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Abstract. This paper investigates the dynamic stability of structures subjected to
periodic loads, modeled as beams on a Pasternak foundation experiencing time-varying
compressive forces. The stability analysis is conducted using the Euler-Bernoulli beam
theory, the Mathieu-Hill equations, and the Floquet theory. The results indicate that
variations in the foundation’s stiffness and shear modulus significantly influence sta-
bility regions, especially at higher frequencies. Stiffness has a more pronounced effect,
reducing the unstable region, while changes in both parameters affect the minimum
excitation intensity required to induce instability. These findings highlight complex
interactions between stiffness and shear properties, suggesting the need for further in-
vestigation.
Keywords: dynamic stability, Pasternak foundation, Euler-Bernoulli beam theory.

1. Introduction

The dynamic stability of structures under periodic loads plays a critical role in
the analysis and design of engineering systems. This stability refers to a structure’s
ability to maintain equilibrium when subjected to forces that vary periodically over
time. In engineering contexts, such loads can manifest as sinusoidal, pulsed, or
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more complex forms and Mathieu-Hill equations are frequently employed for the
mathematical modeling of structures subjected to periodic loading.

Early interest in the dynamic instability of Euler beams is well documented.
For instance, [2] examined the dynamic response of simply supported Euler beams
under axial loading, calculating the primary frequencies of parametric resonance
and deriving the Mathieu-Hill equation for structural dynamic instability. Krylov
and Bogoliubov [8, 9] extended this analysis by studying the impact of arbitrary
boundary conditions on the dynamic instability of Euler beams using the Galerkin
method. Then Bolotin [3] provided an in-depth exploration of the dynamic insta-
bility of structural components subjected to axial or in-plane periodic loads. The
Mathieu-Hill equation was derived in [5] to model the parametric vibrations of
beams under compressive dynamic forces and Nayfeh and Mook [11] employed the
perturbation method to solve the Mathieu-Hill equation, analyzing the behavior of
elastic systems under parametric excitation.

In various engineering fields, structural components such as homogeneous plates
and beams resting on elastic foundations are commonly used. In Ref. [1], the effect
of an elastic foundation on the dynamic stability of columns was explored, while [4]
examined the dynamic stability of beams under axial loading resting on an elastic
base with damping. It was demonstrated that increasing the damping or stiffness
of the foundation raises the critical dynamic load and shifts the unstable regions
to higher applied frequencies. Lee [10] studied the dynamic instability of a tapered
cantilever beam on an elastic foundation, while Subba Ratnam et al. [12] explored
the dynamic instability of beams on elastic foundations. Ying et al. [15], using the
Floquet theory, Fourier series, and matrix eigenvalue analysis, investigated multi-
mode coupled periodically supported beams under general harmonic excitation. In
[6], the authors developed closed-form expressions, based on the Floquet theory, to
predict the dynamic instability regions of slender Euler-Bernoulli columns.

This paper investigates the dynamic stability of structures under periodic load-
ing, modelled as beams resting on a Pasternak foundation and subjected to time-
varying compressive forces. The stability analysis is conducted using Euler-Bernoulli
beam theory, the Mathieu-Hill equations, and the Floquet theory. Particular em-
phasis is placed on examining the influence of variations in the foundation’s stiffness
and shear modulus on the stability regions.

2. Formulation

The model presented in Fig. 2.1 consists of a beam of length L placed on a
Pasternak foundation, where the beam is subjected to time-varying axial compres-
sive forces. The Pasternak foundation is characterized by the stiffness of the elastic
layer, defined by the coefficient K, and the shear influence of the layer, defined by
the shear modulus G. The Euler-Bernoulli beam theory was applied to solve the
problem

The differential equation of transverse vibrations of the system is shown in
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Fig. 2.1: Beam under axial loads

Fig. 2.1 is

(2.1) ρA
∂2w

∂t2
+ EI

∂4w

∂z4
+ F (t)

