorphically projective mapping

The mapping f : GRy — GRy is equitorsion canonical biholomorphically pro-
jective mapping, if the torsion tensors of the spaces GRy and GRy are equal in a
common coordinate system after the mapping f. Then,

ho_
(3.1) h=o.
In this case, the relation (2.4) becomes

2

Considering (3.1), from (2.5) we get:
i i 24 2 i i
‘lﬁjmn = ‘?jmn + Uj(0<nFm> + 7_<”Fm>) + UJF<m|n> + O—j\<nFm>
1 1

. . , 3. 4.
T ocmnsFG + omE ) — ond T + T (0n Fls + TenF )
(33) 1 1 1
. 2. 2. 2. 2.
+ Tjl<nF s + TmF;-‘n — TnF;-‘m + TjFl<m‘n> + T<min> 7
1 1 1 1 1
+ 0T s + T F i + 2T50n S

2jmn mn<jp*
Hence, the next theorem holds.

Theorem 3.1. An equitorsion canonical biholomorphically projective relation
between the curvature tensors of the first kind of the generalized Riemannian spaces
GRx and GRy is given by the formula (3.3), where T[JL is the torsion tensor and
we denoted with respect to the (2.6).

The relation between the curvature tensors of the second kind (2.7), after ap-
plying the relation (3.1), becomes:

. . 2. 3. . .

X3 _ 7 . 7 3 . 3 . 3

gjmn = gjmn + U](U<nFm> + T<TLFm>) + UJF<m|n> + O'J\<nFm>
2 2

. . . 3. 4.

7 3 3 3 3
+ O cm|n>EG + om ), — Oy + Ti(0<n N, + Tan s )

(3.4) 2 : :

2 2 2 2. 2.
3 3 3 7
+ 1 F —TnFj‘m+TjL<nFm>+TjF<m‘n>-‘rT<an>Fj
2 2

7:.
Jln
2

+Up.71:§;n+7pfpi +2717?, S!

2jmn nm<jp*
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In this way, the following theorem is proven.

Theorem 3.2. An equitorsion canonical biholomorphically projective relation be-
tween the curvature tensors of the second kind of the generalized Riemannian spaces
GRx and GRy is given by the formula (3.4), where TS is the torsion tensor and
we denoted with respect to the (2.6).

The relation between the curvature tensors of the third kind (2.7), with respect
0 (3.1), becomes:

. . 2. 3. . .
i _ i ) 4 i (T i
fsijmn - gjmn +UJ(O<nFm> +T<7lFm>) +U](Fm|n n\m)
2 1
7 % 7 7 7
+ 050 = OimE & Omin = Onjm) Fj + 0mFj) = on kT,
2 1 2 1 2 1

(35) 3 4 2 2 2 2

7 [ 7 7 7 7
+Tj(g<nFm> +T<nFm>) +Tij\n _TnFj\m J’_Tj\"Fm _Tj\an
2 1 2 1
2. 2, 2. pi D1 P
(T A . 7 D i
+ 7—J(‘Fm|n n\m) + (Tmln Tnlm)Fj + Up‘ll_..jmn + Tp‘é:jmn + 2Sanpj’
2 1 2 1

and we may formulate the following theorem.

Theorem 3.3. An equitorsion canonical biholomorphically projective relation be-
tween the curvature tensors of the third kind of the generalized Riemannian spaces
GRx and GRy is given by the formula (3.5), where TJJL is the torsion tensor and
we denoted with respect to the (2.6).

In particular, from the relations (2.9) and (3.1) we have

. . 2. 3. . .
gljmn = ézzjmn + O-j(0-<’ﬂF11ﬂ> + 7—<71F‘:n>) + O-J<F?m|n - }n\m)
2 1
F i =gt g = o)y 0By = oL
2 1
(36) 3i 4’i 2i 21, 27; 27;
+ Tj(0cnF s + T<nFrs) + TmFﬂn - TnFj‘m + TjLnFm — lean
2 1
2 i Z; Pl Pi D i
+ Tj (Fm|n - n\m) + (Tan - Tnlm)Fj + Up‘fjmn + TP‘/;jmn + 2‘S'TnnT‘pj'
2 1

Therefore, the next theorem holds.

Theorem 3.4. An equitorsion canonical biholomorphically projective relation be-
tween the curvature tensors of the fourth kind of the generalized Riemannian spaces
GRx and GRy is given by the formula (3.6), where TZ@ is the torsion tensor and
we denoted with respect to the (2.6).
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Analogously, from (2.10), with respect to the (3.1), we get:

i 3 1 % i 1 i

—_

(Ujln + ffﬂn)Fin — (Uj|m + 04 1m) L
3 4 4

3

N —
l\)\»—t
DO |

+ *(U<m|n> + ‘7<m\n>)F§' +
4

1 2.
+ 20]( <m|n> + F<m|n>) + §(T<mJn> + 7-<’m|n>)F‘;‘
(3.7) : , 2
+ §(le’n + Tjjln)F:n - i(Tjgm Ty\m)F + Tm(FJ\n + FJ\H)
12 2 1.2, pi
+ §Tj (F<m:|3n> + F<mJ1n>) - 57— ( ]Lm + Fj|m) + O—P‘fjmn + Tp]:jmn

2 3. 3. 4 .
+ Jj(0<ann> + T<71F:n>) + 7'j(U<nFin> + T<nF2n>)~

i.e. the following theorem is valid:

Theorem 3.5. An equitorsion canonical biholomorphically projective relation be-
tween the curvature tensors of the fifth kind of the generalized Riemannian spaces
GRx and GRy is given by the formula (3.7), where Tf; is the torsion tensor and
we denoted with respect to the (2.6).

4. Invariant geometric objects

In this section, we will obtain an invariant geometric object of equitorsion canon-
ical biholomorphically projective mapping. In relation to that, in relation (3.2) let
us put

o, = —TpFY.
Then, we have
—h 2
(4.1) Ty, —Th= ~TpF, Fb+1GF

Contracting by indicies h and 7 in (4.1), assuming that it is valid

2
(4.2) Tr(F?)=0,ie. Fb=F/F!=0,and F'F}=ed) (e==+1),
we get

(4.3) =T

e ]7Fp)

p.

Substituting (4.3) in (4.1) we have

—h 1 [k ho o=k Zn o=k 2
Ly — - (F@F( B =T — Ly F
(4.4)

_1h
_1"”

m\»—l

2 2
(Pk FOF) =T k) —P@F?) .
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If we denote

1 2 2
h _ ph k h k h k h
(4.5) CHT}; =T — - (F@F(’;Fj) —Th - F@F) ,

the relation (4.4) can be presented in the form

(4.6) CHTY, = CHT!

R

a7 . . - . .
where CHT;; is an object of the space GRy. The magnitude C’HT?]» is not tensor
and it is called Thomas equitorsion canonical biholomorphically projective parame-

ter.

Accordingly, we conclude that the following assertion is valid.

Theorem 4.1. The geometic object C’HTZ given by equation (4.5) is an invariant

of the equitorsion canonical biholomorphically projective mapping f : GRx — GRy,
provided that the relations (4.2) are valid.
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