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Abstract. In this paper we discuss properties of geodesic orbit Riemannian metrics
on nilpotent Lie groups and some recent examples of such metrics. In particular, we
explain the construction of continuous families of pairwise non-isomorphic connected
and simply connected nilpotent Lie groups of dimension 4k + 6, k ≥ 1, every of which
admits geodesic orbit metrics.
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1. Introduction

A Riemannian manifold (M, g) is called a manifold with homogeneous geodesics or
a geodesic orbit manifold (shortly, GO-manifold) if any geodesic γ of M is an orbit
of a 1-parameter subgroup of the full isometry group of (M, g). A Riemannian
manifold (M = G/H, g), where H is a compact subgroup of a Lie group G and g
is a G-invariant Riemannian metric, is called a space with homogeneous geodesics
or a geodesic orbit space (shortly, GO-space) if any geodesic γ of M is an orbit of
a 1-parameter subgroup of the group G. Hence, a Riemannian manifold (M, g) is
a geodesic orbit Riemannian manifold, if it is a geodesic orbit space with respect
to its full connected isometry group. This terminology was introduced in [38] by
O. Kowalski and L. Vanhecke, who initiated a systematic study on such spaces. In
the same paper, O. Kowalski and L. Vanhecke classified all GO-spaces of dimension
≤ 6. One can find many interesting results about GO-manifolds and its subclasses
in [3–5,7, 9, 15,21,29,45,52,53,56,57,62], and in the references therein.
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It is clear that any geodesic orbit space is homogeneous. All homogeneous spaces
in this paper are assumed to be almost effective. Let (G/H, g) be a homogeneous
Riemannian space. It is well known that there is an Ad(H)-invariant decomposition
(that is not unique in general)

g = h⊕ p,(1.1)

where g = Lie(G) and h = Lie(H). The Riemannian metric g is G-invariant and is
determined by an Ad(H)-invariant Euclidean metric g = (·, ·) on the space p which
is identified with the tangent space ToM at the initial point o = eH. By [·, ·] we
denote the Lie bracket in g, and by [·, ·]p its p-component according to (1.1). The
following is a well-known criteria of GO-spaces, see other details and useful facts
in [10,47].

Lemma 1.1. [38] A homogeneous Riemannian space (G/H, g) with the reductive
decomposition (1.1) is a GO-space if and only if for any X ∈ p there is Z ∈ h such
that

([X + Z, Y ]p, X) = 0 for all Y ∈ p.

Due to this lemma, the property to be geodesic orbit is related to classes of locally
isomorphic homogeneous spaces. Let us recall the simplest type of GO-spaces. The
metric g is called naturally reductive if an Ad(H)-invariant complement p can be
chosen in such a way that ([X,Y ]p, X) = 0 for all X,Y ∈ p. In this case, we
say that the (naturally reductive) metric g is generated by the pair (p, (·, ·)). It
immediately follows that any naturally reductive space is a geodesic orbit space;
the converse is false when dim(M) > 6 [38]. It should be noted that the property of
being naturally reductive depends on the choice of the group G (the choice of the
presentation M = G/H). Every isotropy irreducible Riemannian space is naturally
reductive, and hence geodesic orbit, see e.g. [13].

The class of (Riemannian) geodesic orbit spaces includes same important classes
of Riemannian manifolds: symmetric spaces, weakly symmetric spaces [5, 11, 43,
59, 62, 66], naturally reductive spaces [1, 17, 30, 37, 54, 55], normal and generalized
normal homogeneous (δ-homogeneous) spaces [8–10], and Clifford – Wolf homo-
geneous manifolds [7, 10]. For the current state of knowledge in the theory of
geodesic orbit spaces and manifolds we refer the reader to the book [10], the pa-
pers [4, 6, 14,29,47,55], and the references therein.

It should be noted that GO property is a very general geometric phenomenon:
it is extensively studied in Riemannian, Lorentzian and general pseudo-Riemannian
settings (see [16, 18, 44, 60]), in Finsler geometry (see recent papers [19, 61, 63] and
the references therein), in affine geometry [20]. It should be noted also that homo-
geneous geodesics exist also in homogeneous sub-Riemannian manifolds [48] and in
homogeneous sub-Finsler manifolds [65].