∂2w

∂z2
+Kw −G

∂2w

∂z2
= 0

where w represents the transverse beam deflection which is positive if downward, I
and A the moment of inertia of the beam cross-section and the cross-sectional area
of the beam, and E and ρ, Young’s modulus and the mass density. The boundary
conditions for a simply supported beam are

(2.2) w(0, t) = w(L, t) = 0,
∂2w(0, t)

∂z2
=

∂2w(L, t)

∂z2
= 0

According to the Galerkin method, we assume the solution of equation (2.1) in
the form of a product of functions

(2.3) w(z, t) =

∞∑
i=1

χi(z)qi(t), χi(z) = sin(kz), k =
iπ

L
, i = 1, 2, . . .

where qi(t) are the unknown time functions and χi(z) are the modal functions of
a simply supported beam satisfying the boundary conditions (2.2) and possessing
the orthogonality property

(2.4)

∫ L

0

χi(z)χj(z) dz =

{
0 if i ̸= j,
1
2L if i = j.

Substituting the assumed solution (2.3) into equation (2.1), multiplying by
χn(z), integrating with respect to z from 0 to L, and using the orthogonality of
χi(z), we get the following equation:

Aρq̈n + (EIk4 − F (t)k2 +Gk2 +K)qn = 0, n = 1, 2, . . .
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or

(2.5) q̈n + ω2
n(1− Pn)qn = 0, n = 1, 2, . . .

where

ωn = k2

√
EI

Aρ
, Pn =

F (t)k2 −Gk2 −K

EIk4

Here, ωn is the n-th natural frequency of a simply supported beam when F (t) =
0. Equation (2.6) represents the Hill equation when F (t) is a periodic function of
period T , i.e., F (t) = F (t + T ). Also, if F (t) is a sinusoidal function, then the
equation (2.6) is the Mathieu equation.

3. Stability of the Mathieu-Hill equation

Now using the theoretical foundations of the stability of the Mathieu-Hill equa-
tion given in [14], we investigate the stability of equation (2.6) in the case when the
periodic load F (t) is in the form of the rectangular pulse wave, as shown in Fig.
3.1.

t
0

-h

h

F(t)

t

T/2 T/2 T/2 T/2 T/2

Fig. 3.1: Rectangular wave

Suppose that t0 is the initial time and that q(t0) and q̇(t0) are the initial condi-
tions of the system.

Phase I: t0 ≤ t ≤ t0 +
1
2T , F (t) = h, equation (2.6) becomes

(3.1) q̈ + ω2(1−H1)q = 0, q(t0) = q0, q̇(t0) = q̇0,

whereH1 = hk2−Gk2−K
EIk4 . Throughout this chapter, ω is used as a simplified notation

for the natural frequency, focusing on the case n = 1, which represents the first mode
of the system. This approach aligns with the analysis in the results section.

The characteristic equation for equation (3.1) is

(3.2) m2 + ω2(1−H1) = 0,
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from which it follows that m = ±iα, α = ω
√
1−H1.

The solution of the equation (3.1) can be written in the form

(3.3) q(t) = A sin(αt) +B cos(αt),

where A and B are unknown constants. From the initial conditions for t = t0, we
get that A = q̇0

α and B = q0, so the solution (3.3) is of the following form:

(3.4) q(t) =
q̇0
α

sin(αt) + q0 cos(αt).

Considering the periodicity of the solution of the Mathieu-Hill equation, we can
conclude that at the moment t = t0 +

T
2 , the solution of equation (2.6) will be

q(t0 +
T

2
) = qT

2
=

q̇0
α

sin

(
αT

2

)
+ q0 cos

(
αT

2

)
,

(3.5) q̇(t0 +
T

2
) = q̇T

2
= q̇0 cos

(
αT

2

)
− αq0 sin

(
αT

2

)
.

