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Abstract. The composition of conformal and projective mappings between Rieman-
nian spaces that were at the same time harmonic had been studied by S. E. Stepanov,
I. G. Shandra in 2003 and further developed in 1. Hinterleitner’s Ph.D. thesis in 2009.
Conformal and projective mappings of Riemannian spaces preserving certain tensors
were studied by O. Chepurna in the 2012 Ph.D. thesis. We consider conformal and
projective mappings of generalized Riemannian spaces in Eisenhart’s sense and find
necessary and sufficient conditions for these mappings to preserve curvature, Ricci and
traceless Ricci tensors and some of their linear combinations. Particularly, as an addi-
tional contribution to related results collected in the Ph.D. thesis by O. Chepurna, we
find that the following result holds in the case of Riemannian spaces: if a conformal
mapping f1 : M — M is preserving the traceless Ricci tensor and a projective mapping
fa: M — M is preserving the traceless Ricci tensor then the Yano tensor of concircular
curvature is invariant with respect to the composition fs = f1 0 fo : M — M.
Keywords: conformal mapping, geodesic mapping, generalized Riemannian space,
Riemannian curvature tensor, traceless Ricci tensor, Weyl’s tensor of projective curva-
ture, Weyl’s conformal curvature tensor, Yano’s tensor of concircular curvature.

1. Introduction and preliminaries

A generalized Riemannian space in Eisenhart’s sense [3] (M,G = g 4+ w) is a
differentiable manifold M endowed with a bilinear form G = ¢g + w, or in lo-
cal components G;; = g;; + w;j, where g is a non-degenerate (i.e., det(g) # 0),
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symmetric bilinear form and w is a skew-symmetric bilinear form. The curva-
ture tensors R” o 0 =1,...,5 that correspond to generalized Christoffel symbols

Il = "y = 359" (0;Gip — 0pGij + 0:Gy;), are related with the Riemannian
curvature tensor

I g,
(1.1) Rl = akrh 0; sz + Ffjr FP Fg],

g g
where Ffj are components of the Levi-Civita connection V of the Riemannian met-
ric g, by (see [6], pp. 37-38)

g?jk[.uayaa?ﬂv’y] Rmk‘i’,UVkT +l/v T

(1.2)
+ Ty Th + BThTh +~Th T,
where
1 11 1 111 1
0 L=, —=y =y —= 2, — =, ==y ——
( .U’aya7ﬂ ’Y) {( 527 2747 47O>)< ) 272747 450>7
11 11 1 11 111
1.3 3, - - —= = = 4. - Z - 2 =
( ) ()2727 4?47 2))(72?27 474?2)7
5,0,0,~, 1.0
) b 74’47 -

Obviously, by contracting the relation between the curvature tensors gf] el vy o 8,9

g
and R?zk, given by (1.2), with respect to the indices h and k, we get the relation
between the Ricci tensors chw [, B,7] = ij[ ,B,7] and ch,J = R

P9

(1.4) Ie%icij [, B,7] = chw + MV T3 + BTy, T +~TLTY,.

Furthermore, after contracting the relation (1.4) with g% we find the relation be-

9 g
tween the scalar curvatures g [, B,7] = g”q{o%ic paltts B,7] and S = gPIR,,

) g
(1.5) Slw, 8,7 = 5+ pg"Vi T + Bg™Te T + 79717, T,

rq ps rp qS
From (1.2) it directly follows that the (0,4) curvature tensors lé%hijk[u, v,a, B,7] =

g g
ghple%fjk, 0=1,....,5and Rp;jr = ghprjk are related by

g g
(1 6) ghijk[ﬂa v, a, ﬂa 'ﬂ = Rhijk + ,U'vkghpT + Vv]ghp
+ aghPquTij + ﬁghpT Tug + VQhPquTgk»

where (0, u, «, 3,7) are given by (1.3).
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2. Conformal mappings between generalized Riemannian spaces in
Eisenhart’s sense

For preliminaries about conformal mappings between generalized Riemannian spaces
in Eisenhart’s sense see Chapter 6 of the monograph [6].

