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Abstract. In this paper we completely describe the sets
∩

C∈B(Y,X ) σε(MC) and∪
C∈B(Y,X ) σε(MC). We also analyze the similarities and differences between these

results in the case when the spectrum is perturbed.
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1. Introduction and motivation

For subspaces M and N of a Hilbert space H with M ⊆ N , we set codimN M =
dimN/M and, if M is closed, use the symbol PM to denote the orthogonal pro-
jection onto M. If M and N are closed subspaces of H such that H = M ⊕ N ,
then by PM,N we denote the projection onto M parallel to N . For a given operator
A ∈ B(H,K), the symbols N (A) andR(A) denote the null space and the range of A,
respectively. We use the standard notations n(A) = dimN (A), β(A) = codimR(A)
and d(A) = dimR(A)⊥. Also, by P ⊕ Q we denote the direct sum of the closed
subspaces P and Q.

If A ∈ B(K,H) and M is a subspace of K then the restriction of the operator A to
the subspace M will be denoted by A|M. Also, for S ⊆ H by A−1(S) we denote
the inverse image of S i.e. A−1(S) = {x ∈ K : Ax ∈ S}. For A ∈ B(H) the
spectrum (left-spectrum, right-spectrum) is denoted by σ(A) (σl(A), σr(A)), while
ρ(A) = C \ σ(A) (ρl(A) = C \ σl(A), ρr(A) = C \ σr(A)) denotes the resolvent (left
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resolvent, right resolvent) set. Throughout the paper, we will abbreviate A− λI as
A− λ for a bounded linear operator A.

The definition of the ε-pseudospectrum that will be used throughout this paper
is:

Definition 1.1. Let A ∈ B(H) and ε > 0 be arbitrary. The ε-pseudospectrum
σε(A) is the set

σε(A) =

{
λ ∈ C : λ ∈ σ(A) or

(
λ ∈ ρ(A) and ∥(A− λ)−1∥ >

1

ε

)}
.

More on the topic and basic definition can be found in the seminal monograph
[20] by L. N. Trefethen and M. Embree on this topic. The notion of the pseudospec-
trum has found many applications in both mathematics and other sciences. In [10]
Driscoll and Trefethen applied the psedospectrum to the study of the wave equation,
while Davies in [9] discussed pseudospectra in quantum mechanics and differential
operators. In [19], Reddy, Schmid, and Henningson applied an analysis based on the
pseudospectrum to fluid dynamics and stability of shear flows. In [1] Burke, Lewis
Overton investigated the use of pseudospectra in optimization problems, particu-
larly focusing on robust stability analysis in control systems. Jaramillo, Macedo,
and Al Sheikh applied pseudospectral analysis to black hole physics in [14].

The study of operator matrices, primarily upper-triangular operator matrices
has been extensive over the years with important results and applications. The
motivation for this paper is to extend this branch in a new direction.

The study of 2 × 2 upper triangular operator matrices naturally arises from
the fact that if a bounded linear operator A acting on a Banach space X has a
complemented invariant subspace S, we can represent A as

A =

[
∗ ∗
0 ∗

]
: S ⊕ P → S ⊕ P,

where X = S ⊕ P.

In this paper, we will study the ε-pseudospectra of an upper-triangular matrix

MC =

[
A C
0 B

]
: H⊕K → H⊕K,

where H and K are infinite dimensional separable Hilbert spaces. To be more
precise, for an arbitrary ε > 0 we will completely describe the sets∩

C∈B(K,H)

σε(MC) and
∪

C∈B(K,H)

σε(MC).

In the case of the spectrum the set
∩

C∈B(K,H) σ(MC) and
∪

C∈B(K,H) σ(MC)

were for the first time described by Du and Pan in [11] with the following result for
the Hilbert space case:∩

C∈B(K,H)

σ(MC) = σl(A) ∪ σr(B) ∪ {λ ∈ C : n(B − λIK) ̸= d(A− λIH)}.
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Han, Lee, and Lee in [12] obtained equivalent results in the case of Banach spaces,∩
C∈B(X ,Y)

σ(MC) = σl(A) ∪ σr(B) ∪ {λ ∈ C : N (B − λIK) ̸∼= X/R(A− λIH)}.

Du and Pan raised the following 3 questions:

Question 1. For fixed A ∈ B(H) and B ∈ B(K) does there exists an operator
C ∈ B(K,H) such that σ(MC) ⊂ σ(M0),

Question 2. Completely describe
∩

C∈B(K,H) σ(MC) for fixed A ∈ B(H) and

B ∈ B(K),

Question 3. Does an operator C0 ∈ B(K,H) exists such that∩
C∈B(K,H) σ(MC) = σ(MC0),

and for the first two questions they provided answers. Question 3. is still only
partially answered. This paper will primarily focus on the equivalent of Question
2. for the pseudospectrum, and partially on Questions 1. and 3.

A systematic study of the spectrum (and other types of spectra) of upper-
triangular matrices was done in [3], which also included partial answers to Question
3. Various results regarding operator matrices can be found in [4, 5, 6, 13, 18, 21],
which together with the mentioned papers can serve as a good introduction into
the topic.

