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1 Département de Mathématiques, UFR des Sciences et Technologies
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1. Introduction

Ruled surfaces have a great effect on differential geometry and they are used in
many fields, such as architecture, robotics, design and so on [8]. In real life, ruled
surfaces can be seen everywhere, such as in most of the cooling tower structures
of thermal power plants, the famous Mobius ring, and saddle-shaped potato chips.
Ruled surfaces can be formed by a moving line in continuous motion. In this paper
we present two special classes of ruled surfaces in a Lorentzian three manifold which
look like ruled surfaces in the Euclidean space E3 and semi-Euclidean E3

1. These
ruled surfaces are made by a one-parameter family of affine straight lines which are
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the geodesics of E3 (resp. E3
1). The study of ruled surfaces of a given ambient space

is a natural and interesting problem. A surface Σ in M is said to be ruled if every
point of Σ is on (an open geodesic segment) in M that lies in Σ (see [12]). Locally,
a ruled surface is made by a one-parameter family of geodesic segments [5]. Several
authors have studied problems on ruled surfaces (see [9,13]). The generalized ruled
surface is the notion of 2-ruled hypersurfaces. In [6], the authors define three types
of 2-ruled hypersurfaces in a Walker 4-manifold. They obtain the Gaussian and
mean curvatures of the 2-ruled hypersurfaces of type-1, type-2 and type-3. They
also give some characterizations about its minimality.
In this work, the ambient space we will consider is a Lorentzian three-manifold
admitting a parallel null vector field called strict Walker manifold. It is known that
Walker metrics have served as a powerful tool for constructing interesting indefinite
metrics which exhibit various aspects of geometric properties not given by any
positive definite metrics.

Three-dimensional geometry plays a central role in the investigation of many
problems in Riemannian and Lorentzian geometry. The fact that the Ricci operator
completely determines the curvature tensor is crucial to these investigations ( [1]).
The strict Walker manifolds are described in terms of suitable coordinates (x, y, z) of
the manifolds R3 and their metric depends on an arbitrary function of two variables
f = f(y, z) and their metric tensor is given by

gϵf = ϵdy2 + 2dxdz + fdz2(1.1)

where ϵ = ±1. Curvature properties and complete characterization of locally sym-
metric or locally conformally flat three-dimensional Walker manifolds have been
studied in [3]. Also, in [2] the authors obtained a complete classification of parallel
surfaces in a Lorenztian three strict Walker manifold (i.e. admitting a parallel null
vector field) as the ambient space. Some results on minimal graphs on three dimen-
sional Walker manifolds can be found in [4]. In [10], Athoumane et al. construct
two special families of ruled surfaces in a three dimensional strict Walker manifold.
They show that the local degeneracy (resp. non-degeneracy) to one of these families
has a strong consequence on the geometry of the ambient Walker manifold. In [11],
the same authors study the geometry of minimal translation surfaces in a strict
Walker 3-manifold. Based on the existence of two isometries, they classify minimal
translation surfaces on this class of manifold.
Motivated by this work, we study the properties of constant Gauss curvature and
mean curvature of a family of ruled surfaces in a strict Walker 3-manifold. We
consider cases where our surfaces are time-like, space-like or light-like. The paper
is organized as follows: in Section 2, we give some basic tools for understanding the
main results. In section 3, we discuss the geometry of constant Gauss and mean
curvatures of the family of ruled surfaces constructed by the geodesic equations.
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2. Preliminaries

2.1. Three Dimensional Walker Spaces

General Walker manifolds are pseudo-Riemannian manifolds (M, g,D) with a dis-
tribution D on which g is zero (a lightlike distribution) and that is parallel with
respect to the Levi-Civita connection of g. In the 3-dimensional case, Walker 3-
manifolds have the specific feature that all geometric data is encoded in a single
function. As a general fact, a canonical form for a (2r + 1)-dimensional pseudo-
Riemannian manifold M admitting a parallel field of null r-dimensional planes D
is given by the metric tensor in matrix form:

(gij) =

 0 0 Ir
0 ϵ 0
Ir 0 B


where Ir is the r × r identity matrix, B is a symmetric r × r matrix whose

entries are functions of the coordinates x1, . . . , x2r+1, and ϵ = ±1 [1]. Therefore,
any 3-dimensional Walker manifold is locally isometric to the manifold M3

f whose
metric has the matrix:

gεf =

 0 0 1
0 ε 0
1 0 f


with respect to the natural frame {∂x, ∂y, ∂z}, where f = f(x, y, z) is a smooth

function defined on an open subset O ⊆ R3. Thus,

gϵf = 2 dx dz + ϵ dy2 + f(x, y, z) dz2.(2.1)

