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Abstract. We prove the non-existence of Hopf real hypersurfaces in the nearly Kéhler
sphere S%(1) whose structure Jacobi operator is of Codazzi type.
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1. Introduction

It is known that the 6-dimensional unit sphere S%(1) has a nearly Kihler structure
(J,g), where J is an almost complex structure defined on S®(1) using the vector
cross product of purely imaginary Cayley numbers Im O = R7 and g is the induced
metric on S%(1) as a hypersurface of R7.

Let M be a real hypersurface in S%(1) with a unit normal vector field N and let
& = —JN be the characteristic vector field on M. We say that a hypersurface M is
Hopf if the vector field £ is principal, that is, A = a& for a certain function « on
the submanifold, where A is the shape operator of the hypersurface. We also note
that the function « is locally constant, see [2]. It was shown in [2] that a connected
Hopf hypersurface of a nearly Kihler S%(1) is an open part of either a geodesic
hypersphere or a tube around an almost complex curve in S%(1).

The Jacobi operator on M with respect to £ is called the structure Jacobi oper-
ator and is denoted by [(X) = R¢(X) = R(X, &) for any X tangent to M, where
R denotes the curvature tensor of M. Some papers devoted to studying several con-
ditions on the structure Jacobi operator of a real hypersurface in different ambient
spaces are [7, 8].
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Recently, we proved the non-existence of real hypersurfaces in S%(1) with par-
allel structure Jacobi operator [1]. Also, the non-existence of real hypersurfaces in
S6(1) whose Lie derivative of structure Jacobi operator coincides with the covariant
derivative of it is proven in [5].

The structure Jacobi operator [ is of Codazzi type if (VxI)Y = (Vy))X, for
any X,Y tangent to M, where V denotes the covariant derivative on M. Naturally,
this is a weaker condition than ! being parallel. In [9] the authors proved the non
existence of real hypersurfaces in complex projective space whose structure Jacobi
operator is of Codazzi type. See also [6].

The purpose of the present paper is to study Hopf real hypersurfaces of S%(1)
whose structure Jacobi operator is of Codazzi type. Concretely we prove

Theorem 1.1. There exist no Hopf real hypersurfaces in S6(1) with Codazzi type
structure Jacobi operator.

2. Preliminaries

Let M be a Riemannian submanifold of the nearly Kéhler sphere S°(1) with nearly
Kihler structure (J, g). Then the (2, 1)-tensor field G on S%(1) defined by G(X,Y) =
(VxJ)Y, where V is the Levi-Civita connection on S%(1), is skew symmetric and
also satisfies

GUX,JY) + JG(X,Y) =0, g(G(X,Y),Z)+ g(G(X,Z),Y) = 0.
Moreover, see [4], we have
(2.1) (VO)X,Y,Z) = g(X,Z2)JY - g(X,Y)JZ - g(JY, Z)X,

for arbitrary vector fields X,Y, Z tangent to S%(1).
Also, for X,Y,Z, W € TM, we have that the following Gauss equation

R(X,Y7Z,W) = g(X,W)g(Y,Z)—g(X7Z)g(Y7W)
(22) + g(h(X,W),h(Y,Z))fg(h(X,Z),h(Y,W)),

where we denote by R the Riemannian curvature tensor of M.

We denote by N the unit normal vector field of M and by £ = —JN the
corresponding Reeb vector field with dual 1-form n(X) = ¢g(X, &) a 1-form on M.
Let D = Kern = {X € TM | n(X) = 0}. Then D is a 4-dimensional smooth
distribution on M, which is J-invariant.

3. The moving frame for hypersurfaces in S%(1)

Let us present one of the convenient moving frames to work with and the relations
between the connection coefficients in it, for details see [3].
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For each unit vector field Fy € D, let By = JE,, E5 = G(E1,§), By = JEs.
Then the set {Ey, Ea, E3, B4, E5 = £} is a local orthonormal frame on M, see [3].
Moreover, the following holds.

Lemma 3.1. ([3]) For the previously defined orthonormal frame the following re-
lations hold
G(Er, E2) =0, G(Ey,E3) = ¢,  G(E,Ey) =N, G(E,¢§) = Es,
G(Fy,N)=—E,;, G(F3, E3)=—-N, G(Ey,Ey)=¢& G(Fy &) =—Fy,
G(Es,N)=—F3, G(Fs3,E;) =0, G(Es, ) =—E,, G(E3,N)=E,,
(3.1) G(Ey,§) = B, (Eq4,N) = Ex.

