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1. Introduction

It is known that the 6-dimensional unit sphere S6(1) has a nearly Kähler structure
(J, g), where J is an almost complex structure defined on S6(1) using the vector
cross product of purely imaginary Cayley numbers ImO = R7 and g is the induced
metric on S6(1) as a hypersurface of R7.

Let M be a real hypersurface in S6(1) with a unit normal vector field N and let
ξ = −JN be the characteristic vector field on M . We say that a hypersurface M is
Hopf if the vector field ξ is principal, that is, Aξ = αξ for a certain function α on
the submanifold, where A is the shape operator of the hypersurface. We also note
that the function α is locally constant, see [2]. It was shown in [2] that a connected
Hopf hypersurface of a nearly Kähler S6(1) is an open part of either a geodesic
hypersphere or a tube around an almost complex curve in S6(1).

The Jacobi operator on M with respect to ξ is called the structure Jacobi oper-
ator and is denoted by l(X) = Rξ(X) = R(X, ξ)ξ for any X tangent to M , where
R denotes the curvature tensor of M. Some papers devoted to studying several con-
ditions on the structure Jacobi operator of a real hypersurface in different ambient
spaces are [7, 8].
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Recently, we proved the non-existence of real hypersurfaces in S6(1) with par-
allel structure Jacobi operator [1]. Also, the non-existence of real hypersurfaces in
S6(1) whose Lie derivative of structure Jacobi operator coincides with the covariant
derivative of it is proven in [5].

The structure Jacobi operator l is of Codazzi type if (∇X l)Y = (∇Y l)X, for
any X,Y tangent to M , where ∇ denotes the covariant derivative on M . Naturally,
this is a weaker condition than l being parallel. In [9] the authors proved the non
existence of real hypersurfaces in complex projective space whose structure Jacobi
operator is of Codazzi type. See also [6].

The purpose of the present paper is to study Hopf real hypersurfaces of S6(1)
whose structure Jacobi operator is of Codazzi type. Concretely we prove

Theorem 1.1. There exist no Hopf real hypersurfaces in S6(1) with Codazzi type
structure Jacobi operator.

2. Preliminaries

Let M be a Riemannian submanifold of the nearly Kähler sphere S6(1) with nearly
Kähler structure (J, g). Then the (2, 1)-tensor fieldG on S6(1) defined byG(X,Y ) =
(∇̄XJ)Y, where ∇̄ is the Levi-Civita connection on S6(1), is skew symmetric and
also satisfies

G(X, JY ) + JG(X,Y ) = 0, g(G(X,Y ), Z) + g(G(X,Z), Y ) = 0.

Moreover, see [4], we have

(∇̄G)(X,Y, Z) = g(X,Z)JY − g(X,Y )JZ − g(JY, Z)X,(2.1)

for arbitrary vector fields X,Y, Z tangent to S6(1).

Also, for X,Y, Z,W ∈ TM , we have that the following Gauss equation

R(X,Y, Z,W ) = g(X,W )g(Y, Z)− g(X,Z)g(Y,W )

+ g(h(X,W ), h(Y,Z))− g(h(X,Z), h(Y,W )),(2.2)

where we denote by R the Riemannian curvature tensor of M .

We denote by N the unit normal vector field of M and by ξ = −JN the
corresponding Reeb vector field with dual 1-form η(X) = g(X, ξ) a 1-form on M .
Let D = Ker η = {X ∈ TM | η(X) = 0}. Then D is a 4-dimensional smooth
distribution on M , which is J-invariant.

3. The moving frame for hypersurfaces in S6(1)

Let us present one of the convenient moving frames to work with and the relations
between the connection coefficients in it, for details see [3].
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For each unit vector field E1 ∈ D, let E2 = JE1, E3 = G(E1, ξ), E4 = JE3.
Then the set {E1, E2, E3, E4, E5 = ξ} is a local orthonormal frame on M , see [3].
Moreover, the following holds.

Lemma 3.1. ([3]) For the previously defined orthonormal frame the following re-
lations hold

G(E1, E2) = 0, G(E1, E3) = −ξ, G(E1, E4) = N, G(E1, ξ) = E3,

G(E1, N) = −E4, G(E2, E3) = −N, G(E2, E4) = ξ, G(E2, ξ) = −E4,

G(E2, N) = −E3, G(E3, E4) = 0, G(E3, ξ) = −E1, G(E3, N) = E2,

G(E4, ξ) = E2, G(E4, N) = E1.(3.1)

Note that such a moving frame is not uniquely determined and depends on the
choice of the vector field E1 ∈ D.

For one such frame, let us denote by

gkij = g(DEiEj , Ek), hij = g(DEiEj , N), 1 ≤ i, j, k ≤ 5,(3.2)

whereD is Levi-Civita connection in R7. The connectionD is metric and the second
fundamental form symmetric, which gives us gkij = −gjik, and hij = hji.

