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COMPOSITION OF CONFORMAL AND PROJECTIVE
MAPPINGS OF GENERALIZED RIEMANNIAN SPACES IN
EISENHART’S SENSE PRESERVING CERTAIN TENSORS

Miloš Z. Petrović

Faculty of Agriculture, University of Niš, Kruševac, Serbia

Abstract. The composition of conformal and projective mappings between Rieman-
nian spaces that were at the same time harmonic had been studied by S. E. Stepanov,
I. G. Shandra in 2003 and further developed in I. Hinterleitner’s Ph.D. thesis in 2009.
Conformal and projective mappings of Riemannian spaces preserving certain tensors
were studied by O. Chepurna in the 2012 Ph.D. thesis. We consider conformal and
projective mappings of generalized Riemannian spaces in Eisenhart’s sense and find
necessary and sufficient conditions for these mappings to preserve curvature, Ricci and
traceless Ricci tensors and some of their linear combinations. Particularly, as an addi-
tional contribution to related results collected in the Ph.D. thesis by O. Chepurna, we
find that the following result holds in the case of Riemannian spaces: if a conformal
mapping f1 : M → M̂ is preserving the traceless Ricci tensor and a projective mapping
f2 : M̂ → M is preserving the traceless Ricci tensor then the Yano tensor of concircular
curvature is invariant with respect to the composition f3 = f1 ◦ f2 : M → M .
Keywords: conformal mapping, geodesic mapping, generalized Riemannian space,
Riemannian curvature tensor, traceless Ricci tensor, Weyl’s tensor of projective curva-
ture, Weyl’s conformal curvature tensor, Yano’s tensor of concircular curvature.

1. Introduction and preliminaries

A generalized Riemannian space in Eisenhart’s sense [3] (M,G = g + ω) is a
differentiable manifold M endowed with a bilinear form G = g + ω, or in lo-
cal components Gij = gij + ωij , where g is a non-degenerate (i.e., det (g) ̸= 0),
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symmetric bilinear form and ω is a skew-symmetric bilinear form. The curva-
ture tensors R

θ

h
ijk, θ = 1, . . . , 5 that correspond to generalized Christoffel symbols

Γh
ij = ghpΓpij = 1

2g
hp (∂jGip − ∂pGij + ∂iGpj), are related with the Riemannian

curvature tensor

(1.1)
g

Rh
ijk = ∂k

g

Γh
ij − ∂j

g

Γh
ik +

g

Γp
ij

g

Γh
pk −

g

Γp
ik

g

Γh
pj ,

where
g

Γh
ij are components of the Levi-Civita connection

g

∇ of the Riemannian met-
ric g, by (see [6], pp. 37–38)

(1.2)
R
θ

h
ijk[µ, ν, α, β, γ] =

g

Rh
ijk + µ

g

∇kT
h
ij + ν

g

∇jT
h
ik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk,

where

(1.3)

(θ, µ, ν, α, β, γ) ∈
{(

1,
1

2
,−1

2
,
1

4
,−1

4
, 0

)
,

(
2,−1

2
,
1

2
,
1

4
,−1

4
, 0

)
,(

3,
1

2
,
1

2
,−1

4
,
1

4
,−1

2

)
,

(
4,

1

2
,
1

2
,−1

4
,
1

4
,
1

2

)
,(

5, 0, 0,
1

4
,
1

4
, 0

)}
.

Obviously, by contracting the relation between the curvature tensors R
θ

h
ijk[µ, ν, α, β, γ]

and
g

Rh
ijk, given by (1.2), with respect to the indices h and k, we get the relation

between the Ricci tensors R
θ
ic ij [µ, β, γ] = R

θ

p
ijp[µ, β, γ] and

g

Ricij =
g

Rp
ijp

(1.4) R
θ
ic ij [µ, β, γ] =

g

Ricij + µ
g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq.

Furthermore, after contracting the relation (1.4) with gij we find the relation be-

tween the scalar curvatures S
θ
[µ, β, γ] = gpqR

θ
ic pq[µ, β, γ] and

g

S = gpq
g

Rpq

(1.5) S
θ
[µ, β, γ] =

g

S + µgpq
g

∇rT
r
pq + βgpqT s

rqT
r
ps + γgpqT s

rpT
r
qs.

From (1.2) it directly follows that the (0, 4) curvature tensors R
θ
hijk[µ, ν, α, β, γ] =

ghpR
θ

p
ijk, θ = 1, . . . , 5 and

g

Rhijk = ghp
g

Rp
ijk are related by

(1.6)
R
θ
hijk[µ, ν, α, β, γ] =

g

Rhijk + µ
g

∇kghpT
p
ij + ν

g

∇jghpT
p
ik

+ αghpT
p
qkT

q
ij + βghpT

p
qjT

q
ik + γghpT

p
qiT

q
jk,

where (θ, µ, α, β, γ) are given by (1.3).



Composition of Conformal and Projective Mappings of Generalized Riemannian Spaces875

2. Conformal mappings between generalized Riemannian spaces in
Eisenhart’s sense

For preliminaries about conformal mappings between generalized Riemannian spaces
in Eisenhart’s sense see Chapter 6 of the monograph [6].