Phase II: t0 +
1
2T ≤ t ≤ t0 + T , F (t) = −h, equation (2.6) becomes

(3.6) q̈ + ω2(1−H2)q = 0, q(t0) = q0, q̇(t0) = q̇0,

where H2 = −hk2−Gk2−K
EIk4 .

The characteristic equation is

(3.7) m2 + ω2(1−H2) = 0,

from which it follows that m = ±iβ, β = ω
√
1−H2. The solution to equation (3.6)

can be written in the form

(3.8) q(t) = C sin(βt) +D cos(βt),

where C and D are constants determined from the initial conditions q(t0+
T
2 ) = qT

2
,

q̇(t0 +
T
2 ) = q̇T

2
, and have the following form:

(3.9)

C = qT
2
sin

(
βT

2

)
+

1

β
q̇T

2
cos

(
βT

2

)
,

D = qT
2
cos

(
βT

2

)
− 1

β
q̇T

2
sin

(
βT

2

)
.

Now the system solution at time t = t0 + T can be determined as

q(t0 + T ) = qT = qT
2
cos

(
βT

2

)
+

1

β
q̇T

2
sin

(
βT

2

)
,
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(3.10) q̇(t0 + T ) = q̇T = −βqT
2
sin

(
βT

2

)
+ q̇T

2
cos

(
βT

2

)
.

Substituting the expressions for qT
2
and q̇T

2
into the expressions (3.10), we obtain

the following matrix form:

(3.11)

(
qT
q̇T

)
= A

(
q0
q̇0

)
,

where

A =

 cos
(
αT
2

)
cos
(

βT
2

)
− α

β sin
(
αT
2

)
sin
(

βT
2

)
1
α sin

(
αT
2

)
cos
(

βT
2

)
+ 1

β cos
(
αT
2

)
sin
(

βT
2

)
−β cos

(
αT
2

)
sin
(

βT
2

)
− α sin

(
αT
2

)
cos
(

βT
2

)
−β

α sin
(
αT
2

)
sin
(

βT
2

)
+ cos

(
αT
2

)
cos
(

βT
2

)
The eigenvalues of matrix A are given by

(3.12) det(A− ρI) = ρ2 − 2bρ+ c = 0,

where

b = cos

(
αT

2

)
cos

(
βT

2

)
− (α2 + β2)

2αβ
sin

(
αT

2

)
sin

(
βT

2

)
, c = 1.

The characteristic roots of (3.12) are

ρ1, ρ2 = b±
√
b2 − 1.

As explained in [14], depending on the value of b, there are three possibilities
for ρ1 and ρ2:

• |b| > 1, ρ1 and ρ2 are real and distinct, leading to instability of the solution
of equation (2.6).

• |b| = 1, ρ1 = ρ2 = ±1. If ρ1 = ρ2 = +1, the solutions are periodic with period
T , and if ρ1 = ρ2 = −1, the solution is periodic with period 2T .

• |b| < 1, ρ1 and ρ2 are complex conjugates, leading to a bounded, nearly
periodic solution.

From this, we conclude that the stability condition for equation (2.6) is given
by |b| = 1. The natural frequency ω directly affects the stability condition through
its role in defining α and β, which influence the matrix A and the critical stability
parameter b. Different values of ω result in shifts in the boundaries between stable
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and unstable regions. By introducing the notations Ω = 2π
T , ν = Ω

2ω , we get the
stability boundaries given by

(3.13)

∣∣∣∣∣cos
(
π
√
k2(G− h+ EIk2) +K

2
√
EIk2ν

)
cos

(
π
√
k2(G+ h+ EIk2) +K

2
√
EIk2ν

)

−
(Gk2 + EIk4 +K) sin

(
π
√

k2(G−h+EIk2)+K

2
√
EIk2ν

)
sin

(
π
√

k2(G+h+EIk2)+K

2
√
EIk2ν

)
√
k2(G− h+ EIk2) +K ·

√
k2(G+ h+ EIk2) +K

∣∣∣∣∣∣∣∣ = 1.