Lemma 3.2. ([1]) For the previously defined coefficients we have

g312 = −g411, g412 = g311, h11 = −g512, h12 = g511, g322 = −g421,

g422 = g321, g522 = −g511, h22 = g521, g332 = −g431, g432 = g331,

h13 = 1− g532, h23 = g531, g342 = −g441, g442 = g341, h14 = −g542,(3.3)

h24 = −1 + g541, g352 = −1− g451, g452 = g351, h15 = −g552, h25 = g551,

g532 = 2 + g514, g542 = −g513, g531 = −g524, g541 = 2 + g523, h33 = −g543,

h34 = g533, g544 = −g533, h44 = g543, h35 = −g554, h45 = g553.

Lemma 3.3. ([1]) The differentiable functions (3.2) satisfy

g552 = g211 + g413, g551 = −g221 − g423, g554 = g231 + g433,

g553 = −g241 − g443, h55 = −g251 − g453.(3.4)

Since we still have a choice for E1 ∈ D, from now on let it be parallel to the
projection of Aξ on D. Then there exist differentiable functions α and β such that

Aξ = βE1 + αξ.(3.5)

Since the components of Aξ in direction of E2, E3, E4 vanish, we have

g413 = −g211 − β, g423 = −g221, g433 = −g231, g443 = −g241, g453 = −g251 − α.

Now we will use the Gauss equations to obtain further relations between the coef-
ficients.
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Lemma 3.4. For the coefficients (3.2) and β the following relations hold

E1(g
2
21) = −1− (g211)

2 + 2(g511)
2 − (g221)

2 − 2g411g
3
21 + 2g311g

4
21 + 2g512g

5
21

− (g411 + g321)g
2
31 + g311g

2
41 − g421g

2
41 + g512g

2
51 − g521g

2
51 + E2(g

2
11),

E1(g
2
31) = −g511(3 + 2g514)− 2g512g

5
24 + g411(g

2
21 − 2g331)− g231(g

2
21 + g331)

+ 2g311g
4
31 − g211(g

3
11 + g241) + (g513 + g524)g

2
51 − g241(g

4
31 + β) + E3(g

2
11),

E1(g
2
41) = 3g512 + 2g511g

5
13 − g311g

2
21 + 2g512g

5
23 + g211(−g411 + g231)− g221g

2
41 − g231g

3
41

− 2g411g
3
41 + 2g311g

4
41 − g241g

4
41 − 2g251 + g514g

2
51 − g523g

2
51 + g231β + E4(g

2
11),

E1(β) = g513 − 2g511g
2
51 + 2g351 + 2g514g

3
51 − 2g513g

4
51 + g511α− ξ(g512),

E2(β) = 2(g511)
2 + g514 + 2g512g

5
21 + g523(1+2g514)−2g513g

5
24 + (g521−g512)α+ g211β,

E3(β) = −g511(3+2g514)−2g512g
5
24 + g533(1+2g514)− 2g513g

5
34−(g513+g524)α+ g311β,

E4(β) = 2g513(g
5
11+g533) + g512(3+2g523) + g543(1+2g514) + (g523−g514+2)α+ g411β,

Proof. The first three equations are obtained by taking X = E1, Y = Ei,
Z = E1 and W = E2, i = 2, 3, 4 into (2.2), respectively.
The last four equations are obtained from (2.2), respectively, for (X,Y, Z,W ) =
(E1, ξ, E2, ξ),(X,Y, Z,W ) = (E1, E2, E3, E4), (X,Y, Z,W ) = (E1, E3, E3, E4) and
(X,Y, Z,W ) = (E1, E4, E3, E4). .

Now, further computation of the Gaussian equation for various choices of vector
fields appearing in it, the covariant derivatives of some of the coefficients in the
direction of the vector field ξ are obtained.

Lemma 3.5. The functions (3.2) satisfy

ξ(g511) = 1 + (g511)
2 + g512g

5
21 − g513g

5
24 + g512g

2
51 + g521g

2
51 + g513g

3
51 − g524g

3
51

+ 2g451 + g523g
4
51 + g514(2 + g523 + g451)− g512α+ g211β − β2,

ξ(g513) = g513g
5
33 + g514g

5
43 − g514g

2
51 + g523g

2
51 + g511(g

5
13 − g351)− α+ g533g

3
51

+ g543g
4
51 + g512(1 + g523 + g451)− 2g514α+ g411β,

ξ(g514) = −g514g
5
33 + g513g

5
34 + g513g

2
51 + g524g

2
51 + g512(g

5
24 − g351) + g534g

3
51

+ g511(g
5
14 − g451)− g533g

4
51 + 2g513α− g311β,

ξ(g521) = 2g351 + 2g523g
3
51 + g524(3 + 2g451) + g511(−2g251 + α) + g221β,

ξ(g523) = −g533 + g523g
5
33 + g524g

5
43 + g543g

3
51 − g524g

2
51 − g521g

3
51 − g533g

4
51

+ g513(g
5
21 − g251)− g511(1 + g523 + g451)− 2g524α+ g421β,

ξ(g524) = −g524g
5
33 − g534 + g523g

5
34 + g514(g

5
21 − g251) + g523g

2
51 − g533g

3
51 + α

+ g511(−g524 + g351)− g521g
4
51 − g534g

4
51 + 2g523α− g321β,

ξ(g533) = 3− g513g
5
24 + g534g

5
43 − g534g

2
51 − g543g

2
51 − g513g

3
51 + g524g

3
51 + (g533)

