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1. Introduction

The problem of finding a point that minimizes the sum of distances from it to a
given set of points in a metric space was first mentioned in the 17th century. In
1643 Fermat posed a problem for three points on the Euclidean plane, and in the
same century Torricelli proposed a solution to this problem ([4]).

Since then, various generalizations of this problem have been considered. The
problem was formulated for an arbitrary number of points, the dimension of the
space, as well as the norm given in this space. The simplicity of the formulation al-
lows us to consider the problem even in an arbitrary metric space. For example, the
problem for four points on the Euclidean plane was solved by D. Fagnano ([3, 12]).
And for the case of five points, it was proved that the problem is unsolvable in
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Figure 1.1: The design proposed by Torricelli. The point T is the solution of the
problem for the given points A,B,C ([15])

radicals, the proof is given in [1] and [6]. In addition, there is a generalized prob-
lem in which the vertices are considered together with some positive values, called
weights. See for details in [14,16,17]. In particular, the existence and uniqueness of
the solution of such a problem for three points on the Euclidean plane were proved
([12]).

This article will consider the classic version of the problem: finding a point for
which the minimum sum of distances to elements of a subset of a metric space
is reached. We will call such a formulation generalized Fermat–Torricelli problem
(or simply Fermat–Torricelli problem). The work is based on the article [13], which
describes the application of a geometric approach to the problem and presents some
new results that are obtained in the framework of real finite-dimensional normed
spaces.

Figure 1.2: Examples of solutions to the Fermat–Torricelli problem on the Euclidean
plane and on the λ-plane

There are normed spaces in which the solution to the Fermat-Torricelli problem
is not unique for a certain set of points. We present two examples of solving the
Fermat–Torricelli problem on a plane. Figure 1.2 shows the vertices of an equilateral
triangle, first in the Euclidean plane, and then in the norm given by a regular
hexagon. In the first case, the set of solutions contains a single point constructed
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in such a way that the angles between the rays coming out of it in the direction of
the vertices of the triangle are equal. In the second case, we specify the location
of the points of the given set: let one of them be at the origin, and the other
two — at neighboring vertices of the unit circle. Under such conditions, the set of
solutions will include all points of the constructed triangle, including the interior
and boundaries.

The purpose of this work is to find a necessary and sufficient condition for the
uniqueness of the solution of the Fermat–Torricelli problem for any n points in an
arbitrary real finite-dimensional normed space.

I would like to express my gratitude to my scientific adviser, Doctor of Physical
and Mathematical Sciences Professor A. A. Tuzhilin and Doctor of Physical and
Mathematical Sciences Professor A. O. Ivanov for posing the problem and constant
attention to the work.

2. The Fermat–Torricelli problem and solving methods

Let X be an arbitrary real finite-dimensional normed space. By |xy| we denote
∥x− y∥ and xy = {a : |xy| = |xa|+ |ay|}.

Definition 2.1. A point x0 is called a Fermat–Torricelli point for points A =
{x1, . . . , xn} if x = x0 minimizes

∑n
i=1 |xxi|. The set of all such points will be

denoted by ft(A).

One can obtain the following assertion about the set of solutions of the Fermat–
Torricelli problem, see for example [5].

Proposition 2.2. Let A = {x1,. . . , xn} be points in X. Then ft(A) is a non-
empty, compact and convex set.

Now we present the geometric method for constructing the solution of the
Fermat–Torricelli problem. Let X∗ be a dual space.

Definition 2.3. A functional φ ∈ X∗ is called norming for a vector x ∈ X if
∥φ∥ = 1 and φ(x) = ∥x∥ .

The following theorem is a criterion for a certain point to belong to the set of
solutions of the Fermat–Torricelli problem.

Theorem 2.4. [7, 10] Let x0, x1, ..., xn be points in space and x0 ̸= xi for i =
1, ..., n. Then x0 is a Fermat–Torricelli point for A = {x1, ..., xn} if and only if
each vector xi−x0, i = 1, ..., n, has a norming functional φi such that

∑n
i=1 φi = 0.

Assume that a point is found that is a solution for the set A. Now, using the
functionals from Theorem 2.4, we can construct the entire set ft(A). To do this, we
introduce a new object.
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Definition 2.5. Let a functional φ ∈ X∗ and a point x ∈ X be given. Define cone
C(x, φ) =

{
x− a : φ(a) = ∥a∥

}
.