There is no hope to obtain a complete classification of all Riemannian geodesic
orbit spaces. Partial classifications are possible only for special types of geodesic
orbit metrics (for instance, Clifford – Wolf homogeneous metrics [7]) or for small
dimensions (for dim(M) 6 6 see [38] and references therein).
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One of important subclasses of geodesic orbit Riemannian manifolds are con-
nected and simply connected nilpotent Lie groups supplied with some left-invariant
Riemannian geodesic orbit metrics (GO-nilmanifolds). The theory of this type of
GO-manifolds, we consider in the next section.

The main goal of this paper is to discuss recent results showing that the set of
nilpotent groups admitting Riemannian geodesic orbit metrics is quite extensive.
To do this, we will consider (in the last section) Theorem 3.1 (obtained originally
in [46]) that gives for any k ≥ 1, a k-parameter family of pairwise non-isomorphic
connected and simply connected nilpotent Lie groups of dimension 4k+6, such that
every of them admits a 3-parameter family of Riemannian geodesic orbit metrics.
The minimum dimension of such groups is 10 (for k = 1). In the next section,
we recall important results on Riemannian geodesic orbit metrics on nilpotent Lie
groups. The main role here is played by C. Gordon’s results on the structure of
geodesic orbital nilmanifolds and on the description of GO-metrics on nilpotent Lie
groups.

2. Riemannian geodesic orbit metrics on nilpotent Lie groups

We discuss some properties of GO-nilmanifolds. The foundations of the correspond-
ing theory were developed by C. Gordon in [29]. We recall some important facts.
In what follows we consider only connected and simply connected nilpotent Lie
group N supplied with some left-invariant Riemannian metric g, and we call (N, g)
a nilmanifold.

The book [32] is a standard source on the theory of nilpotent groups and Lie
algebras. Note that the class of nilpotent Lie algebras is very wide and there is no
hope of obtaining a reasonable classification of them in an arbitrary dimension. Nev-
ertheless, the classification of nilpotent Lie algebras of small dimensions is known.
The classification of complex nilpotent Lie algebras of small dimension has a long
history, yet only for dimension ≤ 7 has it been completed, see e. g. [41] for a survey.
It is known that there are finite numbers of isomorphism classes of complex or real
nilpotent Lie algebra in dim ≤ 6. On the other hand there are six 1-parameter
families of nilpotent Lie algebras of dimension 7, pairwise not isomorphic [32].

Two-step nilpotent (metabelian) Lie algebras form the first non-trivial subclass
of nilpotent algebras. However even the classification of these special nilpotent Lie
algebras is a rather complicated problem. This problem is completely solved in
the case of 1-dimensional or 2-dimensional center [40]. Known results on small-
dimensional two-step nilpotent Lie algebras (in particular, the classification of com-
plex two-step nilpotent Lie algebra in dim ≤ 9) can be found in [28,34]. It should be
noted that there are several continuous families of pairwise non-isomorphic two-step
nilpotent Lie algebras in dimension 9.

Recall that the classification of complex two-step nilpotent (metabelian, in other
terms) Lie algebras of dimension ≤ 9 is obtained in [28]. See also [64] and [34]. Im-
portant structure and (partial) classification results on 2-step nilpotent Lie algebra
could be found in the following papers by P. Eberlein: [22–24].
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In what follows, we consider only real nilpotent Lie algebras n. Recall
that the corresponding Lie groups N are assumed connected and simply connected.
This imply that N is diffeomorphic to a Euclidean space (a detailed description of
GO-manifolds diffeomorphic to Euclidean spaces is obtained in [31]).

It is known that the full connected isometry group G = Isom(N, g) of a given
nilmanifold (N, g) is such that N is the nilradical of G, in particular, N is a normal
subgroup in G [58]. We denote by H the isotropy subgroup of G at the unit element
e ∈ N .

For G/H as above, the Lie algebra n = Lie(N) is an ideal in g = Lie(G), hence
we can write

g = h⊕ n,(2.1)

vector space direct sum, which is AdG(H)-invariant. The Riemannian metric g
corresponds to an AdG(H)-invariant inner product geH = (·, ·) on n. Let O(n, (·, ·))
be the group of orthogonal maps on the metric Lie algebra (n, (·, ·)) and D(n) the
space of skew-symmetric derivations of the metric Lie algebra (n, (·, ·)).

Lemma 2.1. (E.N. Wilson [58]) Let (N, g) be a Riemannian nilmanifold and (·, ·)
the associated inner product on the Lie algebra n. Then Isom(N, g) = N o H and
the full isometry algebra of (N, g) is the semi-direct sum noh, where h is the space
D(n) of skew-symmetric derivations of (n, (·, ·)).

