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Abstract. We study two kinds of curvature invariants of Riemannian manifold equip-
ped with a complex distribution D (for example, a CR-submanifold of an almost Her-
mitian manifold) related to sets of pairwise orthogonal subspaces of the distribution.
One kind of invariant is based on the mutual curvature of the subspaces and another
is similar to Chen’s δ-invariants. We compare the mutual curvature invariants with
Chen-type invariants and prove geometric inequalities with intermediate mean curva-
ture squared for CR-submanifolds in almost Hermitian spaces. In the case of a set of
complex planes, we introduce and study curvature invariants based on the concept of
holomorphic bisectional curvature. As applications, we give consequences of the ab-
sence of some D-minimal CR-submanifolds in almost Hermitian manifolds.
Keywords: almost Hermitian manifold, CR-submanifold, distribution, mutual curva-
ture, mean curvature.

1. Introduction

In 1978, A. Bejancu introduced the notion of a CR-submanifold as a generaliza-
tion of holomorphic and totally real submanifolds of almost Hermitian manifolds.
Since then, CR-submanifolds in various ambient spaces have been actively studied,
for example, [4, 5, 9]. The development of the extrinsic geometry of submanifolds led
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to the following problem (for example, [3]): find a simple optimal connection between
the intrinsic and extrinsic invariants of a submanifold in a Riemannian manifold;
in particular, in space forms. B.Y. Chen introduced the concept of δ-curvature in-
variants for Riemannian manifolds in the 1990s and proved an optimal inequality for
a submanifold, including δ-curvature invariants and the square of mean curvature.
Chen invariants are obtained from the scalar curvature by discarding some of the
sectional curvatures. The case of equality led to the notion of “ideal immersions” in
Euclidean space, that is, isometric immersions with the smallest possible tension.
Chen’s theory was extended by geometers to Kähler, (para-)contact, Lagrangian
and affine submanifolds, warped products and submersions, see [3, 4].

In [8, 7], we introduced invariants of a Riemannian manifold, which are related
to the mutual curvature of noncomplementary pairwise orthogonal subspaces of the
tangent bundle, and proved geometrical inequalities for Riemannian submanifolds
with applications to foliations.

In this paper, as indicated in the Abstract, two types of mutual invariants of
the curvature of a Riemannian manifold equipped with a complex distribution D
(in particular, a CR-submanifold of an almost Hermitian manifold) are studied.

The paper is organized as follows. In Section 2, we report some basic information
about the curvature invariants of a manifold with a distribution. In Section 3, we
study geometric inequalities for CR-submanifolds in almost Hermitian manifolds.

2. Curvature invariants of a manifold with a distribution

In this section, we recall two kinds of curvature invariants of a manifold with a
distribution (Chen-type invariants and invariants based on the mutual curvature,
see [8, 7]), and for the complex distribution we define invariants based on the holo-
morphic bisectional curvature. Let (Md+l, g) (d,m > 0) be a Riemannian manifold
with a d-dimensional distribution D. Denote by ∇ the Levi-Civita connection of g
and RX,Y = ∇X∇Y − ∇Y ∇X − ∇[X,Y ] the curvature tensor, where X,Y are any
vector fields on the tangent bundle TM . The scalar curvature τ (function on M)
is the trace of the Ricci tensor RicX,Y = trace(Z 7→ RZ,X Y ). Some authors, for
example, [3], define the scalar curvature as half of “trace Ricci”.

Example 2.1. Let g be an admissible metric for an almost contact structure (φ, ξ, η) on
a manifold M2n+1,

g(φX,φY ) = g(X,Y )− η(X) η(Y ), η(ξ) = 1, X, Y ∈ XM ,

see [2], where φ is a (1, 1)-tensor, ξ is a unit vector field (called Reeb vector field) and η is
a 1-form. Then d = 2n and D = ker η is a 2n-dimensional contact distribution on M2n+1.