2.1. Weyl conformal curvature tensor

In what follows, we shall give a more clear overview of the basic idea used in the
paper [9] and give some remarks and comments. On page 84 of the monograph [7]
the Riemannian curvature tensor is defined by R?jk = ;') —0, Tl +kaFZj—FijZk,

g
which is different than the Riemannian curvature tensor that we use R?j x Dy a sign.
The relation between the Riemannian curvature tensors R;‘jk and E?jk of two

Riemannian spaces (M, g) and (M,g), respectively, with respect to the conformal
mapping between these spaces f : M — M is well-known, which, by using the
notation from page 239 of the monograph [7], reads

(21) Rl =Rl + 0 0ij — 07 ok + 0kgi; — o gie + (61 gij — 6 gi) Avo,

where

g
h h
(2.2) 0ij = Vo3 — 005, o) =g opk, Ao =gPloyoy,.

By multiplying the relation (2.1) with —1 we get the relation between the Rie-

g g
mannian curvature tensors R?j . and R?j &

g g
(2.3) R?j = thjk — o Oij + 5;-1 Oik — oZgz-j + U?Qik - (52 gij + 5;-1 gik) Ao,

where 0, of and Ajo are determined by (2.2), the Riemannian curvature tensor

g g
R}, is determined by (1.1) and the Riemannian curvature tensor Ry}, is determined
in the same manner in the Riemannian space (M, g).

In [9] it was observed that starting from the relation (2.3) and following the
procedure for deriving the Weyl conformal curvature tensor, described, for instance,
on page 239 of the monograph [7], we get Theorem 1 from [9]. Theorem 1 from [9]
states that for arbitrary (6, u, v, o, 3,7), given by (1.3), the tensor g?jkv given by
(2.4) %’Zk = Jgfjk + 47 %ik — oy ]é—/ij + gik%? - gz‘j%z,

where we used the notation analogous as in [7], p. 239

1 5
2. Ly = 7P ——
(2:5) bi = =g \ i = 50—y %
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and

S
1
2.6 h— b, — ich — 9 _sh
(2.6) L L <19%zc] 2(n—1)6j ,

is invariant with respect to the conformal mapping f : M — M between the gen-
eralized Riemannian spaces (M,G = g + w) and (M,G = g+ w). However, the
assumption that must be satisfied for the result in Theorem 1 from [9] to hold is
given by [10]
g _ g _ I . —

pN KTy + vV T + oTh TV + BT T +ThTr,

(2.7)
g g
= uViTy + vV Th + oTTY + BT Th + yThT?

pi gk

g g
where V and V are the Levi-Civita connections that correspond to the Rieman-
nian metrics g and g, respectively. Here T?j and T?j are the torsion tensors that

correspond to the generalized Christoffel symbols with respect to the generalized
Riemannian metrics G and G, respectively.

The assumption (2.7) does not affect the result given in Theorem 1 from [9] and
this assumption is quite obvious and natural, because the left and right sides of
this assumption are expressions which we can add to the left and right sides of the
relation (2.3), respectively, in order to obtain the same relation where instead of

g g
the Riemannian curvature tensors R?j . and R?j . we will have the curvature tensors

éﬁbjk[u, v,a, 3,7] and ?Zhjk[u, v, a, 3,7], according to the relation (1.2).

Obviously, when we lower the upper index in (2.4) we get the relation between
the (0,4) tensors %’hijk = ghp%'fjk and é%hijk = ghpfezfjk
(2.8) ghijk = ghijk + ghjlglik - ghk%u + giklg/hj - gij%hk,

where the tensors %ij are given by (2.5).