2.1. Weyl conformal curvature tensor

In what follows, we shall give a more clear overview of the basic idea used in the
paper [9] and give some remarks and comments. On page 84 of the monograph [7]
the Riemannian curvature tensor is defined by Rh

ijk = ∂jΓ
h
ik−∂kΓ

h
ij+Γp

ikΓ
h
pj−Γp

ijΓ
h
pk,

which is different than the Riemannian curvature tensor that we use
g

Rh
ijk by a sign.

The relation between the Riemannian curvature tensors Rh
ijk and Rh

ijk of two
Riemannian spaces (M, g) and (M, g), respectively, with respect to the conformal
mapping between these spaces f : M → M is well-known, which, by using the
notation from page 239 of the monograph [7], reads

(2.1) Rh
ijk = Rh

ijk + δhk σij − δhj σik + σh
kgij − σh

j gik +
(
δhk gij − δhj gik

)
∆1σ,

where

(2.2) σij =
g

∇jσi − σiσj , σh
k = ghpσpk, ∆1σ = gpqσpσq.

By multiplying the relation (2.1) with −1 we get the relation between the Rie-

mannian curvature tensors
g

Rh
ijk and

g

Rh
ijk

(2.3)
g

Rh
ijk =

g

Rh
ijk − δhk σij + δhj σik − σh

kgij + σh
j gik −

(
δhk gij + δhj gik

)
∆1σ,

where σij , σh
k and ∆1σ are determined by (2.2), the Riemannian curvature tensor

g

Rh
ijk is determined by (1.1) and the Riemannian curvature tensor

g

Rh
ijk is determined

in the same manner in the Riemannian space (M, g).
In [9] it was observed that starting from the relation (2.3) and following the

procedure for deriving the Weyl conformal curvature tensor, described, for instance,
on page 239 of the monograph [7], we get Theorem 1 from [9]. Theorem 1 from [9]
states that for arbitrary (θ, µ, ν, α, β, γ), given by (1.3), the tensor C

θ

h
ijk, given by

(2.4) C
θ

h
ijk = R

θ

h
ijk + δhj L

θ
ik − δhk L

θ
ij + gikL

θ

h
j − gijL

θ

h
k ,

where we used the notation analogous as in [7], p. 239

(2.5) L
θ
ij =

1

n− 2

(
R
θ
icij −

S
θ

2(n− 1)
gij

)
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and

(2.6) L
θ

h
j = ghpL

θ
pj =

1

n− 2

(
R
θ
ichj −

S
θ

2(n− 1)
δhj

)
,

is invariant with respect to the conformal mapping f : M → M between the gen-
eralized Riemannian spaces (M,G = g + ω) and (M,G = g + ω). However, the
assumption that must be satisfied for the result in Theorem 1 from [9] to hold is
given by [10]

(2.7)
µ

g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

= µ
g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk,

where
g

∇ and
g

∇ are the Levi-Civita connections that correspond to the Rieman-
nian metrics g and g, respectively. Here Th

ij and Th
ij are the torsion tensors that

correspond to the generalized Christoffel symbols with respect to the generalized
Riemannian metrics G and G, respectively.

The assumption (2.7) does not affect the result given in Theorem 1 from [9] and
this assumption is quite obvious and natural, because the left and right sides of
this assumption are expressions which we can add to the left and right sides of the
relation (2.3), respectively, in order to obtain the same relation where instead of

the Riemannian curvature tensors
g

Rh
ijk and

g

Rh
ijk we will have the curvature tensors

R
θ

h
ijk[µ, ν, α, β, γ] and R

θ

h
ijk[µ, ν, α, β, γ], according to the relation (1.2).

Obviously, when we lower the upper index in (2.4) we get the relation between
the (0, 4) tensors C

θ
hijk = ghpC

θ

p
ijk and R

θ
hijk = ghpR

θ

p
ijk

(2.8) C
θ
hijk = R

θ
hijk + ghjL

θ
ik − ghkL

θ
ij + gikL

θ
hj − gijL

θ
hk,

where the tensors L
θ
ij are given by (2.5).

Proposition 2.1. Let f : M → M be a conformal mapping between generalized
Riemannian spaces (M,G = g + ω) and (M,G = g + ω) of dimension n > 2. For
an arbitrary (θ, µ, ν, α, β, γ) given by (1.3), the tensor C

θ

h
ijk given by (2.4) is related

with the Weyl conformal curvature tensor
g

Ch
ijk by

(2.9)

C
θ

h
ijk[µ, ν, α, β, γ] =

g

Ch
ijk + µ

g

∇kT
h
ij + ν

g

∇jT
h
ik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

+ δhj Qik[µ, β, γ]− δhk Qij [µ, β, γ]

+ gikQ
h
j [µ, β, γ]− gijQ

h
k [µ, β, γ],
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where the tensors

(2.10) Qij [µ, β, γ] =
1

n− 2
Sij [µ, β, γ]−

1

2(n− 2)
gpqSpq[µ, β, γ]gij

and
Qh

k =ghpQpk

depend on the tensor

(2.11) Sij [µ, β, γ] = µ
g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq.