4. Results and discussion

According to the theory of Mathieu functions [14, 13], the nature of the solution
depends on the selection of load frequency and amplitude. The frequency-amplitude
domain is divided into regions that result in either stable or unstable solutions. On
the border lines between these regions, the solutions are periodic with a period
T or 2T , as derived from Floquet theory [3]. Specifically, two solutions with the
same periodicity define the instability region, while two solutions with different
periodicity define the stability region. In this context, a stable solution indicates
that the motion remains within a bounded neighborhood of the initial conditions,
representing Lyapunov stability [7].

For the model shown in Fig. 2.1, the stability regions are presented by applying
the stability condition (3.13) for the following parameters:

E = 2× 1010 Nm−2, K0 = 2× 105 Nm−2, G0 = 1× 105 Nm−2,

ρ = 2× 103 kgm−3, A = 5× 10−2 m2, I = 4× 10−4 m4,

L = 10 m, b = 1
8

√
5
3 m, hc =

2
5

√
3
5 m.

where K0 and G0 represent the baseline values of the stiffness coefficient K and
shear modulus G, which are varied throughout the research; L is the length of the
beam, and b and hc are the dimensions of the beam’s cross-section. As a reference
case, the scenario where both the shear modulus and stiffness coefficient are zero
was analyzed first, i.e., the stability of Euler’s simply supported beam under the
influence of a periodic compressive load. The resulting stability regions are shown
in Fig. 4.1 and align with the stability regions presented in references [6, 13] for the
same case. The diagrams represent the dependence of the dimensionless parameters
ν and h̄, where ν represents the normalized frequency of periodic axial load ν = Ω

2ω ,
and h̄ represents the amplitude, or the ratio of the applied axial force to the critical
buckling load of the simply supported beam h̄ = h

EIk2 . In Fig. 4.1, the shaded areas
represent regions that lead to unstable solutions, where the first stability boundaries
start from the value ν = 1, the second boundaries from ν = 1/2, and so on.

The left figure in Fig. 4.1 depicts the third and fourth stability regions, while
the right figure illustrates the first and second regions. This separation provides a
clearer visualization of the higher-order stability regions (third and fourth), which
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Fig. 4.1: Regions of stability for a simply supported beam

are challenging to discern in a combined plot due to scale differences. The first
region of dynamic instability occupies the majority of the entire unstable area,
making it highly significant in engineering practice and commonly referred to as the
primary region of dynamic instability. When the frequency of external excitation
is significantly higher than the system’s natural frequency, the likelihood of the
parameters falling within stable regions increases, thereby reducing the risk of strong
instability. However, in engineering practice, the frequency of external excitation
may also be lower than the system’s natural frequency, making the selection of
system parameters critically important.

To better understand the impact of the elastic foundation on the stability of
beams subjected to a rectangular wave type of load, we investigate the changes
in stability regions as the stiffness coefficient K and shear modulus G vary. The
first step is to analyze the effect of changing the stiffness of the layer K under the
assumption that the shear modulus G = 0. This assumption corresponds to the case
of a beam resting on a Winkler foundation. This analysis lays the groundwork for
later investigations into more complex models that also take into account the effects
of shear in the elastic layer, i.e., foundation. By comparing the stability boundary
results obtained for the case of a simply supported beam (Fig. 4.1) and a beam
resting on a Winkler foundation (Fig. 4.2), it can be observed that the existence of
an elastic layer leads to the emergence of regions with unstable solutions at higher
frequencies.

However, the presence of the Winkler layer generally increases the stability of
the mechanical system. This indicates that a higher stiffness of the layer reduces
the likelihood of instability within a certain frequency range, thereby enhancing the
overall stability of the beam. Thus, variations in the layer stiffness K significantly
influence the dynamics of the beam’s stability, allowing for the control of stability
boundaries through adjustments solely to the stiffness of the elastic layer.