Theorem 2.6. [7] Let A = {x1, ..., xn} be points in space and p ∈ ft(A) \ A. By
Theorem 2.4, for each vector xi − p, i = 1, ..., n, there exists a norming functional
φi such that

∑n
i=1 φi = 0. Then ft(A) = ∩n

i=1C(xi, φi).

The Theorems 2.4 and 2.6 constitute a geometric method for finding a solution
to the Fermat–Torricelli problem. To describe the application of this theorem, let’s
consider in more detail the example with the vertices of an equilateral triangle in
the hexagonal norm (Figure 2.1).

First, let’s find at least one solution. Take p = 1
3 (x1+x2+x3) and use Theorem

2.4 to prove that p ∈ ft(A). To do this, consider the vectors x1 − p, x2 − p, x3 − p
and construct their norming functionals. Since they lie in the same directions with
internal flattening points, then for each of the vectors xi − p there is exactly one
functional φi whose level line contains the corresponding flattening. The flattenings
are equidistant from the origin and form an equilateral triangle; therefore, the sum
of the functionals constructed from them is equal to zero, and the condition of the
theorem is satisfied.

Figure 2.1: Construction of a complete set of solutions for points x1, x2, x3 on a
plane with hexagonal norm

Now let’s use Theorem 2.6 to find all solutions. Let us construct a cone given
by the functional φ2 and the vector x2 − p. Since the functional is norming for
all flattening points, the set

{
a : φ2(a) = ∥a∥

}
is a set of rays emanating from

the origin and passing through the flattening points , that is, an angle whose sides
contain two adjacent vertices. Now we will reflect the angle relative to the origin
and perform a parallel translation so that the vertex of the angle is at the point x2.
After a similar construction of two other cones, we obtain that their intersection is
the entire triangle x1x2x3.

Remark 2.1. The statement of Theorem 2.6 does not depend on the choice of the point
p and the functionals φi.
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The geometric method gives a general description of the solutions of the Fermat–
Torricelli problem for various given sets - this is the intersection of some cones with
vertices located at the points of this set. In the case of a plane, this observation
allows us to formulate the following statements:

Proposition 2.7. [13] Let in space the points of the set A = {x1, ..., x2k+1} be
located on one straight line in the order of their numbering. Then ft(A) = {xk+1}.
If A = {x1, ..., x2k}, then ft(A) = xkxk+1.

3. Uniqueness criterion

3.1. Criterion for n points in a space of dimension d

Let X be a real normed space of dimension d. In X we pose the Fermat–Torricelli
problem for n points. If xi ∈ X, 1 ≤ i ≤ n, then the solution is the set ft(x1, . . . , xn),
which includes all points x ∈ X at which the minimum of the function

∑n
i=1 |xxi|.

Consider the unit sphere S of the norm in X.

Definition 3.1. Face of a unit sphere is its intersection with some supporting
hyperplane. If the linear span of the points of a face is a subspace X of dimension
k, then such a face is called (k − 1)-dimensional.

Definition 3.2. Take a finite set F of faces of S. For each fi ∈ F , we choose a
supporting hyperplane πi that intersects S only along this face. Let the hyperplane
πi define the level surface φi = 1 of some linear functional φi. If there is a set of
supporting hyperplanes such that the sum of the constructed functionals is equal to
zero, then we will call such a set of faces consistent.

It follows from the definition that if we take one point from each face of a
consistent set, then we obtain a set of points for which x = 0 is one of the solutions
to the Fermat–Torricelli problem. It turns out that the problem of finding in the
space X a set of points with a non-unique solution is equivalent to the existence in
this space of a consistent set of faces with certain properties.

Theorem 3.3. Given n ≥ 3, then in the space X there are n points not located on
the straight line for which the solution of the Fermat–Torricelli problem is nonunique
if and only if X has a consistent set of n faces of the unit sphere S for which the
intersection of the linear spans of all faces has a non-zero dimension.

Proof. Sufficiency. Let us prove that if such a consistent set A exists, then there
exists a set of points for which the solution of the Fermat–Torricelli problem is not
unique. Take one interior point from each face. Let these be points x1, . . . , xn.
By Theorem 2.4, the point x = 0 is one of the solutions. By Theorem 2.6, the
complete solution is the intersection of the cones coming out of the vertices and
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containing the point x = 0. Moreover, a (k+1)-dimensional cone emerges from the
k-dimensional face. By assumption, there exists a line l that belongs to the linear
span of any face in A, that is, to the linear span of any cone. Then each of these
cones contains some one-dimensional neighborhood of the point x = 0 on the line
l. Therefore, the intersection of all cones also contains a neighborhood of zero. The
solution is not unique.