In particular, if Riemannian nilmanifolds (N1, g1) and (N2, g2) are isometric to
each other, then the Lie group N1 is isomorphic to N2, as well as their Lie algebras
are isomorphic to each other.

Let us recall the following important result.

Proposition 2.1. (C. Gordon [29]) If (N, g) is geodesic orbit Riemannian mani-
fold, then the Lie algebra n = Lie(N) is either commutative or two-step nilpotent.

In the case when n is commutative, (N, g) is Euclidean space. Hence, in what
follow we suppose that n is two-step nilpotent.

Now we recall one helpful method to represent any two-step nilpotent metric
Lie algebra. Let n be a two-step nilpotent Lie algebra with an inner product (·, ·).
Denote by z the center of n and by v the (·, ·)-orthogonal complement to z in n. It
is clear that [n, n] = [v, v] ⊂ z. We denote by so(z) and so(v) the algebras of skew
symmetric transformations of (z, (·, ·)) and (v, (·, ·)) respectively. It is easy to see
that any D ∈ D(n) = h saves both z and v.

For any Z ∈ z, we consider the operator

JZ : v → v, such that (JZ(X), Y ) = ([X,Y ], Z), X, Y ∈ v.(2.2)

It is clear that JZ are skew-symmetric and JZ(Y ) = (adY)′(Z), where (adY)′ is
adjoint to adY with respect to (·, ·). The map J : Z → JZ is obviously linear.

The following proposition is a corollary of Lemma 1.1.
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Proposition 2.2. (C. Gordon [29]) In the above notations, (N, g) is geodesic orbit
Riemannian manifold if and only if for any X ∈ z and Y ∈ v there is D ∈ D(n)
such that [D,X] = D(X) = 0, [D,Y ] = D(Y ) = JX(Y ).

It is clear that JZ ≡ 0 for Z ∈ z if and only if Z is orthogonal to [v, v] ⊂ z
(recall that (JZ(X), Y ) = ([X,Y ], Z) for X,Y ∈ v). Therefore, J : z → so(v) is an
injective map for any two-step nilpotent metric Lie algebra with [n, n] = z, because
z = [n, n] = [v, v]. It should be noted that the latter condition is not too restrictive
(see e.g. [46, Lemma 3]).

In what follows, we suppose that [n, n] = z, m := dim(z), n := dim(v) =
dim(n) − dim(z). In particular, the linear map J := z 7→ JZ is injective, V =
{JZ |Z ∈ z} is m-dimensional linear subspace in so(v).

If φ : h → so(v) is the restriction of isotropy representation to v, we may refor-
mulate the condition of Proposition 2.2 as follows. We know that V = J(z) is a linear
subspace in so(v). Further, for every X ∈ h and Z ∈ z we get J[X,Z] = [φ(X), JZ ]
(it easily follows from the condition on X to be skew-symmetric derivation), hence,
the subspace V = J(z) is normalized by the subalgebra N := φ(h) in so(v). The
equality J[X,Z] = [φ(X), JZ ] implies that the representation φ : h → so(v) is faithful
(otherwise, some non-trivial X ∈ h acts trivially both on v and on z, hence, on n).
Therefore, we have

a) a Lie subalgebra N ⊂ so(v) (acted on v) and

b) an ad(N )-invariant module V in so(v),

such that for every Y ∈ v and Z ∈ V there is X ∈ N with the following properties:
[X,Z] = 0 and X(Y ) = Z(Y ).

Since dim(v) = n, we naturally identify so(v) with so(n).

Definition 2.1. ( [29]) Let V be a linear subspace of so(n) and N the normalizer
of V in so(n). We say that V satisfies the transitive normalizer condition if for
every Y ∈ Rn and every Z ∈ V there is some X ∈ N such that [X,Z] = 0 and
X(Y ) = Z(Y ).