2

+ 2g451 + g523(3 + g451) + g514(1 + g523 + g451)− 2g534α− g543α+ g431β,

ξ(g534) = 2g533g
2
51 − 2g351 − 2g514g

3
51 + g524(3 + 2g451) + 3g533α− g331β,

ξ(g543) = g513 + 2g533g
2
51 − 2g351 − 2g523g

3
51 − 2g513g

4
51 + 3g533α+ g441β,
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Proof. By taking in particular (X,Y, Z,W ) = (E1, E5, Ej , E5), j = 1, 3, 5, in
(2.2), respectively, as a result we obtain the first three equations from the lemma.
We get the next three equations from (2.2) for (X,Y, Z,W ) = (E2, E5, Ek, E5), k =
1, 3, 4, respectively. We get the last three equations from the lemma from (2.2) for
(X,Y, Z,W ) = (E3, E5, E3, E5), (X,Y, Z,W ) = (E3, E5, E4, E5) and (X,Y, Z,W ) =
(E4, E5, E3, E5).

4. Proof of the Main theorem

Let M be a Hopf real hypersurface with a structure Jacobi operator of Codazzi type.
The condition that the structure Jacobi operator is of Codazzi type is equivalent to

(∇Ei l)Ej − (∇Ej l)Ei = 0, i, j = 1, ..., 5.

Since M is Hopf, from (3.5) we have that β = 0 so from Lemma 3.4 we get

0 = E1(β) = g513 − 2g511g
2
51 + 2g351 + 2g514g

3
51 − 2g513g

4
51(4.1)

+ g511α− ξ(g512),

0 = E2(β) = 2(g511)
2 + g514 + 2g512g

5
21 + g523(1 + 2g514)− 2g513g

5
24(4.2)

+ (g521 − g512)α,

0 = E3(β) = −g511(3 + 2g514)− 2g512g
5
24 + g533(1 + 2g514)− 2g513g

5
34(4.3)

− (g513 + g524)α,

0 = E4(β) = 2g513(g
5
11 + g533) + g512(3 + 2g523) + g543(1 + 2g514)(4.4)

+ (g523 − g514 + 2)α,

and then from (4.1) we obtain

ξ(g512) = g513 − 2g511g
2
51 + 2g351 + 2g514g

3
51 − 2g513g

4
51 + g511α.(4.5)

Also, since α is now constant, we have Ei(α) = 0, i = 1, ..., 5.

From

0 = g ((∇E1
l)ξ − (∇ξl)E1, E3) = g513(1 + α2),

0 = g ((∇E2 l)ξ − (∇ξl)E2, E3) = g523(1 + α2),

we obtain g513 = 0 and g523 = 0. Next, from

0 = g ((∇E1
l)ξ − (∇ξl)E1, E2) = g512(1 + α2),

0 = g ((∇E2 l)ξ − (∇ξl)E2, E2) = g511(1 + α2),

we get g512 = 0 and g511 = 0 so from (4.5) and Lemma 3.5, respectively, we obtain

0 = ξ(g512) = 2(1 + g514)g
3
51,(4.6)

0 = ξ(g511) = 1 + g521g
2
51 − g524g

3
51 + 2g451 + g514(2 + g451).(4.7)
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Now let’s look at (4.6). If we assume that g514 = −1, from 0 = g((∇E1 l)E2 −
(∇E2 l)E1, ξ) = −g521 − α we get g521 = −α so (4.2) becomes 0 = −1− α2, which is
a contradiction. Therefore, it must be g351 = 0.

Further from (4.2) we get g514 + g521α = 0, so g514 = −g521α so then 0 =
g((∇E1 l)E2 − (∇E2 l)E1, ξ) = −g521(1 + α2) gives us g521 = 0, so, from Lemma
3.5, we get

0 = ξ(g521) = g524(3 + 2g451).(4.8)

From (4.4) we obtain g543 = −2α. Then from (4.7) we get g451 = − 1
2 and from

(4.8) we have g524 = 0. Next, (4.3) becomes g533 = 0 and from 0 = g((∇E2 l)ξ −
(∇ξl)E2, E1) =

1
2 (g

5
34 − 2α) we obtain g534 = 2α. Finally from

0 = g((∇E3 l)ξ − (∇ξl)E3, E2) = 2(1 + α2)

we get a contradiction, which completes the proof of the theorem.

Acknowledgement: The research of the author was partially funded by the Fac-
ulty of Mathematics at the University of Belgrade (the contract 451-03-66/2024-
03/200104) through a grant by the Ministry of Science, Technological Development,
and Innovation of the Republic of Serbia.

REFERENCES
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6. C. J. G. Machado, J. D. Pérez and Y. J. Suh: Real Hypersurfaces in Complex
Two-Plane Grassmannians whose Jacobi Operators Corresponding to D⊥− Directions
are of Codazzi Type. Adv. in Pure Math. 1 (2011), 67–72.
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