Necessity. Let the space X contain n points x1, . . . , xn for which the solution
of the Fermat–Torricelli problem is not unique. Let the point p be included in the
solution. Then the solution for the points xi−p is also not unique, and x = 0 is one
of the solutions. By Theorem 2.6, the set ft(x1−p, . . . , xn−p) is the intersection of
some cones C1, . . . , Cn coming out of the points xi−p. Let us consider the norming
functionals by which the cones are constructed, namely, the intersections of the unit
sphere with the supporting hyperplanes φi = 1. We get n faces, which obviously
make up a consistent set. Since the solution is non-unique and is an intersection
of cones, it contains some non-empty segment containing x = 0. Each cone also
contains this segment. Then the linear span of the cone contains a line containing
this segment. Therefore, the intersection of the linear spans of all faces contains a
line.

The theorem has been proven.

Corollary 3.4. If n is even, then the condition of Theorem 3.3 is equivalent to
non-strictly convexity of the unit sphere, i.e. there is point of S which has more
than one supporting hyperplanes.

Proof. Let the norm be strictly convex. Then the solution of the Fermat–Torricelli
problem for any n points is the intersection of one-dimensional cones with vertices
at these points. Since the vertices do not lie on the same line, the cones can only
intersect at one point, that is, the solution is always unique.

Let the unit sphere contain a face that is not a point. Take in it any n
2 distinct

interior points x1, . . . , xn
2
. Consider the solution set for ±x1, . . . ,±xn

2
. For each

of the points, we define a functional whose level surface is a reference hyperplane
defining the face to which the point belongs. Since the faces are opposite and contain
the same number of points, the sum of the functionals is equal to zero. By Theorem
2.4, x = 0 is one of the solutions. The complete solution is the intersection of the
cones. All cones have the same dimension, lie in the same subspace of the same
dimension, and contain the point x = 0 as an interior point. Thus, the intersection
of all cones contains some neighborhood of zero of the corresponding dimension.
The solution is not unique.

Remark 3.1. Since the entire space is the linear span of a face of maximum dimension,
in the condition of the theorem one can consider the intersection of only non-maximal faces.
Thus, if a consistent set consists of only maximal faces, then the additional condition is
automatically satisfied.

If the dimension of the space d is equal to 2 or 3, then the equivalent condition
can be refined. Let’s consider these two cases in more detail.
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3.2. Criterion for n points on the plane

Let X be the real normed plane. The Fermat–Torricelli problem for n points is
posed in X. The unit circle S has only two types of faces. We will call them points
and flattenings.

Proposition 3.5. If in X there is a consistent set of faces of the unit circle,
consisting of n flattenings, then in this plane there are points x1, . . . , xn for which
the set ft(x1, . . . , xn) - is a non-degenerate polygon.

Proof. Let x1, . . . , xn be interior flattening points from a consistent set. Then,
taking the functionals φ1, . . . , φn from the definition 3.2, by Theorem 2.4 we get
that p = 0 belongs to ft(x1, . . . , xn). By Theorem 2.6, ft(x1, . . . , xn) is the in-
tersection of the cones emerging from the points x1, . . . , xn. Since all functionals
contain flattenings, all cones are non-degenerate angles. Moreover, each of them
contains some full-dimensional neighborhood of zero due to the fact that the points
xi are not boundaries of flattenings. Therefore, the cones at the intersection form
a polygon.

Figure 3.1: The first non-uniqueness condition for n = 3

Proposition 3.6. If in X there is a consistent set of faces of the unit circle,
consisting of n− 1 flattening and one point, then in this plane there are x1, . . . , xn

for which the set of solutions ft(x1, . . . , xn) is a non-degenerate segment.

Proof. Let the points x1, . . . , xn−1 be interior flattening points, and xn be a point
from a consistent set. Similarly to the previous proof, we get that p = 0 belongs
to ft(x1, . . . , xn). The cones emerging from x1, . . . , xn−1 contain a neighborhood
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of zero, and a ray passes from the point xn and passes through the origin. Conse-
quently, at the intersection we obtain a non-degenerate segment.