Finally, we consider the impact of the shear modulus of the Pasternak foundation
on the stability regions. Fig. 4.3 presents the results obtained by varying the shear
modulus while keeping the layer stiffness fixed at a specific value K = K0. The first
case, represented in red, corresponds to the scenario where G = 0, which has been



Dynamic Stability of Beams on Pasternak Foundation 257

ν

h

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

0.25

0.5

0.75

1

K=0.5K
0

K=K
0

K=1.5K
0

(a) The first region of stability for G = 0

h

0

0.25

0.5

0.75

1

K=0.5K
0

K=K
0

K=1.5K
0

0.7 0.8 0.9 1.0 1.1 1.2 ν

(b) The second region of stability for G = 0

0.4 0.5 0.6 0.7 0.8

h

0

0.25

0.5

0.75

1

ν

K=0.5K
0

K=K
0

K=1.5K
0

(c) The third region of stability for G = 0
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(d) The fourth region of stability for G = 0

Fig. 4.2: Stability regions for a beam on a Winkler foundation

discussed previously. Subsequently, three additional cases with different values of
the shear modulus G were analyzed.

Analyzing the results, we observe that as the shear modulus increases, the sta-
bility boundaries shift towards higher frequencies; however, this shift is less pro-
nounced compared to the impact of changes in the layer stiffness K. Additionally,
the change in the shear modulus G has minimal effect on the size of the regions
with unstable solutions; rather, these regions simply shift to higher frequencies with
an increase in the shear modulus G. From all displayed results, it is also evident
that in the second and fourth stability regions, variations in the stiffness coefficient
or shear modulus results in changes in the amplitude of the load required to reach
the unstable region. In certain cases, the unstable region is reached at a lower or
higher values of the applied load compared to other scenarios.

The presented results indicate complex interactions between the shear modulus
and layer stiffness, highlighting the need for further research to fully understand
the mechanisms affecting the stability of beams supported on elastic foundations of
various types.
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Fig. 4.3: Stability regions for a beam on a Pasternak foundation

5. Conclusion

To gain a deeper understanding of the influence of the Pasternak foundations
parameters on the stability of beams subjected to periodic axial compressive forces,
the effects of varying the stiffness of the elastic layer, K, and the shear modulus,
G, were investigated. The application of Floquet theory enabled an analysis of
stability and instability regions with respect to these parameter changes. Initially,
the problem was formulated, and the stability conditions for the beam resting on a
Pasternak foundation were defined. Subsequently, by varying the values of the layer
stiffness and shear modulus, the shifts in stability boundaries were examined. The
numerical analysis began by investigating the impact of varying the layer stiffness
K, assuming G = 0, which corresponds to a beam on a Winkler foundation. The
analysis revealed that the first instability regions occur at higher frequencies of
the applied force as the stiffness coefficient increases. Additionally, a significant
reduction in all stability regions was observed with the increase of the stiffness
coefficient K. Thus, changes in layer stiffness K substantially affect the dynamic
stability of the beam.

Finally, the influence of the Pasternak foundation’s shear modulus on the sta-
bility regions was analyzed. Results from varying the shear modulus G while keep-
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ing the layer stiffness constant showed that instability regions also shift to higher
frequencies as the shear modulus increases, although this shift is less pronounced
compared to the changes in stiffness coefficient K. It was concluded that variations
in the shear modulus G do not significantly alter the size of the instability regions,
but rather shift them towards higher frequencies. These findings highlight the com-
plex interactions between the shear modulus and layer stiffness, and underscore the
need for further research to fully understand the mechanisms affecting the stability
of beams resting on elastic foundations of different types. Future research directions
may include additional analyses of factors such as beam rotational inertia, shear,
as well as more complex forms of external forces and coupled beam models.
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