The manifold M3
f has signature (1, 2) if ϵ = 1 and (2, 1) if ϵ = −1. If f(x, y, z) =

f(y, z), then M3
f is called a strict Walker manifold. The Levi-Civita connection ∇

is well-known, and the non-zero components of the Christoffel symbols are:

∇∂x∂z =
1

2
fx ∂x, ∇∂y∂z =

1

2
fy ∂x, ∇∂z∂z =

1

2
(ffx + fz) ∂x − ϵ

2
fy ∂y −

1

2
fx ∂z.

The cross product ×, with the property gϵf (U × V,W ) = det(U, V,W ) for

U, V,W ∈ R3, is given by:

U × V = (u1v2 − u2v1 − (u2v3 − u3v2)f,−ϵ(u1v3 − u3v1), u2v3 − u3v2).
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2.2. Geometry of Surfaces in a Walker 3-Manifold

In this section, we study the differential geometry of surfaces in a Walker manifold.
Let U be an open subset of the plane R2 where horizontal or vertical lines intersect
U in intervals (if at all). A two-parameter map is a smooth map φ : U → M . Thus,
φ is composed of two interwoven families of parameter curves:

1. The u-parameter curves v = v0 of φ is u 7→ φ(u, v0).

2. The v-parameter curves u = u0 of φ is v 7→ φ(u0, v).

The partial velocities φu = dφ(∂u) and φv = dφ(∂v) are vector fields on φ. If φ
lies in the domain of a coordinate system (x1, . . . , xn), then its coordinate functions
xi ◦ φ(1 ≤ i ≤ n) are real-valued functions on U , and:

φu =
∑
i

∂xi

∂u
∂xi, φv =

∑
i

∂xi

∂v
∂xi.

Assume now that M is a pseudo-Riemannian manifold. If Z is a smooth vector field
on φ, its partial covariant derivatives are:

Zu = ∇∂uZ, Zv = ∇∂vZ,

where Zu(u0, v0) is the covariant derivative at u0 of the vector field u 7→ Z(u, v0)
on the curve u 7→ φ(u, v0). In coordinates, Z =

∑
i Z

i∂xi, where each Zi = Z(xi)
is a real-valued function. Then:

Zu =
∑
k

∂Zk

∂u
+
∑
i,j

Γk
ijZ

i ∂x
j

∂u

 ∂xk.(2.2)

In the case Z = φu, the derivative Zu = φuu gives the accelerations of the u-
parameter curves, while φvv gives the v-parameter accelerations. In coordinates:

φuv =
∑
k

 ∂2xk

∂u∂v
+

∑
i,j

Γk
ij

∂xi

∂u

∂xj

∂v

 ∂xk.(2.3)

Next, assume that φ is an isometric immersion. The first fundamental form of
the immersion φ is given by:

E = gϵf (φu, φu), F = gϵf (φu, φv), G = gϵf (ϕv, φv).(2.4)

The coefficients of the second fundamental form of φ are:
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
L = ϵ1g

ϵ
f (φuu, η),

M = ϵ1g
ϵ
f (φuv, η),

N = ϵ1g
ϵ
f (φvv, η)

(2.5)

where ϵ1 = gϵf (η, η) is the sign of the unit normal η along φ. Finally, the mean
curvature H of the surface φ is given by:

H =
ϵ1
2

LG− 2MF +NE

EG− F 2
.(2.6)

For a surface Σ in (M, gϵf ), the Gauss equation relates the sectional curvature
K(∂u, ∂v) of Σ to the sectional curvature of (M, gϵf ) as:

K(∂u, ∂v) = K(∂u, ∂v) + ϵ1
LN −M2

EG− F 2
.(2.7)

3. Ruled Surfaces with Constant Curvature in a Walker 3-manifold

3.1. Ruled Surfaces in M3
f

In this subsection, we construct the family of ruled surfaces in (M, gϵf ) which are
used in the main result. From (1.6), a curve γ(t) = (γ1(t), γ2(t), γ3(t)) is a geodesic
of (M, gϵf ) if the following relations are satisfied:

d2γ1(t)
dt2 = fy

dγ2

dt
dγ3

dt + 1
2fz

(
dγ3

dt

)2

d2γ2(t)
dt2 = − ϵ

2fy

(
dγ3

dt

)2

d2γ3(t)
dt2 = 0.