Proposition 2.1. Let f : M — M be a_conformal mapping between generalized
Riemannian spaces (M,G = g+ w) and (M,G =g+ ) of dimension n > 2. For
an arbitrary (0, p, v, o, B,7) given by (1.3), the tensor ng given by (2.4) is related

g
with the Weyl conformal curvature tensor C?jk by

h i LA, g
gijk[,uv v,a, B,7] = Cily + uVieT3 +vVTh
+ aTZkaj + »BTZijk + VTZET?k
+ 6? Qik[/jﬂﬁaly] - 5/? QZ][Maﬂ77]
+ gikQ?[,ua /6) ’Y] - gl]QZ[,LL7 Bv 7]7
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where the tensors

1 1
(2.10) Qijlw, B0 =——=Sijlw, 6,71 = mgpqqu[#’ﬁﬁ]gij
and
QZ :ghprk
depend on the tensor
g
(2.11) Sijlu, B,y = uVpTT; + BTy T + T3 15,

Proof. By using the relations (1.2), (1.4) and (1.5) into (2.4), (2.5) and (2.6) we
obtain that

(2.12) Lijlu B:7] = Lij + Qujln, 5,7
where the tensor Q;;[u, 8,7] is defined by (2.10). Also,
(2.13) L, B, =g"" (Lpj + Qs B,7)) = L + Q. 8,7].

By using (2.12) and (2.13) into (2.4) we obtain (2.9), which completes the proof.
U

Corollary 2.1. Let f : M — M be a_conformal mapping between generalized
Riemannian spaces (M,G = g+ w) and (M,G =g+ @) of dimension n > 2. For
an arbitrary (0, p,v, o, B,7) given by (1.3), the (0,4) tensor %’hijk given by (2.8) is

g
related with the (0,4) Weyl conformal curvature tensor Chiji by
g g g
ghijk[/h v,a, 8,7 = Chijk + pVEThij + vV Thik
+ CkThka‘fj + ﬁThpijk + IYThpiT:;k

+ 9ni Qiklu, B, 7] — gniQij 1, 8,71
+ 9ikQnj1t, B,7] — 95 Qni[1ts B, 7],
where the tensor Q;;(p, 5,7 is defined by (2.10), or in a more compact way as

g
ghijk[ﬂﬁ V,Ohﬁfﬂ :Chijk: + Phijk:[:u7yaaa/657] + th]k[/’% V7avﬁ7’ﬂ7

where Prijilu, v, o, B,7] and Qnijrlp, v, o, B,7] are defined by

g g
Phijkli, v, a, B,7] =pgnpViTy; + vgnp VT,
+ OéghpTZkng + 5ghpTZjT§k + ’)’ghpr;iT?k
and
thjk [N’a v, a, Bv P” :gthik [,U,, ﬁv P” - gthij [:U’, 5> ’7]

+ 9ikQnjlit, 8,7 — 9i5Qni[1t, B,7]-
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2.2. Conformal mappings between generalized Riemannian spaces in
Eisenhart’s sense preserving curvature, Ricci and traceless Ricci
tensors

V. E. Berezovski, S. Bacso and J. Mikes [1] studied diffeomorphisms between affine
connected spaces preserving certain tensors, including the Riemannian curvature
tensor and the Ricci tensor. Here we will use such approach to consider diffeomor-
phisms between the generalized Riemannian spaces in Eisenhart’s sense.

Theorem 2.1. Let (M,G = g+w) and (M,G =g+w) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary 0, u, v, a0, B,7)
given by (1.3) a conformal mapping f : M — M 1is preserving the Riemannian

curvature tensor Rh if and only if

ijk
8 Lir — 04 Lij + Lgs, — Li7,,
g _
+ uVi T + yv " + aThkTP + BTy T + ATy T,
(2.14) + 9k Q) [, 8,7 — 5:; Q% 1, B, 7]
:6? L — 5]}; Lij + thzk — Lﬁgij

+ quT oV, i + QT T + BTRTY + T T,

+ 5j Qirlu, B,7] — 65 Qijl, B,

+ 9k Q) 11, B,7] — 94, Q1 1, 8,71,
where Qh =g"Q,; and Qh = g"PQ,;. The tensors L;j and Q;j[p, 8,7 are deter-
mined in the space (M,G = g +w) by Lij = — (chu 2(n—1)gw> and (2.10),

respectively, while the tensors L” and Q” [, B,7] are determined in the same man-
ner in the space (M,G =g+ ).