Proposition 2.3. (C. Gordon [29]) Let V be a linear subspace of so(n) with the
normalizer N ⊂ so(n). Suppose that V satisfies the transitive normalizer condi-
tion. Then the metric Lie algebra (V o Rn, (·, ·)1 + (·, ·)2) defines a geodesic orbit
nilmanifold, where (·, ·)1 is any ad(N )-invariant inner product on V, (·, ·)2 is the
standard inner product in Rn, [X,Y ] = 0 if X ∈ V and Y ∈ V or Y ∈ Rn, and
([X,Y ], Z)1 = (Z(X), Y )2 for all X,Y ∈ Rn and Z ∈ V. In particular, V is the
derived algebra of V o Rn and, moreover, if for any Y ∈ Rn there is Z ∈ V such
that 0 ̸= Z(Y ) ∈ Rn, then V is the center of V oRn.

Remark 2.1. Suppose, that a linear subspace V of so(n) with the normalizer N ⊂ so(n)
satisfies the transitive normalizer condition. It is possible that there is a Lie subalgebra
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N ′ ⊂ N such that for every Y ∈ Rn and every Z ∈ V there is some X ∈ N ′ such that
[X,Z] = 0 and X(Y ) = Z(Y ). This means that even the subalgebra N ′ together with
V generate a geodesic orbit nilmanifold. Moreover, since the condition on (·, ·)1 to be
ad(N ′)-invariant is weaker than the condition to be ad(N )-invariant, we can get more
GO-metric using less extensive subgroup N ′.

Definition 2.2. We will say that V satisfies the transitive normalizer condition
with respect to N ′ if N ′ ⊂ N is as in Remark 2.1.

One obvious possibility to choose V, satisfied the transitive normalizer condition,
is the following: V is a Lie subalgebra of so(n). The following result is valid (see
Section 2 in [29]).

Proposition 2.4. Suppose that V is a Lie subalgebra of so(n) (in particular,
dim(V) = 1). Then V ⊂ N and we can take N ′ = V in the notation of Remark 2.1.
Any corresponding GO-nilmanifold (N, g) (that depends on ad(V)-invariant inner
product on V) is naturally reductive. On the other hand, if a subspace V ⊂ so(n)
determined a naturally reductive GO-manifold, then V is a subalgebra of so(n).

Proof. Since [V,V] ⊂ V and N = {U ∈ so(n) | [U,V] ⊂ V}, then V ⊂ N . All
other assertions easily follows from Proposition 2.3, Remark 2.1, and Theorem 2.8
in [29].

Remark 2.2. If dim(V) = 1, then the structure of the corresponding nilpotent Lie al-
gebra depend of one operator JZ , where Z ∈ V and has norm 1. The simplest non-trivial

example is JZ = diag (J, J, · · · , J), where we have n numbers of blocks J =

(
0 1
−1 0

)
,

corresponds to a simply-connected Heisenberg group of dimension 2n+1 for every n ≥ 1. In
the general case, JZ could be any skew-symmetric, then the corresponding GO-nilmanifolds
constructed from operators JZ1 and JZ2 with distinct sets of eigenvalues (counted with
multiplicities) are not isometric each to other.

Remark 2.3. It is possible that V is a Lie subalgebra of so(n), but its normalizer N
contains a Lie subalgebra V ⊕N ′ such that V satisfies the transitive normalizer condition
with respect to N ′. In this case V can be supplied with an arbitrary inner product, since
any such inner product is ad(N ′)-invariant ([V,N ′] = 0). If V is not abelian, then there
is an inner product on V, that is not ad(V)-invariant. Therefore, the corresponding GO-
nilmanifold is not naturally reductive. The simplest example is V ⊕N ′ = so(3)⊕ so(3) =
so(4), see details and other examples in Section 3.

In what follows, we will work with GO-nilmanifolds that are not naturally re-
ductive. We know that the relation [V,V] ̸⊂ V is sufficient for this.

Let n be a two-step nilpotent Lie algebra with the center z. Then n is called non-
singular (often called also regular or fat) if the operator ad(X) : n → z is surjective
for all X ∈ n \ z.

It is obvious that [n, n] = z for any two-step nilpotent non-singular Lie algebra.
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Let n be a two-step nilpotent non-singular Lie algebra supplied with an inner
product (·, ·), z is the center of n and v is an (·, ·)-orthogonal complement to z in
n. Since n is non-singular, then all operators JZ are bijective for nontrivial Z ∈ z.
Indeed, if JZ(X) = 0 for some non-trivial X ∈ v, then 0 = (JZ(X), Y ) = ([X,Y ], Z)
for all Y ∈ v. Hence, the image of the operator ad(X) : n → z is not whole z, that
is impossible. Therefore, the operator JZ : v → v is bijective for any Z ̸= 0. Since
JZ is skew-symmetric, then n = dim(v) is even.