(3.1)

These equations have the following trivial solutions: γ1(t) = a1t+b1, γ2(t) = a2t+b2,
and γ3(t) = b3, where a1, a2, b1, b2, b3 ∈ R. From these solutions, one gets the
following ruled surfaces made by affine straight lines.

Let r ∈ R and b : R → R be a smooth function. We denote by Σ1(r, b) the
surface in M defined by the equation:

x+ ϵry − ϵr2z − b(z) = 0.

The surface Σ1(r, b) can be parametrized by the map:

φ : R× R → M

(y, z) 7→ y(−ϵr, 1, 0) + (b(z), rz, z).(3.2)
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We put in the following y = u et z = v
Hereafter, we denote such a surface in M3

f by Σ(r, b). The tangent plane of Σ(r, b)
is spanned by:

φu = −ϵr∂x + ∂u.(3.3)

φv = b′∂x + r∂u + ∂v.(3.4)

where b′(v) = ∂b
∂v .

The local expression of the induced metric on Σ(r, b) ⊂ M3
f is:

E = gϵf (φu, φv) = ϵ,

F = gϵf (φu, φv) = 0,

G = gϵf (φv, φv) = 2b′ + ϵr2 + f
.(3.5)

Thus, Σ(r, b) is non-degenerate if and only if 2b′ + ϵr2 + f ̸= 0. The unit normal
associated with this parametrization is:

η =
φu × φv

∥φu × φv∥
=

((−ϵr2 − b′)− f, r, 1)√
|2b′ + ϵr2 + f |

.(3.6)

The second derivatives of φ are:

φuu = 0,

φuv =
1

2
fu∂x,

φvv = (b′′ +
1

2
rfu +

1

2
fv)∂x − ϵ

2
fu∂u.

The second fundamental form with components L, M , and N is given by:

L = 0.

M =
1
2fu√

|2b′ + ϵr2 + f |

N =
b′′ + 1

2fv√
|2b′ + ϵr2 + f |

.(3.7)

Using the formula in (3.8) we get the mean curvature H as:

H =
ϵ1
2

ϵ(b′′ + 1
2fv)

ϵ(2b′ + ϵr2 + f)3/2
(3.8)

where ϵ1 = gϵf (η, η) = ±1 determines the causal character of the unit normal η.
The surface is timelike if ϵ1 = 1 and spacelike if ϵ1 = −1. By using (2.7) we obtain
also the Gaussian curvature K of Σ(r, b)

K =
gϵf (R(φu, φv)φv, φu)

EG− F 2
+

ϵ1(LN −M2)

EG− F 2
,(3.9)

which simplifies to:

K = −1

2

fuu
ϵ(2b′ + ϵr2 + f)

+ ϵ1

1
4f

2
u

ϵ(2b′ + ϵr2 + f)|ϵ(2b′ + ϵr2 + f)|
.(3.10)
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3.2. Timelike Ruled Surfaces with Constant Gaussian or Mean
Curvature

In this section, we consider the case where the family of ruled surfaces Σ(r, b) is
timelike, with parametrization φ(u, v) = (−ϵru+b(v), u+rv, v) , and r ∈ R. We will
discuss both the constant Gaussian curvature K0 and the constant mean curvature
H0.
Case 1: Constant Gaussian Curvature K0.
From the expression for Gaussian curvature K in (3.10), the condition K = K0

gives the following equation:

K0 =
− 1

2fuu(ϵ(2b
′ + ϵr2 + f)) + 1

4f
2
u

(ϵ(2b′ + ϵr2 + f)2
.(3.11)

We have the following theorem:

Theorem 3.1. The family Σ(r, b)) of time-like ruled surfaces (3.2.) in a strict
Walker 3-manifold has constant Gaussian curvature K0 if and only if the following
holds:

1. If K0 = 0 then we have two possibilities:

(a) If f(u, v) = f0+fv(v) then b(z) is any smooth function where f0 constant.

(b) If fu ̸= 0 then b(v) = 1
2

∫
( ϵ2

f2
u

fuu
− r2ϵf)dv

2. If K0 ̸= 0 then b(v) = 1
2

∫
(
− 1

2 fuu±
√

1
4 f

2
uu+K0f2

u

2ϵK0
− ϵr2 − f)dv where 1

4f
2
uu +

K0f
2
u ≥ 0.

Proof.

First, we will distinguish the following cases
Case K0 = 0. From (3.11) the condition reads

−1

2
fuu(ϵ(2b

′ + ϵr2 + f)) +
1

4
f2
u = 0.