Corollary 2.2. Let (M,G = g+w) and (M,G = g+w) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary 0, p,v,a, B,7)
given by (1.3) a conformal mapping f : M — M s preserving the Ricci curvature

g g
tensor Ric;; = Rfjp if and only if

Zij — (n — ].)ZZ] L;DgZJ + ILLV Tp + BTP Tq + "}/Tp Tq

qr— Jp
(2.15) +2Qi; (1, B, 7] — nQijl, B, 9] — Gy Qb B, 7]
=Lij — (n—1)Li; = Lbgi; + pgV, T4 + BTy, T, + T4 T}

qr— Jp
+ QQIJ[H’aﬂ?,Y] - nQZ][u’a/@a’}/] - glep[,uvﬁaryL
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where Qh =g"Q,; and Qh =g"Qp;. The tensors L;; and Q” [, B,7] are deter-
mined in the space (M,G = g+ w) by Lij = — (chw s 1)g”> and (2.10),

respectively, while L;; and @ij (1, B,7] are determined in the same manner in the

space (M,G =g+ w).
Proof. The relation (2.15) is obtained directly from the relation (2.14). O

Theorem 2.2. Let (M,G = g+w) and (M,G = g+w) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (6, u,v,a, 3,7)
given by (1.3) the curvature tensor Jé?fjk 1s preserved with respect to the conformal

mapping f : M — M if and only if
g _
pV Tl + yv Thh + oy T0 + BTh T +TrT",
+ 5;1 L, — 5k Lij + nglk - Lkgij
- uva oY, iTh 4+ aTy TV, + BT TY + ATy T,
+ 67 Lix - Sy Lij + %j gik — jgkgija
1
n—2

g g
where the tensors L;; given by L;; = Ric;; — 2(”5_1)gij) and L? = ghi"Lm are

determined in the generalized Riemannian space in Eisenhart’s sense (M, G = g+w),
while the tensors L;; and L? = ghme are determingi ZL the same manner in the
generalized Riemannian space in Eisenhart’s sense (M,G =G+ ).

Corollary 2.3. Let (M,G = g+w) and (M,G = g+w) be generalized Riemannian
spaces in Eisenhart’s sense of dimension n > 2. For an arbitrary (6, u,v,a, 3,7)
given by (1.3) the curvature tensor ijjk 1s preserved with respect to the conformal

mapping f : M — M if and only if

qi— Jjp

MV T + BT T4 +~T T, + L —nL;; +§ij *%ﬁ?ij

= ;N Tp + ﬁTp Tq TZZTJP + L —nLi; + %ij - %ggij,

where the tensors L;; given by L;; =

g . g
— | Ricij — 2(ns_1)gij> and L = g"PL,,; are

determined in the generalized Riemannian space in Eisenhart’s sense (M, G = g+w),
while the tensors L;; and L? = ghme- are determmgl @ the same manner in the
generalized Riemannian space in Eisenhart’s sense (M,G =g+ ).

In the Riemannian space (M, g) the traceless Ricci tensor is given by

g 149
(216) RZCZ'J' — ESgij
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and in the generalized Riemannian space (M,G = g+ w) the traceless Ricci tensors
are given by [9]

1
(217) ];Z.Cij — ;Aggij, 0 e {1, N .,5}7

where g’ and Ie%icij are scalar curvatures and Ricci tensors, respectively.

Theorem 2.3. Let (M,G = g+ w) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (0, p,v,a, 8,7) given by (1.3),
the tensor given by (2.17), is related with the tensor given by (2.16), by

9 g
Sgij + uNVy,T5; + BTy, T + T T

. 1 g,
(Feczcij - E‘gglj)[uaﬁv,ﬂ = Rlc’ij - piT jq

SI— 3

.. 9 .. ..
pg N TY, + Bg T T + 'yg”TZiTé)Q> 9ij-

Proof. Obvious. O

2.3. Yano tensor of concircular curvature

Theorem 4 from [9] claims that the tensors Y, and Ric;; — £Sg;;, 6 = 1,...,5
9" 0 "o

which are analogous to the Yano tensor of concircular curvature and the traceless
Ricci tensor, respectively, given below, are invariant with respect to the concircular
mapping f : M — M between generalized Riemannian spaces in Eisenhart’s sense
(M, g) and (M, g).