Proof. By using the relations (1.2), (1.4) and (1.5) into (2.4), (2.5) and (2.6) we
obtain that

(2.12) L
θ
ij [µ, β, γ] = Lij +Qij [µ, β, γ],

where the tensor Qij [µ, β, γ] is defined by (2.10). Also,

(2.13) L
θ

h
j [µ, β, γ] =ghp (Lpj +Qpj [µ, β, γ]) = Lh

j +Qh
j [µ, β, γ].

By using (2.12) and (2.13) into (2.4) we obtain (2.9), which completes the proof.

Corollary 2.1. Let f : M → M be a conformal mapping between generalized
Riemannian spaces (M,G = g + ω) and (M,G = g + ω) of dimension n > 2. For
an arbitrary (θ, µ, ν, α, β, γ) given by (1.3), the (0, 4) tensor C

θ
hijk given by (2.8) is

related with the (0, 4) Weyl conformal curvature tensor
g

Chijk by

C
θ
hijk[µ, ν, α, β, γ] =

g

Chijk + µ
g

∇kThij + ν
g

∇jThik

+ αThpkT
p
ij + βThpjT

p
ik + γThpiT

p
jk

+ ghjQik[µ, β, γ]− ghkQij [µ, β, γ]

+ gikQhj [µ, β, γ]− gijQhk[µ, β, γ],

where the tensor Qij [µ, β, γ] is defined by (2.10), or in a more compact way as

C
θ
hijk[µ, ν, α, β, γ] =

g

Chijk + Phijk[µ, ν, α, β, γ] +Qhijk[µ, ν, α, β, γ],

where Phijk[µ, ν, α, β, γ] and Qhijk[µ, ν, α, β, γ] are defined by

Phijk[µ, ν, α, β, γ] =µghp
g

∇kT
p
ij + νghp

g

∇jT
p
ik

+ αghpT
p
qkT

q
ij + βghpT

p
qjT

q
ik + γghpT

p
qiT

q
jk

and
Qhijk[µ, ν, α, β, γ] =ghjQik[µ, β, γ]− ghkQij [µ, β, γ]

+ gikQhj [µ, β, γ]− gijQhk[µ, β, γ].
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2.2. Conformal mappings between generalized Riemannian spaces in
Eisenhart’s sense preserving curvature, Ricci and traceless Ricci

tensors

V. E. Berezovski, S. Bácsó and J. Mikeš [1] studied diffeomorphisms between affine
connected spaces preserving certain tensors, including the Riemannian curvature
tensor and the Ricci tensor. Here we will use such approach to consider diffeomor-
phisms between the generalized Riemannian spaces in Eisenhart’s sense.

Theorem 2.1. Let (M,G = g+ω) and (M,G = g+ω) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ)
given by (1.3) a conformal mapping f : M → M is preserving the Riemannian

curvature tensor
g

Rh
ijk if and only if

(2.14)

δhj Lik − δhk Lij + Lh
j gik − Lh

kgij

+ µ
g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

+ δhj Qik[µ, β, γ]− δhk Qij [µ, β, γ]

+ gikQ
h
j [µ, β, γ]− gijQ

h
k [µ, β, γ]

=δhj Lik − δhk Lij + Lh
j gik − Lh

kgij

+ µ
g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

+ δhj Qik[µ, β, γ]− δhk Qij [µ, β, γ]

+ gikQ
h
j [µ, β, γ]− gijQ

h
k [µ, β, γ],

where Qh
j = ghpQpj and Qh

j = ghpQpj. The tensors Lij and Qij [µ, β, γ] are deter-

mined in the space (M,G = g + ω) by Lij = 1
n−2

(
g

Ricij −
g

S
2(n−1)gij

)
and (2.10),

respectively, while the tensors Lij and Qij [µ, β, γ] are determined in the same man-
ner in the space (M,G = g + ω).

Corollary 2.2. Let (M,G = g+ω) and (M,G = g+ω) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ)
given by (1.3) a conformal mapping f : M → M is preserving the Ricci curvature

tensor
g

Ricij =
g

Rp
ijp if and only if

(2.15)

Lij − (n− 1)Lij − Lp
pgij + µ

g

∇pT
p
ij + βT p

qjT
q
ip + γT p

qiT
q
jp

+ 2Qij [µ, β, γ]− nQij [µ, β, γ]− gijQ
p
p[µ, β, γ]

=Lij − (n− 1)Lij − Lp
pgij + µg∇pT

p
ij + βT p

qjT
q
ip + γT p

qiT
q
jp

+ 2Qij [µ, β, γ]− nQij [µ, β, γ]− gijQ
p
p[µ, β, γ],
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where Qh
j = ghpQpj and Qh

j = ghpQpj. The tensors Lij and Qij [µ, β, γ] are deter-

mined in the space (M,G = g + ω) by Lij = 1
n−2

(
g

Ricij −
g

S
2(n−1)gij

)
and (2.10),

respectively, while Lij and Qij [µ, β, γ] are determined in the same manner in the
space (M,G = g + ω).