Next, we define curvature invariants related with D, see [7, Section 4, page 7],
which forD = TM are reduced to Chen’s δ-invariants, for example, [3, Section 13.2].
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Definition 2.1. Define Chen’s type curvature invariants δD and δ̂D by

2 δD(n1, . . . , nk)(x) = τD(x)−min{τ(V1) + . . .+ τ(Vk)},
2 δ̂D(n1, . . . , nk)(x) = τD(x)−max{τ(V1) + . . .+ τ(Vk)},(2.1)

where τ(Vi) = traceg Ric |Vi , and V1, . . . , Vk run over all k > 0 mutually orthogonal
subspaces of Dx at x ∈ M such that dimVi = ni (0 6 i 6 k).

For example, 2 δD = τD if k = 0, and 2 δD(n1)(x) = τD(x)−min τ(V1) if k = 1.

Remark 2.1. In (2.1), we use max and min (instead of sup and inf, see [3]) since the set
“all mutually orthogonal subspaces V1, . . . , Vk at a point x ∈ M such that ...” is compact.

Let {ei} be an orthonormal frame of a subspace V =
⊕ k

i=1 Vi of TxM such that
{e1, . . . , en1} ⊂ V1, . . . {enk−1+1, . . . , enk

} ⊂ Vk. For k > 2, the mutual curvature
of a set {V1, . . . , Vk} is defined by

(2.2) Sm(V1, . . . , Vk) =
∑

i<j
Sm(Vi, Vj),

where Sm(Vi, Vj) =
∑

ni−1<a6ni, nj−1<b6nj

g(Rea,eb eb, ea) is the mutual curvature of

(Vi, Vj). Note that Sm(V1, . . . , Vk) does not depend on the choice of frames. We get

(2.3) τ(V ) = 2 Sm(V1, . . . , Vk) +
∑k

i=1
τ(Vi),

where τ(V ) = traceg Ric |V is the trace of the Ricci tensor on V =
⊕ k

i=1 Vi. For
example, if all subspaces Vi are one-dimensional, then 2 Sm(V1, . . . , Vk) = τ(V ).

We introduce the curvature invariants based on the concept of mutual curvature.

Definition 2.2. Define the mutual curvature invariants of a Riemannian manifold
(Md+l, g) equipped with a d-dimensional distribution D by, see [7, page 7],

δ+m,D(n1, . . . , nk)(x) = maxSm(V1, . . . , Vk),

δ−m,D(n1, . . . , nk)(x) = min Sm(V1, . . . , Vk),(2.4)

where x ∈ M and V1, . . . , Vk run over all k > 2 mutually orthogonal subspaces of Dx

such that dimVi = ni (2 6 i 6 k). For D = TM , we get the invariants δ±m = δ±m,TM .

The invariants in (2.1) and (2.4) are related by the following inequalities.

Proposition 2.1. For k > 2 and n1+ . . .+nk < d, the following inequalities hold:

δ+m,D(n1, . . . , nk) > δD(n1, . . . , nk)− δD(n1 + . . .+ nk) ,

δ−m,D(n1, . . . , nk) 6 δ̂D(n1, . . . , nk)− δ̂D(n1 + . . .+ nk) ,
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and if n1 + . . .+ nk = d, then

δ̂D(n1, . . . , nk) = δ−m,D(n1, . . . , nk) 6 δ+m,D(n1, . . . , nk) = δD(n1, . . . , nk).

If the sectional curvature K along D satisfies c 6 K 6 C and
∑k

i=1 ni = s 6 d, then

c
2 (s

2 −
∑

i n
2
i ) = c

∑
i<j ni nj 6 δ−m,D(n1, . . . nk)

6 δ+m,D(n1, . . . nk) 6 C
∑

i<j ni nj =
C
2 (s

2 −
∑

i n
2
i ) .(2.5)

Proof. This is similar to the proof of [7, Proposition 1].

Corollary 2.1. If (Md+l, D, g) has non-negative sectional curvature of planes tan-
gent to D, then

δ̂D(n1, . . . , nk) 6 δ−m,D(n1, . . . , nk) 6 δ+m,D(n1, . . . , nk) 6 δD(n1, . . . , nk),

and if this sectional curvature is nonpositive, then the above inequalities are opposite.

Given two J-invariant planes σ and σ′ (2-dimensional subspaces) in TxM of an
almost Hermitian manifold (M,J, g), and unit vectors X ∈ σ and Y ∈ σ′, Goldberg
and Kobayashi [6] defined the holomorphic bisectional curvature Kh(σ, σ

′) by

(2.6) Kh(σ, σ
′) = R(X, JX, Y, JY ).