If fu = 0 then any smooth function is the solution of this equation.
If fu ̸= 0 then the equation reads to

1

2

f2
u

fuu
= ϵ(2b′ + ϵr2 + f).

Then we have
1

4ϵ

f2
u

fuu
− ϵr2 − f = b′(v)

Hense

b(v) =
1

4ϵ

∫
(
f2
u

fuu
− ϵr2 − f)dv
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Case K0 ̸= 0. From (3.11) we obtain

K0 =
−1

2fuu(ϵ(2b
′ + ϵr2 + f)) + 1

4f
2
u

(ϵ(2b′ + ϵr2 + f)2

Let us put
β(v) = ϵ(2b′ + ϵr2 + f)

then
b′(v) = β(v)− r2 − ϵf

and we have

K0β
2(v) +

1

2
fuuβ(v)− r2 − 1

4
f2
u = 0.

For 1
4f

2
uu +K0f

2
u ≥ 0 , ie 1

4
f2
uu

f2
u

≥ K0

If K0 > 0 then always true and

β(v) =
− 1

2fuu ±
√

1
4f

2
uu +K0f2

u

2K0
.

Then

b′(v) =
1

2

−1
2fuu ±

√
1
4f

2
uu +K0f2

u

2ϵK0
− ϵr2 − f

Hense

b(v) =
1

2

∫
(
− 1

2fuu ±
√

1
4f

2
uu +K0f2

u

2ϵK0
− ϵr2 − f)dv

If K0 < 0 ie fu ≥ A(v)e2
√
−K0 then

b(v) =
1

2

∫
(
− 1

2fuu ±
√

1
4f

2
uu +K0f2

u

2ϵK0
− ϵr2 − f)dv

Case 2: Constant Mean Curvature H0.
From the mean curvature expression in (3.8), the condition H = H0 gives the
equation:

H0 =
1

2

ϵ(b′′ + 1
2fv)

ϵ(2b′ + ϵr2 + f)3/2
,(3.12)

Theorem 3.2. The family Σ(r, b)) of time-like ruled surfaces (3.2.) in a strict
Walker 3-manifold is minimal if and only if the following holds:

1. fv = 0 and b(v) = av + c0 is a smooth affine function, where (a, c0) ∈ R
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2. fv ̸= 0 and b(v) = −1
2

∫
fvdv + c

Proof. First, we will distinguish the following cases
From 3.8 the condition reads

1

2
(ϵ(b′′ +

1

2
fv)) = 0

if fv = 0 then b′′ = 0 i.e. b(v) = av + c0 smooth affine function Where (a, c0) ∈ R
if fv ̸= 0 then the equation reads to

b′′(v) = −1

2
fv

and

b′(v) = −1

2
f

Then

b(v) = −
∫

1

2
fdv.

Theorem 3.3. The family Σ(r, b)) of timelike ruled surfaces (3.2.) in a strict
Walker 3-manifold has constant non-zero mean curvature if and only if b(v) =
ϵ
2

∫
λ(v)− ϵr2 − f)dv where λ(v) = 1

−2H0v+C1
.

Proof.

We suppose that H = H0 ̸= 0. From 3.8 we obtain

H0 =
1

4

ϵ(2b′′ + fv)

[ϵ(2b′ + ϵr2 + f)]3/2
.

We put
λ(v) = ϵ(2b′ + ϵr2 + f)

and the derivative with respect to z gives

λ′(v) = ϵ(2b′′ + fv).

Then we obtain

4H0 =
λ′(v)

λ
3
2

(v)

We integrate

4

∫
H0dv =

∫
λ′(v)

λ
3
2

(v)dv

Hense

λ(v) =
1

(−2H0v − c
2 )

2

Then we have

b(v) =

∫ (
1

(−2H0v − c
2 )

2
− r2 + ϵf

2

)
dv.
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3.3. Spacelike ruled Surfaces with Constant Curvature in a strict
Walker 3-manifold

In this part, we consider the case of spacelike ruled surfaces given by (3.2.) with
φ(u, v) = (−ϵru+ b(v), u+ rv, v), and r ∈ R. We will discuss both the cases where
K0 or H0 is zero or not. Let us first consider the constant Gaussian curvature case
K = K0, which yields the same equation as in the timelike case:

K0 =
−1

2fuu(ϵ(2b
′ + ϵr2 + f))− 1

4f
2
u

(ϵ(2b′ + ϵr2 + f)2
(3.13)

which gives the same thing as in the case where le ruled surface is timelike. Thus,
we obtain the same conclusions as in Theorem 3.1.