Proof. The relation (2.15) is obtained directly from the relation (2.14).

Theorem 2.2. Let (M,G = g+ω) and (M,G = g+ω) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ)
given by (1.3) the curvature tensor R

θ

h
ijk is preserved with respect to the conformal

mapping f : M → M if and only if

µ
g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

+ δhj L
θ
ik − δhk Lij + L

θ

h
j gik − L

θ

h
kgij

= µ
g

∇kT
h
ij + ν

g

∇jT
h
ik + αTh

pkT
p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

+ δhj L
θ
ik − δhk Lij + L

θ

h
j gik − L

θ

h
kgij ,

where the tensors Lij given by Lij =
1

n−2

(
g

Ricij −
g

S
2(n−1)gij

)
and Lh

i = ghpLpi are

determined in the generalized Riemannian space in Eisenhart’s sense (M,G = g+ω),
while the tensors Lij and Lh

i = ghpLpi are determined in the same manner in the
generalized Riemannian space in Eisenhart’s sense (M,G = g + ω).

Corollary 2.3. Let (M,G = g+ω) and (M,G = g+ω) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ)
given by (1.3) the curvature tensor R

θ

h
ijk is preserved with respect to the conformal

mapping f : M → M if and only if

µ
g

∇pT
p
ij + βT p

qjT
q
ip + γT p

qiT
q
jp + L

θ
ij − nLij + L

θ
ij − L

θ

p
pgij

= µ
g

∇pT
p
ij + βT p

qjT
q
ip + γT p

qiT
q
jp + L

θ
ij − nLij + L

θ
ij − L

θ

p
pgij ,

where the tensors Lij given by Lij =
1

n−2

(
g

Ricij −
g

S
2(n−1)gij

)
and Lh

i = ghpLpi are

determined in the generalized Riemannian space in Eisenhart’s sense (M,G = g+ω),
while the tensors Lij and Lh

i = ghpLpi are determined in the same manner in the
generalized Riemannian space in Eisenhart’s sense (M,G = g + ω).

In the Riemannian space (M, g) the traceless Ricci tensor is given by

(2.16)
g

Ricij −
1

n

g

Sgij
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and in the generalized Riemannian space (M,G = g+ω) the traceless Ricci tensors
are given by [9]

(2.17) R
θ
icij −

1

n
S
θ
gij , θ ∈ {1, . . . , 5},

where S
θ

and R
θ
ic ij are scalar curvatures and Ricci tensors, respectively.

Theorem 2.3. Let (M,G = g + ω) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ) given by (1.3),
the tensor given by (2.17), is related with the tensor given by (2.16), by

(R
θ
icij −

1

n
S
θ
gij)[µ, β, γ] =

g

Ricij −
1

n

g

Sgij + µ
g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq

− 1

n

(
µgij

g

∇pT
p
ij + βgijT q

pjT
p
iq + γgijT q

piT
p
jq

)
gij .

Proof. Obvious.

2.3. Yano tensor of concircular curvature

Theorem 4 from [9] claims that the tensors Y
θ

h
ijk and R

θ
icij − 1

nSθ
gij , θ = 1, . . . , 5

which are analogous to the Yano tensor of concircular curvature and the traceless
Ricci tensor, respectively, given below, are invariant with respect to the concircular
mapping f : M → M between generalized Riemannian spaces in Eisenhart’s sense
(M, g) and (M, g).

The tensor Y
θ

h
ijk is given by

(2.18) Y
θ

h
ijk =R

θ

h
ijk −

S
θ

n(n− 1)

(
gkiδ

h
j − gjiδ

h
k

)
.

When we lower the upper index in (2.18) we get

(2.19) Y
θ
hijk =R

θ
hijk −

S
θ

n(n− 1)
(gkighj − gjighk) ,

where we denoted Y
θ
hijk = ghpY

θ

p
ijk and R

θ
hijk = ghpR

θ

p
ijk.

Theorem 2.4. For an arbitrary (θ, µ, ν, α, β, γ) given by (1.3), the tensor Y
θ

h
ijk

determined by (2.18), is related with the Yano tensor of concircular curvature
g

Y h
ijk
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by

(2.20)

Y
θ

h
ijk[µ, ν, α, β, γ] =

g

Y h
ijk + µ

g

∇kT
h
ij + ν

g

∇jT
h
ik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

− 1

n(n− 1)
(µgpq

g

∇rT
r
pq + βgpqT s

rqT
r
ps

+ γgpqT s
rpT

r
qs)(gkiδ

h
j − gjiδ

h
k ).

Proof. Obvious.

Corollary 2.4. For an arbitrary (θ, µ, ν, α, β, γ) given by (1.3), the tensor Y
θ
hijk

determined by (2.19), is related with the Yano tensor of concircular curvature
g

Y hijk

by

Y
θ
hijk[µ, ν, α, β, γ] =

g

Y hijk + µghp
g

∇kT
p
ij + νghp

g

∇jT
p
ik

+ αghpT
p
qkT

q
ij + βghpT

p
qjT

q
ik + γghpT

p
qiT

q
jk

−
µgpq

g

∇rT
r
pq + βgpqT s

rqT
r
ps + γgpqT s

rpT
r
qs

n(n− 1)
(gkighj − gjighk) .