@
2

)

Note that such a moving frame is not uniquely determined and depends on the
choice of the vector field F, € D.

For one such frame, let us denote by
(32) gfj = g(DEiEj,Ek)a hij = g(DEzEmN)v 1 S i7j7k S 5,
where D is Levi-Civita connection in R”. The connection D is metric and the second
fundamental form symmetric, which gives us gfj = —g)., and h;; = hj;.
Lemma 3.2. ([1]) For the previously defined coefficients we have
3 4 4 3 5 5 3 4
J12 = —911» Y12 =911, P11 =—g72, hi2 =971, G52 = —Go1,
4 _ 3 5 _ 5 By — B 3 _ 4 4 _ 3
922 = 921, Y22 = —Y11» 22 = 921, Y932 = —931, Y932 = 931
(33) his=1-05, has=0%, 0i=—0i1. Yir=0n, hiua=—g,
hos = —1463, goo=-1—gs1, gsy =051, his=—go, has=gd,
9:’5>2 =2 +9?4a 922 = _9?3> 931 = —934, 921 =2 "‘9537 hss = _9237

_ 5 5 _ 5 _ 5 _ 5 _ 5
h3s = g33, 944 = —Gg33, haa = g43, h3s = —gss, has = g53.

Lemma 3.3. ([1]) The differentiable functions (3.2) satisfy

4 4 4
9o2 = 911 + 913, 95, = —051 — G33.  9o4 = 931 + 933
(3.4) 935 = —9i1 — g3, hss = —g31 — gas-

Since we still have a choice for F; € D, from now on let it be parallel to the
projection of A¢ on D. Then there exist differentiable functions o and 8 such that

(3.5) A¢ = BE; + €.
Since the components of A¢ in direction of Fs, E3, E4 vanish, we have
gis = =911 — By G = —951, Y3 =031, iz = —9h, Y53 = —Gs —

Now we will use the Gauss equations to obtain further relations between the coef-
ficients.
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Lemma 3.4. For the coefficients (3.2) and (5 the following relations hold

Ey (931)

Ey (931)

+

—1—(g71)> +2(991)° — (931)% — 2911931 + 293,931 + 297295,

(911 + 931)951 + 911901 — 921951 + 972951 — 951951 + Ba(gi),

—971(3 + 2974) — 2972934 + 911 (931 — 2951) — 931 (931 + 931)

2031931 — 911 (951 + 931) + (93 + 954)931 — gar (931 + B) + Es(g1),
3972 + 297197 — 951951 + 2912955 + 911 (=911 + 931) — 95190 — 99
2011941 + 2911941 — 951941 — 2951 + 974951 — 933951 + 9518 + Ea(gt1),
93 — 2971951 + 2951 + 2974951 — 2973951 + 911 — E(972);

2(971)° + 914 + 2072951 + 953(142974) — 2973954 + (951 —9i2) + g1 5,
—971 (342974) — 2972954 + 933 (142974) — 2973934 — (973 +9g50) + 931 5,
2975(971+933) + 972(3+2933) + 933 (1+2934) + (933 — 974 +2) + 911 5,

Proof. The first three equations are obtained by taking X = Fy, Y = FE;,
Z =FE; and W = Ey, i = 2,3,4 into (2.2), respectively.
The last four equations are obtained from (2.2), respectively, for (X,Y,Z, W) =
(E1,€,E2,8),(X,Y, Z,W) = (E1,Es,FE5,Ey), (X,Y,Z,W) = (E1, Es, E3, E4) and
(X7KZ7W>:<E17E47E33E4>' .

Now, further computation of the Gaussian equation for various choices of vector

fields appearing in it, the covariant derivatives of some of the coefficients in the
direction of the vector field £ are obtained.

Lemma 3.5.