Let us consider the unit sphere S = {X ∈ v | (X,X) = 1} in v. Any Z ∈ z
determines a tangent vector fields on S as follows: JZ(X) is a tangent vector to S
at the point X ∈ S. Therefore, the sphere S admits m linear independent tangent
vector fields, where m = dim(z). It is known that 0 ≤ dim(z) = m < ρ(n), where ρ
is the function defined by dim(v) = n = (2a + 1) · 2 4b+c 7→ ρ(n) = 8b + 2 c, where
a, b, c ∈ N, 0 ≤ c ≤ 3, see e. g. [33, Theorem 8.2]. In particular, we get that n even
for m = 1, n = 4k for m ∈ {2, 3}, n = 8k for m ∈ {4, 5, 6, 7}, where k ∈ N.

Important examples of non-singular two-step nilpotent Lie algebra are so called
H-type algebras, which generalize Heisenberg algebras.

Let n be a two-step nilpotent Lie algebra. We say that n is an H-type algebra
if there exists an inner product (·, ·) such that J2

Z = −(Z,Z)Id for every Z ∈ z. We
note that Heisenberg algebras are exactly H-type algebras with one-dimensional
centers z.

For any H-type algebra, the orthogonal complement v = z⊥ is a Cliffold module
over the Clifford algebra C(z) generated by z and 1 modulo relation J2

Z+(Z,Z) ·1 =
0, Z ∈ z. Indeed, the linear map J from z to v extends to a representation of C(z),
and v is C(z)-module. Moreover, every Clifford module arises in this way [36]. The
Clifford modules are completely classified, see details e.g. in [33,36].

We have one useful isomorphism invariant for two-step Lie algebras n = z ⊕ v
with even n = dim v, called the Pfaffian form, which is the projective equivalence
class of the homogeneous polynomial fn of degree n/2 in m = dim(z) variables
defined by (

fn(Z)
)2

= det(JZ), Z ∈ z.

It is known that n is non-singular if and only if fn(Z) is a positive polynomial, i.e.,
fn(Z) > 0 for any non-zero Z ∈ z, see details in [50].

3. Some natural examples and Theorem 3.1

At first, we consider the following two 3-parameter families of matrices from so(4):

L(β1, β2, β3) =


0 −β1 −β2 −β3
β1 0 −β3 β2
β2 β3 0 −β1
β3 −β2 β1 0

 , β1, β2, β3 ∈ R,(3.1)
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R(γ1, γ2, γ3) =


0 −γ1 −γ2 −γ3
γ1 0 γ3 −γ2
γ2 −γ3 0 γ1
γ3 γ2 −γ1 0

 , γ1, γ2, γ3 ∈ R.(3.2)

The following results are well known (and they are easy to prove): Every matrix
U ∈ so(4) can be uniquely presented as L(β1, β2, β3) + R(γ1, γ2, γ3) for suitable βi
and γi, i = 1, 2, 3. Moreover, [L(β1, β2, β3), R(γ1, γ2, γ3)] = 0 for any values of βi
and γi, i = 1, 2, 3. The matrices L(β1, β2, β3) for various values of βi, i = 1, 2, 3,
constitutes a Lie algebra isomorphic to so(3). The same we can say about the
matrices R(γ1, γ2, γ3) for various values of γi, i = 1, 2, 3. Hence, we deal with
the decomposition so(4) = so(3) ⊕ so(3) of so(4) into the direct sum of its three-
dimensional ideals (we may assume the first summand is determined by matrices of
the form L(β1, β2, β3), while the second summand is determined by matrices of the
form R(γ1, γ2, γ3).

For a given r > 0, we consider S3
r = {X = (x1, x2, x3, x4) ∈ R4 |x21 + x22 + x23 +

x24 = r2}, the sphere of radius r with center at the origin. Note that, the tangent
plane to S3

r at the point U ∈ S3
r is naturally identified with {W (U) |W ∈ so(4)}.

The following result is well known, but we consider an outline of its proof for
completeness.

Lemma 3.1. For any tangent vector V to S3
r at given point U ∈ S3

r , there is a
triple of β1, β2, β3, as well a triple of γ1, γ2, γ3, such that L(U) = R(U) = V , where
L = L(β1, β2, β3) and R = R(γ1, γ2, γ3).