Theorem 2.5. (See [2], p. 26) A Riemannian space admits a traceless Ricci tensor
preserving conformal mapping onto a Riemannian space if and only if the mapping
under consideration preserves the Yano tensor of concircular curvature.

The result given in Theorem 2.5 can easily be extended to generalized Rieman-
nian spaces in Eisenhart’s sense as stated in Proposition 2.2.

Proposition 2.2. If a mapping f : M → M between generalized Riemannian
spaces in Eisenhart’s sense (M,G = g + ω) and (M,G = g + ω) is conformal then
for arbitrary θ ∈ {1, . . . , 5} the mapping f preserves the tensor Y

θ

h
ijk if and only if

it preserves the tensor R
θ
icij − 1

nSθ
gij.

3. Geodesic mappings between generalized Riemannian spaces in
Eisenhart’s sense

Geodesic mappings between generalized Riemannian spaces were previously studied,
see Chapter 7 of the monograph [6] and the papers that follow that direction.
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3.1. Weyl tensor of projective curvature

In Theorem 2.1 from [10] we considered a geodesic mapping between manifolds with
non-symmetric linear connection. A generalized Riemannian space in Eisenhart’s
sense is a particular manifold with a non-symmetric linear connection. Here we
consider a geodesic mapping between generalized Riemannian spaces in Eisenhart’se
sense, hence Theorem 2.1 from [10] can be applied, which gives Proposition 3.1.

Proposition 3.1. The tensors

(3.1) W
θ

h
ijk =R

θ

h
ijk − 1

(n− 1)

(
R
θ
ic ijδ

h
k −R

θ
ic ikδ

h
j

)
,

are invariant with respect to the geodesic mapping f : M → M between generalized
Riemannian spaces (M,G = g+ ω) and (M,G = g+ ω) if and only if the condition
(2.7) holds, where for given θ ∈ {1, 2, . . . , 5} the parameters (µ, ν, α, β, γ) are chosen
from (1.3).

Obviously, by lowering the upper index h in (3.1) one can get

ghpW
θ

p
ijk =ghpR

θ

p
ijk − 1

(n− 1)

(
R
θ
ic ijghpδ

p
k −R

θ
ic ikghpδ

p
j

)
,

i.e.,

(3.2) W
θ

hijk =R
θ
hijk − 1

(n− 1)

(
R
θ
ic ijghk −R

θ
ic ikghj

)
,

where we denoted W
θ

hijk = ghpW
θ

p
ijk and R

θ
hijk = ghpR

θ

p
ijk.

Theorem 3.1. Let (M,G = g + ω) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ) given by (1.3),

the tensor W
θ

h
ijk given by (3.1) and the Weyl projective curvature tensor

g

Wh
ijk =

g

Rh
ijk − 1

(n−1)

(
g

Ricijδ
h
k −

g

Ricikδ
h
j

)
, are related by

W
θ

h
ijk[µ, ν, α, β, γ] =

g

Wh
ijk + µ

g

∇kT
h
ij + ν

g

∇jT
h
ik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

− 1

(n− 1)

(
µ

g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq

)
δhk

+
1

(n− 1)

(
µ

g

∇pT
p
ik + βT q

pkT
p
iq + γT q

piT
p
kq

)
δhj .
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Proof. By using (1.2) and (1.4) into (3.1) we obtain that

W
θ

h
ijk[µ, ν, α, β, γ] =

g

Rh
ijk + µ

g

∇kT
h
ij + ν

g

∇jT
h
ik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

− 1

(n− 1)

(
g

Ricij + µ
g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq

)
δhk

+
1

(n− 1)

(
g

Ricik + µ
g

∇pT
p
ik + βT q

pkT
p
iq + γT q

piT
p
kq

)
δhj ,

which completes the proof.

Corollary 3.1. Let (M,G = g + ω) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (θ, µ, ν, α, β, γ) given by (1.3),
the tensor W

θ
hijk given by (3.2) and the Weyl projective curvature tensor

g

Whijk =
g

Rhijk − 1

(n− 1)

(
g

Ricijghk −
g

Ricikghj

)
,

are related by

W
θ

hijk[µ, ν, α, β, γ] =
g

Whijk + µ
g

∇kThij + ν
g

∇jThik

+ αTh
pkT

p
ij + βTh

pjT
p
ik + γTh

piT
p
jk

− 1

(n− 1)

(
µ

g

∇pT
p
ij + βT q

pjT
p
iq + γT q

piT
p
jq

)
ghk

+
1

(n− 1)

(
µ

g

∇pT
p
ik + βT q

pkT
p
iq + γT q

piT
p
kq

)
ghj .

3.2. Geodesic mappings between generalized Riemannian spaces in
Eisenhart’s sense preserving curvature and Ricci tensors

We will follow the idea from [1] where geodesic mappings between affine connected
spaces preserving the Riemannian and Ricci tensors were studied to consider the
geodesic mappings between the Riemannian spaces preserving the curvature and
Ricci tensors.