The tensor }gf?jk is given by

S

h h 0 h h
(2.18) }Q/ijk :gijk Than—1) (9805 — 950 ) -

When we lower the upper index in (2.18) we get

S
) (grignj — 9ji9nk) »

2.19 R, 0
( ) ie/hzjk }ghzjk ?’L(Tl 1

R P R P
where we denoted lgh”k = ghpgijk and é%h”k = ghp?ijk'

Theorem 2.4. For an arbitrary (0, u,v,a, 3,v) given by (1.3), the tensor }(ﬁ‘jk

h

g
determined by (2.18), is related with the Yano tensor of concircular curvature Y3,
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by
h _In B CR—N
%ijk[ﬂ, v,a, B,9] =Y + pVi Ty +vVTy,
+aly, T + BT T + 4T T,
(2.20) ) e s o g
7n(n_1)(/u’g T pq+ g rqt ps
+ 7975, T o) (grid) — gjidy )-

Proof. Obvious. O

Corollary 2.4. For an arbitrary (6, u,v,a, 3,7) given by (1.3), the tensor }ghijk
g
determined by (2.19), is related with the Yano tensor of concircular curvature Y ;i
by
g g g
Ykl v e 8,7 =Y niji + ngnpViTh; + van ViTy,
+ aghpTnggj + thpTZjTgk + ’Vghpr‘Tq

qi™ jk

rq* ps rp* gs
n(n —1)

g
pg?PIN T + BgPvTy Ty +vgPiTy, Ty

(9kiGnj — 9ji9nk) -

Theorem 2.5. (See [2], p. 26) A Riemannian space admits a traceless Ricci tensor
preserving conformal mapping onto a Riemannian space if and only if the mapping
under consideration preserves the Yano tensor of concircular curvature.

The result given in Theorem 2.5 can easily be extended to generalized Rieman-
nian spaces in Eisenhart’s sense as stated in Proposition 2.2.

Proposition 2.2. If a mapping f : M — M@tzgeen generalized Riemannian
spaces in Eisenhart’s sense (M,G = g+ w) and (M,G =g+ @) is conformal then
for arbitrary 0 € {1,...,5} the mapping [ preserves the tensor }(;Zk if and only if

it preserves the tensor leiicij - %%'gij.

3. Geodesic mappings between generalized Riemannian spaces in
Eisenhart’s sense

Geodesic mappings between generalized Riemannian spaces were previously studied,
see Chapter 7 of the monograph [6] and the papers that follow that direction.
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3.1. Weyl tensor of projective curvature

In Theorem 2.1 from [10] we considered a geodesic mapping between manifolds with
non-symmetric linear connection. A generalized Riemannian space in Eisenhart’s
sense is a particular manifold with a non-symmetric linear connection. Here we
consider a geodesic mapping between generalized Riemannian spaces in Eisenhart’se
sense, hence Theorem 2.1 from [10] can be applied, which gives Proposition 3.1.

Proposition 3.1. The tensors

(3.1) Wz]k‘ lek

i (1022'01-]-52 — ]e%icikc;]}-‘ ),

1
(n—1)

are invariant with respect to the geodesic mapping f : M — M between generalized
Riemannian spaces (M,G = g+w) and (M,G = g+ w) if and only if the condition
(2.7) holds, where for given 6 € {1,2,...,5} the parameters (u, v, o, B,7) are chosen
from (1.3).