This depends on σ and σ′ only, and for σ = σ′ gives the holomorphic sectional
curvature. For a set of J-invariant planes in a complex distribution of real dimension
d > 4, we introduce invariants based on the holomorphic bisectional curvature.

Definition 2.3. Let D be a d-dimensional complex distribution of a Riemannian
manifold (M, g), i.e., there is a skew-symmetric (1,1)-tensor J : D → D such that
J 2X = −X and g(JX, JY ) = g(X,Y ) for X,Y ∈ D. The holomorphic mutual
curvature invariants δ±h,D(k) (1 < k 6 d/2) are defined by

δ+h,D(k)(x) = maxS h(σ1, . . . , σk), δ−h,D(k)(x) = min S h(σ1, . . . , σk),

where σ1, . . . , σk run over all k mutually orthogonal J-invariant planes of Dx at a
point x ∈ M , and S h(σ1, . . . , σk) is defined using (2.6) by

(2.7) S h(σ1, . . . , σk) =
∑

i<j
Kh(σi, σj).

ForD = TM , i.e., for an almost Hermitian manifold, we get the holomorphic mutual
curvature invariants δ±h (k) := δ±h,TM (k).

Lemma 2.1. Let {σ1, . . . , σk} (2 6 k 6 d/2) be mutually orthogonal J-invariant
planes of a complex distribution Dx at a point x ∈ M . Then

(2.8) 2 S h(σ1, . . . , σk) = Sm(σ1, . . . , σk).
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Proof. By the Bianchi identity, we get

(2.9) Kh(σ, σ
′) = R(X,Y,X, Y ) +R(X,JY,X, JY ).

Replacing X with JX, we get Kh(σ, σ
′) = R(JX, Y, JX, Y ) +R(JX, JY, JX, JY ).

Thus, Sm(σ, σ
′) = 2Kh(σ, σ

′). From this, (2.2) and (2.7), we get (2.8).

Corollary 2.2. The following inequalities are true for 2 6 k 6 d/2:

2 δ+h,D(k) 6 δ+m,D(2, . . . , 2︸ ︷︷ ︸
k

), 2 δ−h,D(k) > δ−m,D(2, . . . , 2︸ ︷︷ ︸
k

).

3. CR-submanifolds in almost Hermitian manifolds

In this section, using mutual curvature invariants, Chen-type invariants and
holomorphic mutual curvature invariants, we prove several geometric inequalities
for CR-submanifolds in almost Hermitian manifolds.

An even-dimensional Riemannian manifold (M̄, ḡ) equipped with a skew-sym-
metric (1,1)-tensor J̄ such that J̄ 2X = −X and ḡ(J̄X, J̄Y ) = ḡ(X,Y ) for all
X,Y ∈ TM̄ is called an almost Hermitian manifold. We will put a top “bar” for ob-
jects related to M̄ . A submanifold Md+l (d, l > 0) of an almost Hermitian manifold
(M̄, J̄ , ḡ) is called a CR-submanifold if D = J̄(TM)∩TM is a complex distribution
(the maximal J̄-invariant subbundle) of constant real dimension d, see [5, Defini-
tion 7.2]. A different definition is given in [1, 9]: a real submanifold Md+l (d, l > 0)
of an almost Hermitian manifold (M̄, J̄ , ḡ) is called a CR-submanifold if there ex-
ists on M a totally real distribution D⊥ (i.e., J̄(D⊥) ⊂ T⊥M) whose orthogonal
complement D (i.e., TM = D ⊕ D⊥) is a complex distribution (i.e., J̄(D) = D)
of constant real dimension d. Both definitions above give the same thing when the
dimension of D is maximum, that is, D⊥ is one-dimensional. The main examples
are real hypersurfaces, other examples are explained in [5].

Example 3.1. Let (Md+1, g) be a CR-submanifold of an almost Hermitian manifold
(M̄, J̄ , ḡ) with a d-dimensional complex distribution D = J̄(TM) ∩ TM . Then Md+1

admits an almost contact metric structure (φ, ξ, η, g), where φ=J̄ |D and ξ is the unit
tangent vector field orthogonal to D.