The relation W
θ

h
ijk = W

θ

h
ijk reads

(3.3)

R
θ

h
ijk − 1

(n− 1)

(
R
θ
ic ijδ

h
k −R

θ
ic ikδ

h
j

)
= R

θ

h
ijk − 1

(n− 1)

(
R
θ
ic ijδ

h
k −R

θ
ic ikδ

h
j

)
,

where R
θ
icij = R

θ

p
ijp and R

θ
icij = R

θ

p
ijp, θ = 1, . . . , 5 are Ricci tensors of generalized

Riemannian spaces in Eisenhart’s sense (M,G = g + ω) and (M,G = g + ω),
respectively.
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From relation (3.3) it follows that a geodesic mapping f : M → M is preserving
the curvature tensor R

θ

h
ijk if and only if(

R
θ
ic ij −R

θ
ic ij

)
δhk −

(
R
θ
ic ik −R

θ
ic ik

)
δhj = 0.

Particularly, from (3.3) it follows that if a geodesic mapping f : M → M is preserv-
ing the Ricci tensor R

θ
ic ij then it preserves the curvature tensor R

θ

h
ijk as well, which

is in accordance with the observation obtained in [1] for an arbitrary diffeomorphism
between affine connected spaces without torsion.

4. Composition of conformal and projective mappings between
generalized Riemannian spaces in Eisenhart’s sense

If we consider a composition of conformal and projective mappings preserving the
tensor R

θ
icij − 1

nSθ
gij , for an arbitrary θ ∈ {1, . . . , 5} then we obtain that the tensor

Y
θ

h
ijk is invariant with respect to this composition.

Theorem 4.1. Let (M,G = g + ω), (M̂, Ĝ = ĝ + ω̂) and (M,G = g + ω) be
generalized Riemannian spaces of dimension n > 2. If there exists a conformal
mapping f1 : M → M̂ that preserves the tensor R

θ
icij − 1

nSθ
gij, for chosen θ ∈

{1, . . . , 5}, and a projective mapping f2 : M̂ → M that preserves the tensor R̂
θ
icij −

1
n Ŝθ

ĝij then the tensor Y
θ

h
ijk is invariant with respect to the mapping f3 = f1 ◦ f2 :

M → M .

The result given in Theorem 4.1 particularly holds when instead of the tensor

R
θ
icij − 1

nSθ
gij we consider the traceless Ricci tensor

g

Ricij − 1
n

g

Sgij and instead of

Y
θ

h
ijk we consider the Yano tensor of concircular curvature

g

Y h
ijk. From Theorem 4.1

we get Corollary 4.1.

Corollary 4.1. Let (M, g), (M̂, ĝ) and (M, g) be Riemannian spaces of dimension
n > 2. Let us assume that there exists a conformal mapping f1 : M → M̂ that

preserves the traceless Ricci tensor
g

Ricij− 1
n

g

Sgij and a projective mapping f2 : M̂ →

M that preserves the traceless Ricci tensor
ĝ

Ricij − 1
n

ĝ

Sĝij, then the Yano tensor of
concircular curvature is invariant with respect to the mapping f3 = f1◦f2 : M → M .

4.1. Conformally-projective harmonic mappings of generalized
Riemannian spaces in Eisenhart’s sense

Let (M,G = g + ω) and (M,G = g + ω) be generalized Riemannian spaces of
dimension n > 2. A diffeomorphism f : M → M is said to be harmonic if and only



Composition of Conformal and Projective Mappings of Generalized Riemannian Spaces885

if (see for instance [4], p. 46, Eq. (4.12))

(4.1)
(

g

Γh
ij −

g

Γh
ij

)
gij = 0,

where
g

Γh
ij and

g

Γh
ij are Christoffel symbols of the Riemannian metrics g and g,

respectively.

Let us assume that there exists a conformal mapping f1 : M → M̂ and a
projective mapping f2 : M̂ → M such that f3 = f1 ◦ f2 : M → M is a harmonic
mapping in the sense that (4.1) holds. In this case there exists the relation (see [4],
p. 58, Eq. (5.1))

g

Γh
ij(x) =

g

Γh
ij(x) + φiδ

h
j + φjδ

h
i − 2

n
φhgij ,

where φi = ∂iφ(x) is a gradient-like vector and φh = ghpφp.

By using the relation (1.2) and the the corresponding relation between the cur-
vature tensors Rh

ijk and Rh
ijk with respect to the conformally-projective harmonic

mapping f3, given in Eq. (5.3) on page 58 of [4], we easily get the relation for

the Riemannian curvature tensors
g

Rh
ijk and

g

Rh
ijk with respect to the conformally-

projective harmonic mapping f3 and furthermore the relation between the curvature
tensors R

θ

h
ijk and R

θ

h
ijk, which is given by

R
θ

h
ijk = R

θ

h
ijk − δhk

(
g

∇jφi − φiφj

)
+ δhj

(
g

∇kφi − φiφk

)
− 2

n

(
∇kφ

h − 2

n
φhφk + φpφ

pδhk

)
gij

+
2

n

(
∇jφ

h − 2

n
φhφj + φpφ

pδhj

)
gik

− µ
θ

(
g

∇kT
h
ij −

g

∇kT
h
ij

)
− ν

θ

(
g

∇jT
h
ik −

g

∇jT
h
ik

)
− α

θ

(
Th

pkT
p
ij − Th

pkT
p
ij

)
− β

θ

(
Th

pjT
p
ik − Th

pjT
p
ik

)
− γ

θ

(
Th

piT
p
jk − Th

piT
p
jk

)
, θ = 1, . . . , 5.