Obviously, by lowering the upper index h in (3.1) one can get
1 . p : P
ghpW ghprk - m ]e%zcijghp(sk - glcikghpéj 5
ie.,
1 . .
(3.2) VGVhijk :ghijk “ooD éflcijghk - l(?lcikghj ,
where we denoted T/g/hijk = ghp‘gﬂ;jk and Ie%hijk = 9hp§fjk~

Theorem 3.1. Let (M,G = g+ w) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (0, p,v,«, 8,7) given by (1.3),

g
the tensor W given by (3.1) and the Weyl projective curvature tensor W;ij =

ijk

g
R”k (n ) (RZC”(? - Ricik5;?>, are related by

Wh v, o, B ]—V%/h- + %T’-’-—FV%-T’?
ezjkM7 y O 0, Y] = ijk UV 1] J+ ik

+ aTngfj + ﬁTh T + wTZZTg’k

. 1 q p q

1 h
+(n)(,uv Tk+ﬂTq Tp +’)/TqTZq> 6j .
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Proof. By using (1.2) and (1.4) into (3.1) we obtain that

h L LR, g
Ig/ijk[,ua v,a, B,7] = Ry + pViT5 +vVTh

+ O‘TZkT]z?j + TZJ Ty, + VTZink
1

g g
oD (chij + uNp T + BT TY + T2 T, ) oy

piv jq
! Ri V,T7, + BT TP + TP ) ot
"'m Ricik +puVpTy + BT Ty +7T Ty ) 07

which completes the proof. [

Corollary 3.1. Let (M,G = g +w) be a generalized Riemannian space in Eisen-
hart’s sense of dimension n > 2. For an arbitrary (0, p,v,a, 8,7) given by (1.3),
the tensor V(yhijk given by (3.2) and the Weyl projective curvature tensor

g g 1 g g
Whijk = Rhijk — =1 Ricijgnk — Ricikgn;j |

are related by

g g g
VGVhijk[u, v,a, B,y = Whijk + 6VeThij + vV, Thik

h h h
+aTp TY; + BTy T, + Ty T,

1 g
- (uvag?j AT 4 yTziT§q> o

1 g
+ =1 (HVprk + BT TY, + WTZiT£q> Ghj-

3.2. Geodesic mappings between generalized Riemannian spaces in
Eisenhart’s sense preserving curvature and Ricci tensors

We will follow the idea from [1] where geodesic mappings between affine connected
spaces preserving the Riemannian and Ricci tensors were studied to consider the
geodesic mappings between the Riemannian spaces preserving the curvature and
Ricci tensors.

The relation Wfbj B = V(E/Zhjk reads
(3.3)

_ 1 — — 1
h - i sh .. sh )\ _ph - i sh _ ps.  sh
§Z—jk =1 <§zc”5k szczkéj ) le%wk =1 (gzcuék gzclkdj > ,

where ?icij = ﬁfjp and ?icij = ?fjp, 0 =1,...,5 are Ricci tensors of generalized

Riemannian spaces in Eisenhart’s sense (M,G = g + w) and (M,G = g + ©),
respectively.
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From relation (3.3) it follows that a geodesic mapping f : M — M is preserving
the curvature tensor ]e?f] i if and only if

- . h oy . h
(Je%zcij - lecij)ék - (gzcik - ]e%zcik) 6j =0.
Particularly, from (3.3) it follows that if a geodesic mapping f : M — M is preserv-

ing the Ricci tensor §ic7;j then it preserves the curvature tensor ]6-1’?] . as well, which

is in accordance with the observation obtained in [1] for an arbitrary diffeomorphism
between affine connected spaces without torsion.

4. Composition of conformal and projective mappings between
generalized Riemannian spaces in Eisenhart’s sense

If we consider a composition of conformal and projective mappings preserving the
tensor @icij — %%’gij, for an arbitrary 6 € {1,...,5} then we obtain that the tensor

igf?jk is invariant with respect to this composition.

Theorem 4.1. Let (M,G = g + w), (]\//.7,,07 =g+ @) and (M,G = g+ ©) be
generalized Riemannian spaces of dimension n > 2. If there exists a conformal
mapping f1 : M — M that preserves the tensor gicij — %ggij, for chosen 6 €

{1,...,5}, and a projective mapping fa : M — M that preserves the tensor ]g%icij —
%%‘ﬁzj then the tensor };Zk is invariant with respect to the mapping fs = f1 0 fa:
M — M.