Proposition 3.7. Let 2 ≤ k ≤ n − 1. If there is a consistent set of faces of the
unit circle in X, consisting of k flattenings and n − k points, and the linear span
of the points is a straight line, then there are x1, . . . , xn in this plane for which the
set of solutions ft(x1, . . . , xn) is a non-degenerate segment.

Proof. Let x1, . . . , xk be interior flattening points, and xk+1, . . . , xn be points from
a consistent set. The functionals φ1, . . . , φn from the definition 3.2 satisfy Theorem
2.4, and the point x = 0 belongs to ft(x1, . . . , xn) . By Theorem 2.6, the solution
ft(x1, x2, x3) is the intersection of k rays containing the origin and lying on the same
line, and n − k non-degenerate angles, each of which contains a neighborhood of
zero . We get a segment.

Figure 3.2: The third non-uniqueness condition for n = 3

Theorem 3.8. If n ≥ 3 is odd, then in the normed plane the solution of the
Fermat–Torricelli problem is unique for any n points if and only if for any consistent
set of faces the linear span of one point faces is X.

If n ≥ 4 is even, then in the normed plane the solution of the Fermat–Torricelli
problem is unique for any n points that do not lie on one straight line if and only if
the norm is strictly convex.

Proof. In both statements, the necessity follows from Propositions 3.5, 3.6, and 3.7.
Let us prove sufficiency. Let n be odd and there are points x1, . . . , xn for which the
set of solutions of the Fermat–Torricelli problem is not unique. Since the solution
is the intersection of cones, it is either a polygon or a segment. In the case of
a polygon, all cones are non-degenerate angles. Consider the functionals defining
the cones. Their level lines contain flattenings of the unit circle, which obviously
constitute a consistent set of faces.

A segment can be obtained by the intersection of at least one non-degenerate
angle and rays lying on the same straight line. If all cones are rays, then all points
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of xi lie on the same straight line, but by Proposition 2.7 in this case the solution is
unique. Similarly, we consider the functionals defining the cones. Since all degen-
erate cones lie on the same straight line, the points of intersection of the unit circle
and the level lines of the functionals also lie on the same straight line. That is, the
linear span of the points of the consistent set is equal to 1.

The statement for even n follows from Theorem 3.3.

3.3. Criterion for n points in three-dimensional space

Let X be a three-dimensional real normed space. The Fermat–Torricelli problem
for n points is posed in X.

Theorem 3.9. If n ≥ 3 is odd, then there are n points in X for which the solution
of the Fermat–Torricelli problem is nonunique if and only if X contains a consistent
set of n faces of the unit sphere S, for which the following conditions are satisfied:

• The one point faces included in this consistent set are in the same one-
dimensional subspace of X,

• For any pair of one point face and segment face included in this consistent
set, the dimension of their linear span is 2,

• The intersection of the linear spans of the segment faces included in this con-
sistent set has a non-zero dimension.

If n ≥ 4 is even, then in X the solution of the Fermat–Torricelli problem is
unique for any n points that do not lie on one straight line if and only if the norm
is strictly convex.

Proof. Let n be odd.

Sufficiency. Let there be a consistent set of n faces for which all conditions are
satisfied. Let us construct a solution of the Fermat–Torricelli problem for a set of
interior points of given faces. By Theorem 2.4, the point x = 0 is included in the
solution. The complete solution is the intersection of some cones coming out of the
vertices and containing x = 0 as an interior point.

Let the consistent set have face-points. The linear span of such a face is a straight
line containing the point itself and x = 0. Based on the first condition imposed on
a consistent set, this line coincides for all its points. Let this be a straight line l.
The intersection of all one-dimensional cones coming out of face-points contains a
non-empty segment lying in l and containing x = 0 as an interior point.

Linear spans of faces of the second type are planes containing two-dimensional
cones emerging from these elements. By assumption, each such plane contains all
point-faces, and hence the line l on which they lie. There is a non-empty segment
lying in l and containing x = 0 as an interior point, which lies in each of the
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two-dimensional cones. We get that the intersection of all one-dimensional and
two-dimensional cones contains at least a segment. If there are no faces-points
in a consistent set, then by assumption we take as a line l any line lying at the
intersection of the planes.