The last relation can be rewritten as

(4.2)

R
θ
(∂k, ∂j)∂i = R

θ
(∂k, ∂j)∂i + P (∂k, ∂j , ∂i)− P (∂j , ∂k, ∂i)

+A(∂k, ∂j , ∂i)[µ
θ
, ν
θ
]−A(∂k, ∂j , ∂i)[µ

θ
, ν
θ
]

+B(∂k, ∂j , ∂i)[α
θ
, β
θ
, γ
θ
]−B(∂k, ∂j , ∂i)[α

θ
, β
θ
, γ
θ
],
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where

P (∂k, ∂j , ∂i) =(
g

∇∂k
P )(∂i, ∂j) + P (P (∂i, ∂j), ∂k),

=δhj

(
g

∇kφi − φiφk

)
− 2

n

(
g

∇kφ
h − 2

n
φhφk + φpφ

pδhk

)
gij

A(∂k, ∂j , ∂i)[µ
θ
, ν
θ
] =µ

θ
(
g

∇∂k
T )(∂i, ∂j) + ν

θ
(
g

∇∂jT )(∂i, ∂k)

=µ
θ

g

∇kT
h
ij + ν

θ

g

∇jT
h
ik,

A(∂k, ∂j , ∂i)[µ
θ
, ν
θ
] =µ

θ
(
g

∇∂k
T )(∂i, ∂j) + ν

θ
(
g

∇∂jT )(∂i, ∂k)

=µ
θ

g

∇kT
h
ij + ν

θ

g

∇jT
h
ik

and

B(∂k, ∂j , ∂i)[α
θ
, β
θ
, γ
θ
] =α

θ
T (T (∂i, ∂j), ∂k) + β

θ
T (T (∂i, ∂k), ∂j) + γ

θ
T (T (∂j , ∂k), ∂i)

=α
θ
Th

pkT
p
ij + β

θ
Th

pjT
p
ik + γ

θ
Th

piT
p
jk,

B(∂i, ∂k, ∂j)[α
θ
, β
θ
, γ
θ
] =α

θ
T (T (∂i, ∂j), ∂k) + β

θ
T (T (∂i, ∂k), ∂j) + γ

θ
T (T (∂j , ∂k), ∂i)

=α
θ
Th

pkT
p
ij + β

θ
Th

pjT
p
ik + γ

θ
Th

piT
p
jk,

for

(4.3)

(θ, µ
θ
, ν
θ
, α
θ
, β
θ
, γ
θ
) ∈

{(
1,

1

2
,−1

2
,
1

4
,−1

4
, 0

)
,

(
2,−1

2
,
1

2
,
1

4
,−1

4
, 0

)
,(

3,
1

2
,
1

2
,−1

4
,
1

4
,−1

2

)
,

(
4,

1

2
,
1

2
,−1

4
,
1

4
,
1

2

)
,(

5, 0, 0,
1

4
,
1

4
, 0

)}
.

Let us consider the following linear combination based on the relation (4.2)

5∑
θ=1

k
θ
R
θ

h
ijk =

5∑
θ=1

k
θ
R
θ

h
ijk +

5∑
θ=1

k
θ

(
P (∂k, ∂j , ∂i)− P (∂j , ∂k, ∂i)

)
+A(∂k, ∂j , ∂i)

[ 5∑
θ=1

k
θ
µ
θ
,

5∑
θ=1

k
θ
ν
θ

]
−A(∂k, ∂j , ∂i)

[ 5∑
θ=1

k
θ
µ
θ
,

5∑
θ=1

k
θ
ν
θ

]

+B(∂k, ∂j , ∂i)

[ 5∑
θ=1

k
θ
α
θ
,

5∑
θ=1

k
θ
β
θ
,

5∑
θ=1

k
θ
γ
θ

]
−B(∂k, ∂j , ∂i)

[ 5∑
θ=1

k
θ
α
θ
,

5∑
θ=1

k
θ
β
θ
,

5∑
θ=1

k
θ
γ
θ

]
,
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Based on (4.3) we can easily find the following sums from the last relation

5∑
θ=1

k
θ
µ
θ
=
k
1
− k

2
+ k

3
+ k

4

2
,

5∑
θ=1

k
θ
ν
θ
=

−k
1
+ k

2
+ k

3
+ k

4

2
,

5∑
θ=1

k
θ
α
θ
=
k
1
+ k

2
− k

3
− k

4
+ k

5

4
,

5∑
θ=1

k
θ
β
θ
=

−k
1
− k

2
+ k

3
+ k

4
+ k

5

4
,

5∑
θ=1

k
θ
γ
θ
=
−k

3
+ k

4

2
.