The result given in Theorem 4.1 particularly holds when instead of the tensor

g g
Ie%icij — %%‘gij we consider the traceless Ricci tensor Ric;; — %S g:; and instead of
g

30/53 . We consider the Yano tensor of concircular curvature Y;‘j x- From Theorem 4.1
we get Corollary 4.1.
Corollary 4.1. Let (M,g), (]\7, g) and (M,g) be Riemannian spaces of dimension

n > 2. Let us assume that there exists a conformal mapping f1 : M — M that
g g —
preserves the traceless Ricci tensor Ricij—%Sgij and a projective mapping fo : M —

— g g
M that preserves the traceless Ricci tensor Rici; — %Sﬁij, then the Yano tensor of
concircular curvature is invariant with respect to the mapping f3 = fiofs : M — M.

4.1. Conformally-projective harmonic mappings of generalized
Riemannian spaces in Eisenhart’s sense

Let (M,G = g+ w) and (M,G = g+ @) be generalized Riemannian spaces of
dimension n > 2. A diffeomorphism f: M — M is said to be harmonic if and only
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if (see for instance [4], p. 46, Eq. (4.12))
g g iy
(4.1) (Ffj - FZ) g7 =0,

g g
where F?j and F?j are Christoffel symbols of the Riemannian metrics g and g,
respectively.

Let us assume that there exists a conformal mapping f1 : M — M and a
projective mapping fo : M — M such that f3 = fi o fo : M — M is a harmonic
mapping in the sense that (4.1) holds. In this case there exists the relation (see [4],
p. 58, Eq. (5.1))

2
I (@) = 10 () + il + 00 — ~¢"gij,

ij\

where p; = 0;¢(z) is a gradient-like vector and " = g"P,,.

By using the relation (1 2) and the the corresponding relation between the cur-
vature tensors Rl . and RP s, With respect to the conformally-projective harmonic
mapping f3, given in Eq. (5 3) on page 58 of [4], we easily get the relation for

g g
the Riemannian curvature tensors R}, and R}, with respect to the conformally-
projective harmonic mapping f3 and furthermore the relation between the curvature
tensors Je%?jk and ]e%?jk, which is given by

g g
Rzgk Rzgk 5k <Vj90i - @i@j) + 5? (Vksﬁi - <Pi<,0k)

2 2

- = (th - Zotop + %@WZ) 9ij
n n
2 2

+- (Vﬂﬂh - E@h%‘ + SOp@p(Sf) ik

g _ g g _ g
—u (va?j - va?j) ~v (vaﬁk — vaﬁk> —a (ThkT — T T? )

0
-5 (Th TV, — ThTh,) - 7<T’1;1T§’,c - T;;Tfk> 6=1,...,5.

The last relation can be rewritten as
?(51@7 0;)0; = g(akﬁj)ai + P(0k,04,0;) — P(0j, 0%, 0;)
(4.2) + ADk; 05, 0:) s, v) — A0k, 0;,0:) [ 1]
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where
P(0k, 0, 0;) Z(%akp)(auaﬂ + P(P(9;,0;),0k),
=07 (%k@i - %%) — % (%wh — %whwk + sow”&?) 9ij
A0, 0;,00)1.7] =p(V0,T)(01.0) + (Yo, T)(0:.0%)

L, b Z, mh
=pViTs; + lejvaikv

>

_ g g
A(06.0;,90) 1.v] =(Vo,T)(01.0;) + (Yo, T) s, 05)

g —h g —=h

h h h

piT ik pi Gk
for
0 ) e 1 1 11 1 0 9 111 1 0
v _ - _Z - - - _=

7/;,9’%’972/ 727 254a 4a ) ) 272a47 47 )

11 11 1 11 111
(43) (372727_4747_2)7(472727_474a2>7

1

(570703 e

Let us consider the following linear combination based on the relation (4.2)

-
=~
en)
N———
——

5 5 5
S kBl =Y kBl + > k(P(0k,0;,05) — P(9;,01,0,))
0=1 0=1 0=1

5 5 o 5 5
—&-A(@k,ajﬁl)[Zku,Zky —A(ak,aj,al)[ZmZku}

=70 5200 =170 5200

5 5 5 5 5 5

+B(ak,aj,8z)L_llgg,;lgg,;lgﬂ B(&k,aj,ai)[Zig%,Zigg,Zﬂ],
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Based on (4.3) we can easily find the following sums from the last relation