Let h : TM × TM → TM⊥ be the 2nd fundamental form of the submanifold
(M, g) of the Riemannian manifold (M̄, ḡ). Recall the Gauss equation [3, page 34]:

(3.1) ḡ(R̄Y,Z U,X) = g(RY,Z U,X) + g(h(Y, U), h(Z,X))− g(h(Z,U), h(Y,X)),

where U,X, Y, Z ∈ TM and R̄ and R are the curvature tensors of (M̄, ḡ) and (M, g),
respectively. The mean curvature vector field of a subspace V ⊂ TxM is given by
HV =

∑
i h(ei, ei), where ei is an orthonormal basis of V . In short form, we will

write Hi instead of HVi , and H if V = TxM . For a CR-submanifold (Md+l, g), set

HDx(s) = max{ ∥HV ∥ : V ⊂ Dx, dimV = s > 0}.
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If s = d, then HDx(d) = ∥HDx∥, where HDx is the mean curvature vector of Dx.
Note that for s < d, the equality HDx(s) = 0 implies h |Dx = 0.

A CR-submanifold (M, g) in an almost Hermitian space (M̄, J̄ , ḡ) is called D-
minimal (where D = J̄(TM) ∩ TM) if HD ≡ 0. A CR-submanifold (Md+l, g) is

called mixed totally geodesic on V =
⊕ k

i=1 Vi ⊂ D if h(X,Y ) = 0 for all X ∈
Vi, Y ∈ Vj and i ̸= j. Note that δ+m,D (n1, . . . , nk) 6 δ+m(n1, . . . , nk), and, for s < d,
by HD(s) = 0, M is totally geodesic on D, i.e., h |Dx = 0.

Theorem 3.1. Let (Md+l, g) be a CR-submanifold of an almost Hermitian mani-
fold (M̄, J̄ , ḡ), and D = J̄(TM) ∩ TM . For any natural numbers n1, . . . , nk such
that

∑
i ni = s 6 d, we obtain

(3.2) δ+m,D(n1, . . . , nk) 6 δ̄+m(n1, . . . , nk) +
k − 1

2 k

{
HD(s)2, if s < d,
∥HD ∥2, if s = d,

where δ̄+m(n1, . . . , nk) are defined for (M̄, ḡ) similarly to δ+m(n1, . . . , nk) for (M, g),
see Definition 2.2. The equality in (3.2) holds at a point x ∈ Md+l if and only if
there exist mutually orthogonal subspaces V1, . . . , Vk of Dx with

∑
i ni = s such that

Md+l is mixed totally geodesic on V =
⊕ k

i=1 Vi, H1 = . . . = Hk, ∥HV ∥ = HDx(s)
and S̄m(V1, . . . , Vk) = δ̄+m(n1, . . . , nk)(x).

Proof. Taking a trace of (3.1) for the submanifold Md+l on V and Vi yields

τ̄(V )− τ(V ) = ∥hV ∥2 − ∥HV ∥2, τ̄(Vi)− τ(Vi) = ∥hi∥2 − ∥Hi∥2,(3.3)

where τ̄(V ), τ̄(Vi) and τ(V ), τ(Vi) are the scalar curvatures of subspaces V =⊕ k
i=1 Vi and Vi for the curvature tensors R̄ and R, respectively, at the point x ∈ M .

Let HV ̸= 0 hold on an open set U ⊂ M . We complement an adapted local
orthonormal frame {e1, . . . , ed} of D over U with a vector field ed+1 parallel to HV .

By HV =
∑ k

i=1 Hi and a21+ . . .+a2k > 1
k (a1+ . . .+ak)

2 for ai = ḡ(Hi, ed+1), we get

(3.4)
∑

i
∥Hi∥2 >

∑
i
ḡ(Hi, ed+1)

2 > 1

k
∥HV ∥2,

and the equality holds if and only if H1 = . . . = Hk. The (3.4) is true for HV = 0;
thus, it is valid on M . Set ∥hmix

ij ∥2 =
∑

ea∈Vi, eb∈Vj
∥h(ea, eb)∥2 for i ̸= j. Note that

(3.5) ∥hV ∥2 =
∑

i
∥hi∥2 +

∑
i<j

∥hmix
ij ∥2 >

∑
i
∥hi∥2,

and the equality holds if and only if ∥hmix
ij ∥2 = 0 (∀ i < j), i.e., Md+l is mixed

totally geodesic along V . By (3.3)–(3.5) and the following equalities, see (2.3):