Theorem 4.2. Let (M,G = g + ω), (M̂, Ĝ = ĝ + ω̂) and (M,G = g + ω) be
generalized Riemannian spaces in Eisenhart’s sense of dimension n > 2. If we
assume that there exist a conformal mapping f1 : M → M̂ and a projective mapping
f2 : M̂ → M such that f3 = f1 ◦ f2 : M → M is a harmonic mapping in the sense
that the condition (4.1) holds, then for arbitrary functions k, k

1
, k
2
, . . . , k

5
the linear

combination
k

g

Rh
ijk + k

1
R
1

h
ijk + k

2
R
2

h
ijk + k

3
R
3

h
ijk + k

4
R
4

h
ijk + k

5
R
5

h
ijk,

is preserved with respect to the mapping f3 if and only if

(k + k
1
+ k

2
+ k

3
+ k

4
+ k

5
)
(
− δhk

(
g

∇jφi − φiφj

)
+ δhj

(
g

∇kφi − φiφk

)
− 2

n

(
g

∇kφ
h − 2

n
φhφk + φpφ

pδhk

)
gij

+
2

n

(
g

∇jφ
h − 2

n
φhφj + φpφ

pδhj

)
gik
)

−
(k
1
− k

2
+ k

3
+ k

4
)

2

(
g

∇kT
h
ij −

g

∇kT
h
ij

)
−

(−k
1
+ k

2
+ k

3
+ k

4
)

2

(
g

∇jT
h
ik −

g

∇jT
h
ik

)
−

(k
1
+ k

2
− k

3
− k

4
+ k

5
)

4

(
Th

pkT
p
ij − Th

pkT
p
ij

)
−

(−k
1
− k

2
+ k

3
+ k

4
+ k

5
)

4

(
Th

pjT
p
ik − Th

pjT
p
ik

)
−

(−k
3
+ k

4
)

2

(
Th

piT
p
jk − Th

piT
p
jk

)
= 0.

Clearly, when in Theorem 4.2 instead of the generalized Riemannian spaces
(M,G = g + ω), (M̂, Ĝ = ĝ + ω̂) and (M,G = g + ω) we consider the Riemannian
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spaces (M, g), (M̂, ĝ) and (M, g) then the curvature tensors R
θ

h
ijk, θ = 1, . . . , 5

reduce to the Riemannian curvature tensor
g

Rh
ijk and the corresponding statement

is given in Corollary 4.2.

Corollary 4.2. Let (M, g), (M̂, ĝ) and (M, g) be Riemannian spaces of dimension
n > 2. If there exist a conformal mapping f1 : M → M̂ and a projective mapping
f2 : M̂ → M such that f3 = f1 ◦ f2 : M → M is harmonic then the Riemannian

curvature tensor
g

Rh
ijk is preserved with respect to f3 if and only if

− δhk

(
g

∇jφi − φiφj

)
+ δhj

(
g

∇kφi − φiφk

)
− 2

n

(
g

∇kφ
h − 2

n
φhφk + φpφ

pδhk

)
gij

+
2

n

(
g

∇jφ
h − 2

n
φhφj + φpφ

pδhj

)
gik = 0.

Proof. We choose k = 1, k
1
= 0, k

2
= 0, . . . , k

5
= 0 and the skew-symmetric bilinear

forms ω, ω̂ and ω to vanish identically in Theorem 4.2. This completes the proof.

4.2. Composition of geodesic and conformal mappings between
generalized Riemannian spaces

If we consider a composition of geodesic and conformal mappings preserving the
tensor R

θ
icij − 1

nSθ
gij , for arbitrary θ ∈ {1, . . . , 5}, then we obtain that the tensor

Y
θ

h
ijk is invariant with respect to this composition.

Theorem 4.3. Let (M,G = g + ω), (M̂, Ĝ = ĝ + ω̂) and (M,G = g + ω) be
generalized Riemannian spaces of dimension n > 2. Let f1 be a geodesic mapping
and f2 be a conformal mapping such that

M
f1−→ M̂

f2−→ M.

Let us denote f3 = f1 ◦ f2 : M → M and choose θ ∈ {1, . . . , 5}. If the mapping
f1 preserves the tensor R

θ
icij − 1

nSθ
gij and the mapping f2 preserves the tensor

R̂
θ
icij − 1

n Ŝθ
gij then the mapping f3 preserves the tensor Y

θ

h
ijk.

From Theorem 4.3 we get Corollary 4.3.

Corollary 4.3. Let (M, g), (M̂, ĝ) and (M, g) be Riemannian spaces of dimension
n > 2. Let us assume that there exist a geodesic mapping f1 : M → M̂ that preserves

the traceless Ricci tensor
g

Ricij − 1
n

g

Sgij and a conformal mapping f2 : M̂ → M that
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preserves the traceless Ricci tensor
ĝ

Ricij− 1
n

ĝ

Sĝij then the Yano tensor of concircular

curvature
g

Y h
ijk is invariant with respect to the mapping f3 = f1 ◦ f2 : M → M .
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