Since the intersection of three-dimensional cones includes some full-dimensional
neighborhood of the point x = 0, their intersection with the resulting segment is not
unique. That is, the intersection of all cones contains at least a segment. Sufficiency
has been proven.

Necessity. Let the space X contain n points x1, . . . , xn for which the solution
of the Fermat–Torricelli problem is not unique. Let the point p be included in the
solution. Then the solution for the points xi−p is also not unique, and x = 0 is one
of the solutions. By Theorem 2.6, the set ft(x1−p, . . . , xn−p) is the intersection of
some cones C1, . . . , Cn coming out of the points xi−p. Let us consider the norming
functionals by which the cones are constructed, namely, the intersections of the unit
sphere with the support planes φi = 1. We obtain a consistent set of faces of the
unit sphere. Let us determine what conditions are imposed on this set.

All one-dimensional cones coming out of point-faces must lie on the same straight
line, otherwise their intersection will contain only the point x = 0. In other words,
the intersection of the linear spans of these faces is this straight line. Let this be a
straight line l.

Two-dimensional cones emerge from the faces-segments. Since the solution is
not unique, let their intersection contain a non-empty segment containing x = 0.
Let also this segment belong to the line l if the consistent set contains points and
such a line is constructed. Then the linear span of any face-segment, that is, the
plane containing the corresponding cone, contains the line containing this segment.
We have found that the intersection of the linear spans of the segment faces contains
a straight line. In the presence of face-points, this will be a straight line l. Hence,
a plane containing a face-segment contains any face-point. That is, the linear span
of any pair of face-point and face-segment has dimension 2. All conditions on the
consistent set are satisfied.

The statement for even n follows from Theorem 3.3.

4. Regular polyhedra and three-dimensional normed spaces

The article [9] showed the application of the criterion on lambda planes — normed
planes defined by regular polygons. Consider the problem in some three-dimensional
spaces.

Let consider some examples of three dimensional spaces and check whether the
solution of the Fermat–Torricelli problem is unique for any three points in the given
spaces. To do this, it is necessary to study the consistent sets of faces existing in
them.

Lemma 4.1. If three faces of the unit sphere of the normed space constitute a
consistent set, then they are pairwise disjoint.
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Proof. Each face from the consistent set corresponds to a functional whose level
surface contains the given face. The sum of the functionals of all faces is equal to
zero. If some two faces have a common point, then the sum of their functionals at
this point is equal to 2. Then the third functional takes the value −2 at this point,
and it is not norming. Contradiction.

Proposition 4.2. In a normed space given by a regular cube, there are three points
for which the solution of the Fermat–Torricelli problem is not unique. Moreover, if
the solution is not unique, then it is a segment.

Proof. Let X be the space under consideration. Consider in X all possible variants
of consistent sets.

Let there be a consistent set in X, and let at least two of them be two-
dimensional faces. By Lemma 4.1, they have no common points. Hence, they
are opposite, and the sum of their functionals is equal to zero. But then the third
functional is zero. Contradiction.

Let a consistent set contain exactly one two-dimensional face. It cannot share
points with either of the other two faces. If the remaining two faces are cube edges,
then they belong to the opposite two-dimensional face and are not adjacent. The
functional corresponding to a two-dimensional face takes the value −1 on both
edges. Then each of the other two functionals is equal to zero on the other edge.
This means that their level planes make an angle of 45 degrees with the neighboring
faces of the cube. The planes intersect in a straight line on which the sum of two
functionals is equal to 2. However, the first functional takes the value −3

2 on this
line. The sum of functionals is not equal to zero. Contradiction. The second and
third faces also cannot be an edge and a point or two points, since in this case their
linear span does not contain a line, as it should be in the criterion condition.

Let the matched set consist of three edges. If any two edges belong to the same
face, then the third necessarily belongs to the opposite one. Let it be symmetrical
to one of the first two. Then the problem is reduced to constructing functionals for
three vertices of the square that defines the norm on the plane. Such functionalities
exist. Let the level lines of the functionals corresponding to the symmetric vertices
intersect on the extension of the diagonal of the square at the point of the norm
2. And the level line of the third functional passes through the remaining vertex
perpendicular to this diagonal. Then the sum of the functionals is equal to zero.
The functionals for the cube edges are constructed similarly. The intersection of
the linear shells of the edges is a straight line. By taking three arbitrary interior
points on these edges, in the solution we obtain a non-empty segment lying on this
line.