Proof. Note that the three-dimensional sphere S3 topologically is the Lie group
Sp(1), the group of unit quaternions. We have a natural action of Sp(1) × Sp(1)
on S3 = Sp(1) as follows: (q1, q2) : q 7→ q1 · q · q−1

2 . In particular, we have a
surjective homomorphism ψ : Sp(1) × Sp(1) 7→ SO(4) with the ineffective kernel
Z2 = {(1, 1), (−1,−1)}. The Lie algebras of the images of the first and the second
multiples in Sp(1) × Sp(1) under ψ are the first and the second ideals in the Lie
algebra so(4) = so(3)⊕so(3), that are determined by the matrices L(β1, β2, β3) and
R(γ1, γ2, γ3) respectively, see (3.1) and (3.2).

Both these images of Sp(1) under ψ act transitively on S3 ⊂ R4, see e. g.
[42]. It implies the following observation: If U = (u1, u2, u3, u4) ∈ R4 and r =(
u21 + u22 + u23 + u24

)1/2
, then for any V in the tangent plane to the sphere S3

r at the
point U , there is an element W in the chosen ideal so(3) such that W (U) = V .

Lemma 3.1 and the discussion before it imply the following observation: If V
is a linear subspace in one copy of so(3) for the decomposition so(4) = so(3) ⊕
so(3), then the second copy of so(3), which will be denoted as Z, centralizes V.
Moreover, V satisfies the transitive normalizer condition with respect to Z, hence
every inner product on V determines a GO-nilmanifold of dimension dim(V) + 4.
Up to isomorphism, there is only one choice of V of dimension 1, 2, or 3.

The above arguments lead also to the proof of the following theorem.
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Theorem 3.1. ( [46]) For any k ≥ 1, there is a k-parameter family of pairwise
non-isomorphic connected and simply connected nilpotent Lie groups Nt1,t2,...,tk of
dimension 4k+6, such that every of them admits a 3-parameter family of Rieman-
nian geodesic orbit metrics.

Proof. Let us define a family of two-dimensional subspaces in so(4k + 4) as
follows. At first we fix pairwise distinct real numbers 1 = t0 < t1 < t2 < · · · < tk
and define the matrices

Cj =


0 0 −tj · x y
0 0 y tj · x

tj · x −y 0 0
−y −tj · x 0 0

 , x, y ∈ R, 0 ≤ j ≤ k.

Now, we define
Vt1,t2,...,tk = diag(C0, C1, C2, · · · , Ck).

It is clear that Vt1,t2,...,tk forms a two-dimensional subspace in so(4k + 4) (x, y ∈ R
are arbitrary) for any fixed k-tuple {ti}, 1 ≤ i ≤ k.

The Pfaffian forms for the corresponding nilpotent Lie algebras n t1,t2,...,tk with
operators JZ = Vt1,t2,...,tk ⊂ so(4k + 4) are

(x2 + y2)(t21 · x2 + y2)× · · · × (t2k · x2 + y2) =
k∏

j=0

(t2i · x2 + y2).

Hence, for distinct k-tuples of {tj}, j = 1, . . . , k, we get non-isomorphic non-singular
two-step nilpotent Lie algebra n t1,t2,...,tk , see [50].

Now, we note that the normalizer of Vt1,t2,...,tk in so(4k+4) contains a subalgebra
(that is the centralizer of Vt1,t2,...,tk in so(4k + 4))

diag(D,D, . . . ,D) ⊂ so(4k + 4),

where

D = D(α1, α2, α3) =


0 −α1 −α2 −α3

α1 0 α3 −α2

α2 −α3 0 α1

α3 α2 −α1 0

 , α1, α2, α3 ∈ R.

Taking any X ∈ R4k+4, that we can represent it as X = (X0, X1, . . . , Xk), where
Xj ∈ R4, j = 0, 1, 2, . . . , k. Now, take any Y = Y x,y ∈ Vt1,t2,...,tk (we should fix x
and y for this goal). We consider also Cj = Cx,y

j with the same fixed x and y for
all j = 0, 1, . . . , k, i. e. Y x,y = diag(Cx,y

0 , Cx,y
1 , Cx,y

2 , · · · , Cx,y
k ).