Now, we consider the constant mean curvature H = H0. Hence we get from
(3.6),that

H0 = −1

2

ϵ(b′′ + 1
2fv)

ϵ(2b′ + ϵr2 + f)3/2
,(3.14)

Theorem 3.4. The family Σ(r, b)) of spacelike ruled surfaces (3.2.) in a strict
Walker 3-manifold has constant mean curvature H0 if and only if the following
hold:

1. H0 = 0

(a) If fv = 0 then b(v) = av+c0 is a smooth affine function.Where (a, c0) ∈ R
(b) If fv ̸= 0 then b(v) = ϵ

2

∫
fvdv + c

2. If H0 ̸= 0 then b(v) = − ϵ
2

∫
(λ(v)− ϵr2 − f)dv where λ(v) = 1

−2H0v+C1

3.4. Lightlike Ruled Surfaces with Constant Curvature in a strict
Walker 3-manifold

In this section, we will examine the case of lightlike ruled surfaces with constant
null sectional or null mean curvatures in a strict Walker 3-manifold. If Σ(r, b) is
degenerate and spanned by (η, ν) where η is a null vector of TΣ(r, b) and ν ∈ TΣ(r, b)
such that gϵf (η, ν) = 0 and gϵf (ν, ν) ̸= 0, then the null mean curvature H and the
null sectional curvature Kη (see [7]) are defined respectively by:

H = trace(B)(3.15)

and

Kη (Σ(r, b)) =
gϵf (R(ν, η)η, ν)

gfϵ (ν, ν)
,(3.16)
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where B is the second fundamental form of the lightlike surface Σ(r, b) and R is the
Riemann curvature tensor. The ruled surface Σ(r, b) given by (3.2.) where (r) ∈ R,
is a lightlike ruled surface if and only if b is a solution of the partial differential
equation:

b′ = ϵ(−ϵr2 − f).(3.17)

The tangent plane of Σ(r, b) is spanned by (φz, η), where η = (−ϵr2 − b′)− f, r, 1).
Thus, the radical distribution is given by:

Rad(TΣ(r, b)) = span{η}.

The vector field τ = ∂x is a parallel vector field such that gϵf (X, η) = 1, and thus
τ = ∂x is a global rigging on TΣ(r, b). The transversal vector τ of the lightlike ruled
surface Σ(r, b) is defined by:

N := τ − 1

2
gϵf (τ, τ)η = τ = ∂x.

The ruled distribution ltr(TΣ(r, b) and the screen distribution S(TΣ(r, b)) are given
respectively by:

ltr(TΣ(r, b)) = span{N = ∂x}

S(TΣ(r, b)) = span{φv = b′∂x + r∂u + ∂v}.

The Gauss formula is given by:

∇◦
XY = ∇XY +B(X,Y )N(3.18)

for all X,Y ∈ Γ(TΣ(r, b)), N ∈ Γ(ltr(TΣ(r, b)), where ∇XY ∈ Γ(TΣ(r, b)) and B
is the second fundamental form of Σ(r, b). Let us now compute ∇◦

ξξ, ∇◦
φu

φu, ∇◦
ξφu

et ∇◦
φu

ξ. By direct calculations, we obtain :

∇◦
ηη = −(2b′′ + fv)∂x, ∇◦

φu
φu = (2rfu + fv)∂x

∇◦
ηφv = (2rfu + fv)∂x, ∇◦

φu
η = −(2b′′ + fv)∂x

and from Levi-Civita connection and from ∇◦
XY = ∇XY +B(X,Y )N we find

∇η∇φvη = −(b′′′ +
1

2
fvv)∂x

∇φv∇ηη = −(b′′′ +
1

2
fvv)∂x

∇[φv,η]η = −(2b′′ + fv)∂x(3.19)

Let us consider the case where the lightlike ruled surface Σ(r, b) has a constant null
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sectional curvature Kη(Σ(r, b)) = K0. In this case the null sectional curvature Kη

of the lightlike ruled surface Σ(r, b) with respect to η and using (3.16) is given by

Kη(Σ(r, b)) =
gϵf (R(φv, η)η, φv)

gϵf (φv, φv)
=

−2b′′ − fv
2b′ + ϵr2 + f

(3.20)

By degenerate lightlike ruled surface with a constant null sectional curvature Kη

we have:

Theorem 3.5. The family Σ(r, b)) of lightlike ruled surfaces (3.2.) in a strict
Walker 3-manifold has constant null sectional curvature K0 if and only if the fol-
lowing hold:

1. If K0 = 0

(a) fv = 0 ⇒ b(v) is any smooth affine function.