τ̄(V ) = 2 S̄m(V1, . . . , Vk) +
∑

i
τ̄(Vi), τ(V ) = 2 Sm(V1, . . . , Vk) +

∑
i
τ(Vi),
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we obtain

2 Sm(V1, . . . , Vk) = 2 S̄m(V1, . . . , Vk) +
∑

i

(
τ̄(Vi)− τ(Vi)

)
+ ∥HV ∥2 − ∥hV ∥2

6 2 δ̄+m,D(n1, . . . , nk)− (∥hV ∥2 −
∑

i
∥hi∥2) + (∥HV ∥2 −

∑
i
∥Hi∥2)

6 2 δ̄+m,D(n1, . . . , nk) +
k − 1

k
HD(s)2,

and the equality holds in the 2nd line if and only if S̄m(V1, . . . , Vk)=δ̄+m,D(n1, . . . , nk)
and ∥HV ∥ = Hx(s) at each point x ∈ M . This proves (3.2) for s < d. The case∑

i ni = d of (3.2) can be proved similarly.

Remark 3.1. For a CR-submanifold (Md+l, g) in an almost Hermitian space (M̄, J̄ , ḡ)
with sectional curvature bounded above by c, for

∑
i ni = s 6 d from (2.5) and (3.2), we get

(3.6) δ+m,D(n1, . . . , nk) 6
{

c
2
(s2 −

∑
i n

2
i ) +

k−1
2 k

HD(s)2, if s < d,
c
2
(d2 −

∑
i n

2
i ) +

k−1
2 k

∥HD ∥2, if s = d.

For s = d, the RHS of (3.6) coincides with the RHS of [3, Eqn. (13.43)] for
∑

i ni = d.

As real hypersurfaces of almost Hermitian manifolds are the main examples of
CR-submanifolds and important objects in the study of geometrical inequalities, we
reformulate Theorem 3.1 especially for this case.

Corollary 3.1. Let (M2n+1, g) be a real hypersurface with a complex distribution
D = J̄(TM) ∩ TM of an almost Hermitian manifold (M̄, J̄ , ḡ). For any natural
numbers n1, . . . , nk such that

∑
i ni = s 6 2n, we obtain the inequality

(3.7) δ+m,D(n1, . . . , nk) 6 δ̄+m(n1, . . . , nk) +
k − 1

2 k

{
HD(s)2, if s < 2n,
∥HD ∥2, if s = 2n.

The equality in (3.7) holds at a point x ∈ M2n+1 if and only if there exist mu-
tually orthogonal subspaces V1, . . . , Vk of Dx with

∑
i ni = s such that M2n+1 is

mixed totally geodesic on V =
⊕ k

i=1 Vi, H1 = . . . = Hk, ∥HV ∥ = HDx(s) and
S̄m(V1, . . . , Vk) = δ̄+m(n1, . . . , nk)(x).

For any k-tuple (n1, . . . , nk) with
∑

i ni = s 6 d, define the normalized δm,D-
curvature by ∆m,D(n1, . . . , nk) = 2 k

k−1 δ
+
m,D(n1, . . . , nk), and for

∑
i ni = s put

∆̄m,D := max∆m,D(n1, . . . , nk).

Theorem 3.1 gives the following (compare with the maximum principle [3, page 268]).

Proposition 3.1. If the equality HD(s)2 = ∆m,D(n1, . . . , nk) holds for a CR-sub-
manifold (Md+l, g) of Cq for some k-tuple (n1, . . . , nk) with

∑
i ni = s 6 d, then for

all (m1, . . . ,mk) with
∑

i mi = s, we get ∆m,D(n1, . . . , nk) > ∆m,D(m1, . . . ,mk).

Proof. By the conditions, ∆m,D(n1, . . . , nk)=∆̄m,D(s). Since ∆m,D(m1, . . . ,mk) 6
HD(s)2, we obtain the inequality ∆m,D(m1, . . . ,mk) 6 ∆m,D(n1, . . . , nk).
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Corollary 3.2. For every CR-submanifold (Md+l, g) in Cq, we have HD(s)2 >
∆̄m,D(s) for any s < d, and ∥HD ∥2 > ∆̄m,D.