Further, for any 0 ≤ j ≤ k, we can find αj
1, α

j
2, α

j
3 such that

Dj := D(αj
1, α

j
2, α

j
3)(Xj) = Cx,y

j (Xj). Note that any Cj is of type (3.2) and any

Dj is of type (3.1), hence, it suffices to apply Lemma 3.1. Therefore, DX,x,y :=
diag(D0, D1, · · · , Dk) ∈ Z is such that DX,x,y(X) = Y x,y(X).
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According to Remark 2.1, we can take Z as N ′ ⊂ N in order to apply Propo-
sition 2.3. Since [Z,Vt1,t2,...,tk ] = 0 then any inner product on Vt1,t2,...,tk is ad(Z)-
invariant. Hence, there is a 3-parameter family of suitable inner product on Vt1,t2,...,tk

(since dim(Vt1,t2,...,tk) = 2). Therefore, the theorem is completely proved.

Let us consider a more general situation, related to the transitive normalizer
condition. Suppose that A ⊕ B is a Lie subalgebra of so(n) such that the corre-
sponding Lie group B ⊂ SO(n), where B = Lie(B), acts transitively on the unit
sphere S of Rn = v. All such Lie groups classified in [42]. Note that for any X ∈ S
and any U ∈ so(n), U(X) is a tangent vector to S at the point X. Let us consider
any linear subspace V ⊂ A. Then V satisfies the transitive normalizer condition.
Indeed, B is a subset of the normalizer N of V in so(n). If we fix Z ∈ V and
X ∈ S ⊂ Rn, then we can find Y ∈ B such that Y (X) = Z(X). It follows from the
fact that Lie(B) acts transitively on the unit sphere S, hence, B(X) coincides with
the tangent space to S at the point X. Moreover, by our assumptions, [Y,Z] = 0.
Hence, V satisfies the transitive normalizer condition. By Proposition 2.3 we get
a family of geodesic orbit nilmanifolds, corresponding to the metric Lie algebras
(V oRn, (·, ·)1 + (·, ·)2), where (·, ·)1 is any ad(B)-invariant inner product on V and
(·, ·)2 is the standard inner product in Rn. Since [V,B] = 0, (·, ·)1 is any invariant
inner product on V (here we take B as N ′ in the notations of Remark 2.1).

In particular, we know that U(1) ·SU(n) ⊂ SO(2n) and SU(n) acts transitively
on the unit sphere S of R2n. Therefore, we can consider V = A = u(1) and
B = su(n). The corresponding GO-nilmanifolds are the Heisenberg groups with
suitable Riemannian metrics.

We know also that Sp(1) · Sp(n) ⊂ SO(4n) and Sp(n) acts transitively on the
unit sphere S of R4n. Hence, we can consider V = A = sp(1) and B = sp(n).
The corresponding GO-nilmanifold are the quaternionic Heisenberg groups [2]. In
these two partial cases we get all possible naturally reductive H-type group, see
[35, Proposition 1]. Note that the first examples of commutative spaces which are
not weakly symmetric (which provides an answer to Selberg’s question about the
existence of such examples [51]) is modeled as the quaternionic Heisenberg group,
endowed with certain special naturally reductive metrics [39].

Instead of Sp(1) we can take also V = U(1) ⊂ Sp(1) = A and any two-
dimensional subspace V ⊂ Sp(1) = A. In the first case we again obtain the
Heisenberg groups (only of dimension 4n + 1), in the second case we get H-type
groups of dimension 4n+2, that are not naturally reductive, but are geodesic orbit,
see [35, Proposition 3].

The complete classification of geodesic orbit H-type groups was obtained by
C. Riehm in [49]: a given H-type group is geodesic orbit if and only if m = 1, 2, 3;
or m = 5, 6 and n = 8; or m = 7, n = 8, 16, 24 and v is an isotypic Clifford
module (in this case it is equivalent to the following property: if Z1, Z2, . . . , Z7 is an
orthonormal basis of z, the linear transformation T : X 7→ JZ1(JZ2(· · · JZ7(X) · · ·))
of v is either Id or −Id). The classification of weakly symmetric H-type group was
obtained in [12]: a givenH-type group is weakly symmetric if and only ifm = 1, 2, 3;
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or m = 5, 6, 7 and n = 8; or m = 7, n = 16 and v is an isotypic Clifford module.

A natural and topical problem is to obtain the complete classification of geodesic
orbit H-type groups in the pseudo-Riemannian case. Some important ingredients
are obtained in [26,27] (the complete classification of pseudo H-type algebras) and
[25] (the group of automorphisms of pseudo H-type Lie algebras).
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