(b) fv ̸= 0 ⇒ b(v) =
∫
− 1

2f(v)dv + c1v + c0, c1, c0 ∈ R

2. If K0 ̸= 0 then b(v) = 1
2

∫ (
eK0+c0 − ϵr2 − f

)
dv, where c0 ∈ R.

Proof.

Case 1: If we suppose K0 = 0, then we have −2b′′ − fv = 0. The case where v = 0
mean that b′′(v) = 0, that is b(v) is any smooth affine function.
Now suppose that fv ̸= 0

2b′′(v) = −fv

b′(v) = −1

2
f(v)dv + c0.

Hence by integration we get

b(v) =

∫
−1

2
f(v)dv + c1v + c0, c1, c0 ∈ R

case 2: If we suppose that K0 ̸= 0, then we have

−2b′′ − fv = K0

(
2b′ + ϵr2 + f

)
.

We put ω(v) = 2b′ + ϵr2 + f

ω′(v) = 2b′′(v) + fv

−ω′(v) = K0ω(v)

K0 =
ω′(v)

ω(v)

ω(v) = eK0+c0 .

Then by integrating we get

b(v) =
1

2

∫ (
eK0+c0 − ϵr2 − f

)
dv

where c0 ∈ R.



Ruled Surfaces With Constant Curvatures in a Strict Walker 3-manifold 467

Remark 3.1. Physical interpretation of K0 = ω′(v)
ω(v)

1. Radioactive decay: If y(t) represents the amount of radioactive material, k0 is re-
lated to the decay constant, and the equation describes how the amount of material
decreases over time.

2. Electrical circuit (capacitor discharge): In an RC circuit, y(t) could represent the
charge of the capacitor, and k0 would be related to the resistance and capacitance of
the circuit. The equation describes the exponential discharge of the capacitor over
time.

3. Cooling: If y(t) represents the temperature difference between an object and its en-
vironment, and k0 is proportional to the thermal conductance, this equation models
the cooling of a body according to Newton’s law of cooling.

Now, we consider the constant null mean curvatureH = H0 situation on lightlike
ruled surfaces in a strict Walker 3-manifold.
Thus, from the Gauss formula and (3.26) we get

B(X,Y ) = gϵf (∇XY, η), ∀X,Y ∈ TΣ(r, b),

and

B(φv, φv) =
1

2
rfu +

1

2
fv, B(η, η) = b′′ − 1

2
rfu − 1

2
fv

Then, we can state the following theorem.

Theorem 3.6. The family Σ(r, b)) of lightlike ruled surfaces (3.2.) in a strict
Walker 3-manifold has constant null mean curvature H0 if and only if the following
hold:

b(v) = H0v
2 + av + b,(3.21)

and

f(v) = ϵ
(
2H0v + r2 + ϵa

)
,(3.22)

where (a, b) ∈ R2.

Proof.

By the definition of H, one get H = B(φv, φv) +B(η, η). Hense we have

H =
1

2
rfu +

1

2
fv + b′′ − 1

2
rfu − 1

2
fv = b′′

Hense
b(v) = H0v

2 + av + b

From b′ = ϵ(−ϵr2 − f)

f(v) = ϵ
(
2H0v + r2 + ϵa

)
.
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4. Conclusion

In this work, we have studied the differential geometry of a special family of ruled
surfaces in a strict Walker 3-manifold. For each surface we distinguish the case where
the surface is space-like, time-like and light-like and we have the classifications of
this family of ruled surfaces with constant mean curvature and constant Gauss
curvature.
The important question in the rest of this work is to solve the equation of geodesics
and to define the concept of ruled surfaces in a 3-dimensional Walker manifold and
to study the properties of their differential geometry.
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manifolds admitting a parallel null vector field. J. Phys. A: Math. Gen. 38 (2005),
841–850.

4. A. S. Diallo, A. Ndiaye and A. Niang: Minimal graphs on three-dimensional
Walker manifolds. Proceedings of the First NLAGA-BIRS Symposium, Dakar, Senegal,
425–438, Trends Math. Birkhauser/Springer, Cham (2020).

5. M. P. Do Carmo: Differential geometry of curves and surfaces. Prentice-Hall, Inc.
Englewood Cliffs, NJ (1976).
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