The case of equality in Corollary 3.2 is of special interest. Such extremal CR-
immersions in Cq can be compared to “ideal immersions” introduced by Chen’s for
real space forms in terms of δ-invariants, for example, [3, Definition 13.3].

The theory of δD-invariants (2.1) of CR-submanifolds can be developed similarly
to the theory of Chen’s δ-invariants of a Riemannian submanifold.

Theorem 3.2. Let (Md+l, g) be a CR-submanifold of an almost Hermitian man-
ifold (M̄, J̄ , ḡ) with sectional curvature bounded above by c ∈ R. For each k-tuple
(n1, . . . , nk) such that

∑
i ni 6 d, we obtain (similarly to [3, Theorem 13.5])

(3.8) δD(n1, . . . , nk) 6
d2(d+ k − 1−

∑
i ni)

2(d+ k −
∑

i ni)
∥HD∥2+ c

2
[d(d−1)−

∑
i
ni(ni−1)].

The case of equality in (3.8) is of special interest: extremal CR-submanifolds in
terms of δD-invariants are an analogue of Chen’s “ideal immersions”.

Set δ+m,D(k)=max δ+m,D(n1, . . . , nk) and δ−m,D(k)=min δ−m,D(n1, . . . , nk), where∑
i ni 6 d. The δ̄+m(k + 1) are defined for (M̄, ḡ) similarly to δ+m(k + 1) for (M, g).

Theorem 3.3. Let (Md+l, g) be a CR-submanifold of an almost Hermitian mani-
fold (M̄, J̄ , ḡ). For any k > 2, we obtain the inequality that supplements (3.7):

δ−m,D(k) 6 k − 1

2 k(k + 1)
∥HD ∥2 + δ̄+m(k + 1) .(3.9)

The equality in (3.9) holds at a point x ∈ Md+l if and only if there exist mutu-

ally orthogonal subspaces V1, . . . , Vk+1 of Dx with
∑k+1

i=1 ni = d such that Md+l

is mixed totally geodesic, H1 = . . . = Hk+1, S̄m(V1, . . . , Vk+1) = δ̄+m(n1, . . . , nk+1)

and Sm(V1, . . . , V̂i, . . . , Vk+1) = δ−m,D(k) for any i = 1, . . . , k + 1, where V̂i means
removing the space Vi from the set {V1, . . . , Vk+1}.

Proof. Let Vk+1 be the orthogonal complement to V =
⊕ k

i=1 Vi in Dx. Note that∑
i Sm(V1, . . . , V̂i, . . . , Vk+1) = (k + 1) Sm(V1, . . . , Vk+1). We also obtain δ−m,D(k) 6

δ−m,D(n1, . . . , n̂i, . . . , nk+1) 6 Sm,D(V1, . . . , V̂i, . . . , Vk+1) for any i = 1, . . . , k + 1.

Thus, δ−m,D(k) 6 Sm(V1, . . . , Vk+1), and using (3.7) for
∑

i ni = d gives (3.9).

Theorems 3.1 and 3.3 give the assertions on the absence of some CR-submanifolds.

Corollary 3.3. There are no D-minimal CR-submanifolds (Md+l, g) in Cq with
any of the following properties: δ+m,D(n1, . . . , nk) > 0 for some (n1, . . . , nk) with∑

i ni = d, and δ−m,D(k) > 0 for some k > 2.
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Next, we use the fact that the tangent distribution TM is the sum TM =
D ⊕ D⊥ of two mutually orthogonal distributions D and D⊥ of ranks d and l.
Let x ∈ M and {ei} on (M, g) be an adapted orthonormal frame, i.e., {e1, . . . , ed} ⊂
D(x), {ed+1, . . . , ed+l} ⊂ D⊥(x). The mutual curvature of (D,D⊥) is a function
Sm(D,D⊥), given at x ∈ M by Sm(D(x), D⊥(x))=

∑
16a6d, d<b6d+l K(ea, eb).

In this case, Sm(D,D⊥) is the mixed scalar curvature; see [8, page 2]. A CR-
submanifold (M, g) is called mixed totally geodesic on (D,D⊥) if h(X,Y ) = 0 (X ∈
D, Y ∈ D⊥).