If the third edge is non-parallel, then the intersection of the line spans of all
edges is a point. If no pair of edges belongs to the same face, then again we get
a point at the intersection of their linear envelopes. The criterion condition is not
fulfilled.

If a consistent set consists of two edges and a point, then this point must lie
in the same two-dimensional subspace with each of the edges. In this case, we get
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that the point is the end of one of the two edges. If a consistent set consists of one
edge and two vertices, then the line passing through the vertices is the diagonal of
the cube, and it must lie in the same plane as the edge, but there is no such edge.

Thus, in X there are only consistent sets consisting of three parallel edges, and
the solution of the Fermat–Torricelli problem is either a segment or a point. The
statement is proven.

Proposition 4.3. Given odd n ≥ 3 and d-dimensional normed space X whose
unit sphere is a cross polytop. Then the solution of the Fermat–Torricelli problem
is unique for any n points.

Proof. In a such normed space, the norm for a point with coordinates a = (x1, . . . , xd)

is given by the formula ∥a∥ =
∑d

i=1 |xi|. Then for the points ai = (x1
i , . . . , x

d
i ) and

the point a = (x1, . . . , xd) we have

n∑
i=1

|aai| =
n∑

i=1

∥a−ai∥ =

n∑
i=1

(|x1−x1
i |+. . .+|xd−xd

i |) =
n∑

i=1

|x1−x1
i |+. . .+

n∑
i=1

|xd−xd
i |

That is, the problem is reduced to one-dimensional, and according to 2.7 the solution
for odd number of points located on the same straight line is unique. The assertion
has been proven.

Proposition 4.4. In a normed space given by a regular dodecahedron, there are
three points for which the solution of the Fermat–Torricelli problem is not unique.
Moreover, if the solution is not unique, then it is a segment.

Proof. Consider in X all possible variants of consistent sets. For convenience, we
introduce notation and formulations for the elements of the dodecahedron. fi are
used to designate two-dimensional faces. The edge belonging to the faces fi, fj will
be denoted by ei,j , and the vertex belonging to the faces fi, fj , fk will be denoted
by vi,j,k. The faces f1 and f12 are called top and bottom respectively. Edges and
vertices belong to the equator of the dodecahedron if they do not intersect with the
top and bottom faces.

Assume that a consistent set contains at least two two-dimensional faces. By
Lemma 4.1, they cannot be adjacent and opposite, so we will assume that these
are the faces f1 and f7. If the third element of the consistent set is also a two-
dimensional face, then it can only be f9 or f10. Since they are located symmetrically
with respect to the first two faces, they simultaneously complement or do not com-
plement them to a consistent set. But if they complement, then their functionals
must match, and this is not true.

Let the third element be an edge. All edges except e9,10 are symmetrical with
respect to the two considered faces, so they cannot be included in the consistent
set. The functional of the edge e9,10 is equal to −1 at the vertex v2,6,7. At the same
vertex, the functional of f7 is equal to 1, but the functional of f1 is not equal to
zero. The sum of functionals is not equal to zero.



The Fermat–Torricelli Problem in Normed Spaces 955

Figure 4.1: Regular dodecahedron sets the norm in three-dimensional space

Let the third element be a vertex. Similar to the previous reasoning, it suffices
to check only the vertex v4,9,10. In this case, at the vertex v2,6,7 the sum of the
functionals is again not equal to zero.

Consider the variant when the consistent set contains a single face f1. Let the
other two elements be edges. If one of the edges belongs to the bottom face, then
the zero level of the functional of the second edge passes through it. But in this
case it is one of the edges adjoining the top face, which is impossible by Lemma
4.1. Let one of the edges connect the equator and the bottom face. But then any of
the remaining edges has a symmetric relative to the considered face and edge and
cannot complement them to a consistent set. Then both edges must belong to the
equator, and they are symmetrical about the center. The plane passing through
these edges is the zero level of the f1 face functional, but is not parallel to it, which
is impossible.

Let the face f1 be complemented by an edge and a vertex lying in the same plane.
The subspaces defined by edges from the equator contain only vertices that are the
ends of the edge itself and the opposite edge. Each of them is symmetrical to itself.
Similarly, the edge of the bottom face also cannot be included in the consistent set.
There are edges between the bottom face and the equator. It suffices to check the
edge e8,9 and the vertex v5,6,11. In this case, on the line connecting the vertices
v5,6,11 and v3,8,9 the face functional f1 is equal to zero. But this line is not parallel
to the plane of the face. Contradiction.