° F-k+bth ° hrEr Rk
D=t ) s
0=1 9=1
5 k+k—k—k+k 5 —k—k+k+k+k
hoo—l 2 3 4 5 N“pg. 12 38 405
06 4 ’ 0'g 4 ’
9=1 9=1
Tk
ky = .
9=109 2

Theorem 4.2. Let (M,G = g + w), (]\//.T,Q\ =g+ @) and (M,G = g+ ©) be
generalized Riemannian spaces in Eisenhart’s sense of dimension n > 2. If we
assume that there exist a conformal mapping f1 : M — M and a projective mapping
fo: M — M such that fs = fi o fo: M — M is a harmonic mapping in the sense
that the condition (4.1) holds, then for arbitrary functions k’]f’];’ .. .,lg the linear

combination
g
h h h h h h
kel + kRGe + kR, + kR, + kI, + BRiy,

is preserved with respect to the mapping fs if and only if

g g
(k+llc+15:+l§+lz+l5c)(—5£ (Vm —%%) + 07 (Vksoi —ka)

2 (g P
- = (th — = o+ Sﬁp@p(;;’;) 9ij
n n
92 (g P
+ (Vﬂph — ¢t + %w”cﬁ‘) gik)

Clearly, when in Theorem 4.2 instead of the generalized Riemannian spaces
(M, G =g+w), (M,G=g+®) and (M,G =g+ w) we consider the Riemannian
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spaces (M, g), (]\/4\, g) and (M,g) then the curvature tensors ]j?jlw 0 =1,...,5

g
reduce to the Riemannian curvature tensor RZ . and the corresponding statement
is given in Corollary 4.2.

Corollary 4.2. Let (M, g), (M,§) and (M,g) be Riemannian spaces of dimension
n > 2. If there exist a conformal mapping f1 : M — M and a projective mapping

fo: M — M such that fs = fio fo : M — M 1is harmonic then the Riemannian

g
curvature tensor R?jk is preserved with respect to fs if and only if

b n (&
— 0, | Vipi —pip; | +05 | Viei — @i
2 /49

2
- = <Vk-<ph — 2ol + sopso”él’i> i
n n

g

2 2
+ (Vj<ﬂh — " + %s@’”tﬁ’) gir = 0.

Proof. We choose k = 1,/1€ = O,IQf =0,... ,/g = 0 and the skew-symmetric bilinear

forms w, @ and @ to vanish identically in Theorem 4.2. This completes the proof. [

4.2. Composition of geodesic and conformal mappings between
generalized Riemannian spaces

If we consider a composition of geodesic and conformal mappings preserving the

tensor ]O%icij — %%‘gij, for arbitrary 6 € {1,...,5}, then we obtain that the tensor
lgfffjk is invariant with respect to this composition.

Theorem 4.3. Let (M,G = g + w), (M\,QA =g+ ) and (M,G = g+ ©) be
generalized Riemannian spaces of dimension n > 2. Let f1 be a geodesic mapping
and fo be a conformal mapping such that

Y RELES FRELN V8

Let us denote f3 = fi o fo: M — M and choose § € {1,...,5}. If the mapping
f1 preserves the tensor Ijicij - %ggij and the mapping fo preserves the tensor

h

J(;Zicl-j — %ggij then the mapping f3 preserves the tensor %zjk'

From Theorem 4.3 we get Corollary 4.3.

Corollary 4.3. Let (M,g), (J\/J\, 9) and (M,g) be Riemannian spaces of dimension
n > 2. Let us assume that there exist a geodesic mapping f1 : M — M that preserves

g g —
the traceless Ricci tensor Ric;; — %Sgij and a conformal mapping fo : M — M that
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g g
preserves the traceless Ricci tensor Ricy;— %Sgij then the Yano tensor of concircular

g _
curvature Y?jk 18 invariant with respect to the mapping f3 = fro fo : M — M.
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