Theorem 3.4. Let (Md+l, g;D,D⊥), where D = J̄(TM)∩TM , be a CR-submani-
fold of an almost Hermitian manifold (M̄, J̄ , ḡ). Then the following inequality holds:

(3.10) Sm(D,D⊥) 6 (1/4) ∥HD∥2 + δ̄+m(d, l) .

The equality in (3.10) holds at a point x ∈ M if and only if Md+l is mixed totally
geodesic, HD(x) = HD⊥(x) and S̄m(D(x), D⊥(x)) = δ̄+m(d, l)(x).

Proof. The proof of the first statement is similar to the proof of Theorem 3.1. The
second assertion follows directly from the cases of equality, as for Theorem 3.1.

Corollary 3.4. A CR-submanifold in Cq with Sm(D,D⊥)>0 cannot be D-minimal.

Example 3.2. Consider distributions D,D⊥ on a domain M on a unit sphere Sd+l(1)
in a complex Euclidean space; thus, δ̄+m(d, l) = 0. Using coordinate charts, we can take
integrable distributions D,D⊥, and M is diffeomorphic to the product of two manifolds.

Let d = 2 and l = 1; then, ∥H ∥2 = 9 and Sm(D,D⊥) = 2. Hence, (3.10) reduces to
the inequality 2 < 9/4. Note that HD = 1

3
H ̸= 2

3
H = HD⊥ .

Let d = l = 2 and locally M ⊂ S4(1) be diffeomorphic to C × C. Then, ∥H ∥2 = 16,
HD = HD⊥ , Sm(D,D⊥) = 4 and (3.10) reduces to the equality 4 = 16/4.

The following theorem deals with holomorphic bisectional curvature invariants.

Theorem 3.5. Let (Md+l, g) be a CR-submanifold of an almost Hermitian mani-
fold (M̄, J̄ , ḡ). For any natural number k ∈ [2, d/2], we obtain

(3.11) δ+h,D(k) 6 δ̄+h (k) +
k − 1

4 k

{
HD(2k)2, if 2k < d,
∥HD ∥2, if 2k = d,

where δ̄+h (k) are defined for (M̄, ḡ) similarly to δ+h (k) for (M, g), see Definition 2.3.
The equality in (3.11) holds at x ∈ Md+l if and only if there exist mutually orthogo-
nal J-invariant planes {σ1, . . . , σk} of Dx such that Md+l is mixed totally geodesic

on V=
⊕ k

i=1 σi, H1 = . . . = Hk, ∥HV ∥ = HDx(2k) and S̄ h(σ1, . . . , σk) = δ̄+h (k)(x).

Proof. This is similar to the proof of Theorem 3.1.

Corollary 3.5. Let (Md+1, g) be a real hypersurface of an almost Hermitian mani-
fold (M̄, J̄ , ḡ). Then (3.11) is true for any natural number k ∈ [2, d/2].
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Using δ(2, . . . , 2)-invariants, Chen classified in [3, Section 15.7] extremal real hy-
persurfaces of Kählerian space forms. Similarly, we would like to study the extreme
case of Corollary 3.5 when (M̄, J̄ , ḡ) is a Kählerian space form.

From Theorem 3.5 we get the assertion on the absence of some CR-submanifolds.

Corollary 3.6. A CR-submanifold (Md+l, g) in Cq satisfying δ+h,D(d/2) > 0 can-
not be D-minimal.

4. Conclusions

We studied the question of finding a simple optimal connection between the in-
trinsic and extrinsic invariants of a manifold equipped with a complex distribution.
The main contribution of the paper is the concept of curvature invariants δ±m,D of
CR-submanifolds of almost Hermitian manifolds, based on the mutual curvature of
several pairwise orthogonal subspaces of a contact distribution D. We used these
curvature invariants and Chen-type curvature invariants δ±D to prove new geometric
inequalities involving the squared intermediate mean curvature for CR-submanifolds
of almost Hermitian manifolds. In the case of complex planes, we study curvature
invariants δ±h,D based on the concept of holomorphic bisectional curvature. Conse-
quences of the absence of some D-minimal CR-submanifolds were provided.
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