5(9?1)
f(gia)

5(9?4)

_|_

+

_|_

_|_

+

_|_

The functions (3.2) satisfy

L+ (g71)% + gaga1 — 973954 + 91a951 + 951951 + 913951 — Goa9n
2951 + 933931 + 974(2 + 933 + g51) — grex + 9118 — B2,

93399 + 914933 — 914951 + 953951 + 971 (973 — 951) — @ + G395,
933951 + 932(1+ g3 + ga1) — 200, + 911 B,

~914933 + 913934 + 973951 + 924951 + 912(934 — 951) + 934951
901974 — 951) — 933931 + 29730 — g1 B,

2921 + 2953951 + 954(3 + 2951) + 971 (—2031 + @) + 9315,

— 95 + 93395 + 954953 + 913951 — 954931 — 951951 — 953981
913(951 — 921) — 901 (1 + 933 + g51) — 2954 + g1 3,

—954933 — 934 T 933934 + 914 (951 — 951) + 953931 — 93395, + @
931 (=954 + G31) — 951951 — 934951 + 295300 — g5, 3,

3 — Y3954 + 934943 — 934951 — 923951 — 9139m1 + 9oag51 + (933)°
2951 + 9333 + 51) + 974(1 + 933 + g51) — 2954 — gizx + 9313,
2953931 — 2051 — 2974951 + 9543 + 2931) + 39330 — g5, 8,

9rs + 2953951 — 2951 — 2953951 — 2913951 + 39530 + g B,
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Proof. By taking in particular (X,Y,Z,W) = (E1,Es,E;, E5), j = 1,3,5, in
(2.2), respectively, as a result we obtain the first three equations from the lemma.
We get the next three equations from (2.2) for (X,Y,Z, W) = (Ea, Es, Ey, Es), k =
1,3, 4, respectively. We get the last three equations from the lemma from (2.2) for
(X,Y,Z,W) = (Es, E5, E3, Es), (X,Y, Z,W) = (Es, Es, By, Es) and (X,Y, Z, W) =
(Ey, Bs, B3, E5). O

4. Proof of the Main theorem

Let M be a Hopf real hypersurface with a structure Jacobi operator of Codazzi type.
The condition that the structure Jacobi operator is of Codazzi type is equivalent to

(Ve)E; — (Ve )B: =0, i,j=1,..5

Since M is Hopf, from (3.5) we have that § = 0 so from Lemma 3.4 we get

(41) 0 = Ei(B) =gl — 2971951 + 2931 + 2974951 — 2973951
+ 9?104 - 5(9?2)»

(42) 0 = Ex(B) =2(90))" + gl + 2970951 + 953(1 + 2974) — 297595,
+ (931 - 9?2)04;

(43) 0 = E3(8) = —g01(3+2974) — 2970954 + 933 (1 + 2974) — 2973954
— (933 + 9a),

(44) 0 = Eu(B) =2¢75(g71 + 933) + 912(3 + 2953) + gi3(1 + 297,)

+ (953 — 914 + 2)e,
and then from (4.1) we obtain
(4.5) E(972) = 913 — 2901931 + 2931 + 2974931 — 2973951 + g

Also, since « is now constant, we have E;(a) =0, 7= 1,...,5.

From

= g ((vEll)é - (V§1)E1,E3) = 9?3(1 + 012>,
= g ((VEzl)f - (Vﬁl)EQ’ E3) = 933(1 + 042),

we obtain g7; = 0 and g5; = 0. Next, from

0 = g((Ve,1)é— (Ve)Ey, Ep) = gis(1+0?),
0 = g ((VEzl)g - (V§Z)E2, E2) = gi)l(l + 012),

we get g7y = 0 and g7, = 0 so from (4.5) and Lemma 3.5, respectively, we obtain

(4.6) 0 = £&(g3s) =2(1+g74)95,
(4.7) 0 = &(g0) =1+ 951951 — 954951 + 2951 + 974(2 + g31)-
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Now let’s look at (4.6). If we assume that g7, = —1, from 0 = g((Vg,l)Ey —
(Ve,0)E1,€) = —g5, — a we get g5, = —a so (4.2) becomes 0 = —1 — 2, which is
a contradiction. Therefore, it must be g3, = 0.

Further from (4.2) we get g5, + g5, = 0, so g3, = —g5,« so then 0 =
g(Ve,)Ey — (VE,0)E1,€) = —g5(1 + a?) gives us g3; = 0, so, from Lemma
3.5, we get
4.8) 0= E(g31) = 924(3 + 295,)-

From (4.4) we obtain g§; = —2a. Then from (4.7) we get g, = —3 and from

(4.8) we have g3, = 0. Next, (4.3) becomes g3; = 0 and from 0 = g((Vg,[)¢ —
(Vel)Es, Er) = 1(g5, — 20) we obtain g3, = 2a. Finally from

0=g((VE,DE = (Vel) B3, B2) = 2(1 + )

we get a contradiction, which completes the proof of the theorem.
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