If the face f1 is complemented by two symmetrical vertices, then this is necessar-
ily a pair of vertices from the equator. But the straight line passing through them
is not parallel to the plane of the face. A contradiction, since the face functional on
this line must be equal to zero.

There are variants of consistent sets that do not contain a single face. Let us
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assume that a consistent set consists of three edges whose intersection of subspaces
contains at least a line. Let two of them be opposite, for example e1,4 and e7,12.
Their common two-dimensional subspace defines the zero level of the third edge
functional. Only the edges e2,6 and e9,10 are parallel to this plane. They are
symmetrical, so it suffices to consider the first.

Figure 4.2

Let the level of the functional φ1 pass through the edge e2,6 and make equal
dihedral angles with neighboring faces. The functional levels φ2 and φ3 contain
the edges e1,4 and e7,12 respectively. In the plane of these two edges, the sum of
the functionals is equal to zero. Now consider a plane containing the edge e2,6 and
the midpoints of the edges e1,4 and e7,12. The section of the dodecahedron by this
plane is shown in 4.2. Since the sum of the functionals is equal to zero, the point of
intersection of the level lines φ2 = 1 and φ3 = 1 belongs to the line φ1 = −2. Let
α be the dihedral angle between the level φ1 = 0 and the face, and β be the angle
between the levels φ1 = 0 and φ2 = 1. If β > α, then such functionals exist, and so
does a consistent set of corresponding edges. We will prove that this is indeed the
case. The angle α is half the dihedral angle of a regular dodecahedron, i.e.

α =
1

2
arccos (− 1√

5
)

The lengths of the edges e2,6 and e9,10 are equal to a = 1. The lengths of the
remaining sides of the resulting hexagon in the section are equal to the height of a

regular pentagon, that is, b =

√
5+2

√
5

2 . Calculate the legs of a right triangle with
hypotenuse b and acute angle α:

c = b cosα =
1

2

√
3 +

√
5

2
, d = b sinα =

1

2

√
7 + 3

√
5

2
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Now we can calculate the tangent of the angle β:

tanβ =
2d

c+ a
2

=

√
7+3

√
5

2

1
2

√
3+

√
5

2 + 1
2

= 2

Since arctan 2 > 1
2 arccos (−

1√
5
), then β > α, and the edges of the dodecahe-

dron form a consistent set. Since the two-dimensional subspaces defined by these
three edges intersect along a straight line, this set gives non-unique solutions to
the Fermat–Torricelli problem, moreover, belonging to some straight line, that is,
segments.

If among the three edges of the dodecahedron there is not a single pair of opposite
ones, then the two-dimensional subspaces containing the edges intersect no more
than at a point.

A consistent dodecahedron set cannot consist of two edges and a vertex, so in
this case the vertex must lie in the same plane with each edge. We get that the
edges are opposite, and the vertex is the end of one of the edges, which is impossible
by Lemma 4.1.

Also, there is no consistent set of one edge and two vertices lying in the same
plane. If so, then by Lemma 4.1, the vertices are the ends of the edge opposite the
given one. Using Figire 4.2, let’s say that the edge e2,6 is being considered, and the
vertices are the endpoints of the edge e9,10. Then the level lines of the functionals
φ2 and φ3 pass through these vertices and intersect at the lines φ1 = −2. It can be
seen from the figure that this is not possible.

Thus, the dodecahedron has only consistent sets consisting of three edges. More-
over, if a non-unique solution is obtained, then this is a segment. The assertion has
been proven.

Proposition 4.5. Let X be an d-dimensional real normed space and the unit
sphere S is a prism, constructed from two (d − 1)-dimensional convex centrally
symmetrical polytops. Then for any n ≥ 2 there are n points for which the solution
of the Fermat–Torricelli problem is not unique.

Proof. Consider a (d − 1)-dimensional normed space whose unit sphere coincides
with the base of the prism. In this normed space, we take any consistent set and
the functionals defining it. Let us consider the level lines of these functionals at
the two bases of the prism. A unique set of supporting hyperplanes passes through
them, defining n functionals in the original space. Their sum is equal to zero, and
the linear span of the faces contains a line. The condition of the Criterion 3.9 is
satisfied, and the assertion is proved.
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