One of the reasons for the extensive study of operator matrices is the application
of their results to specific problems in operator theory. Results concerning upper-
triangular operator matrices were applied to the study of linear combinations of
operators on Hilbert spaces in [7, 15, 8]. Completions of upper-triangular operator
matrices were applied in [17] to the study of the reverse-order law for {1}-inverses
on Hilbert spaces, while in [16] new representations for the generalized Bott-Duffin
inverse were achieved.

2. Preliminary results

Before we proceed with the results we should briefly comment on the operator norm
of MC ∈ B(X ⊕ Y) and how it relates to the norms of A ∈ B(X ), B ∈ B(Y) and
C ∈ B(Y,X ), where X and Y are Banach spaces, and present some auxiliary results.

For a vector

[
x
y

]
∈ X ⊕ Y the norm on X ⊕ Y is naturally defined by

∥∥∥∥[xy
]∥∥∥∥

X⊕Y
=

√
∥x∥2X + ∥y∥2Y ,

which allows us to write the definition of the standard norm of

[
A C
D B

]
∈ B(X ⊕Y)
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as ∥∥∥∥[A C
D B

]∥∥∥∥
X⊕Y

= sup∥∥∥∥∥∥
x
y

∥∥∥∥∥∥=1

√
∥Ax+ Cy∥2X + ∥Dx+By∥2Y

= sup
∥x∥2

X+∥y∥2
Y=1

√
∥Ax+ Cy∥2X + ∥Dx+By∥2Y

In the case of Hilbert spaces, H and K, this norm coincides with the norm
generated by the inner product defined on their sum. This norm is generalized
naturally to direct sums of 3 or more Banach spaces in the same manner.

Remark: Notice that it is easy to establish that

(2.1) min{∥A∥X , ∥B∥Y} ≤
∥∥∥∥[A 0

0 B

]∥∥∥∥
X⊕Y

≤ max{∥A∥X , ∥B∥Y}.

The previous inequality can be extended to diagonal and off-diagonal cases for 3×3
operator matrices as well. The following lemma covers one case:

Lemma 2.1. Let A ∈ B(X1,Y1), B ∈ B(X2,Y3), C ∈ B(X3,Y3), where
X1,X2,X3,Y1,Y2,Y3 are Banach spaces. Then the norm of the operator matrixA 0 0

0 0 C
0 B 0

 : X1 ⊕X2 ⊕X3 → Y1 ⊕ Y2 ⊕ Y3

satisfies the following inequality

(2.2)

∥∥∥∥∥∥
A 0 0
0 0 C
0 B 0

∥∥∥∥∥∥ ≤ max{∥A∥, ∥B∥, ∥C∥}

where ∥ · ∥ denotes the operator norm on the appropriate space.

Proof. Let

x1

x2

x3

 be an arbitrary unit vector in the Banach space X1 ⊕ X2 ⊕ X3,

that is ∥x1∥2X1
+ ∥x2∥2X2

+ ∥x3∥2X3
= 1. Notice that∥∥∥∥∥∥

A 0 0
0 0 C
0 B 0

x1

x2

x3

∥∥∥∥∥∥
2

Y1⊕Y2⊕Y3

=

∥∥∥∥∥∥
Ax1

Cx3

Bx2

∥∥∥∥∥∥
2

Y1⊕Y2⊕Y3

= ∥Ax1∥2Y1
+ ∥Cx3∥2Y2

+ ∥Bx2∥2Y3

≤ ∥A∥2∥x1∥2X1
+ ∥B∥2∥x2∥2X2

+ ∥C∥2∥x3∥2X3

≤ (max{∥A∥, ∥B∥, ∥C∥})2
(
∥x1∥2X1

+∥x2∥2X2
+∥x3∥2X3

)
= (max{∥A∥, ∥B∥, ∥C∥})2
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Since the choice of the unit vector in X1 ⊕X2 ⊕X3 was arbitrary, it follows that∥∥∥∥∥∥
A 0 0
0 0 C
0 B 0

∥∥∥∥∥∥ ≤ max{∥A∥, ∥B∥, ∥C∥}

which is what we wanted to show. 2

The result we will primarily rely on is the following Theorem from [3]:

Theorem 2.1. Let X and Y be Banach spaces and A ∈ B(X ) and B ∈ B(Y) given
operators. The operator matrix MC is invertible for some C ∈ B(Y,X ) if and only
it:

(i) A is left invertible;

(ii) B is right invertible;

(iii) N (B) ∼= X/R(A).

If conditions (i) − (iii) are satisfied, the set of all C ∈ B(Y,X ) such that MC is
invertible is given by

S(A,B) =
{
C ∈ B(Y,X ) : C =

[
C1 0
0 C4

]
: P ⊕N (B) → R(A)⊕ S,

C4 is invertible,X = R(A)⊕ S, Y = P ⊕N (B)
}

This Theorem can be rephrased in the case of Hilbert spaces as:

Remark: If the conditions of Theorem 2.1 are satisfied, then the operator matrix
MC can be represented as

(2.3) MC =

A1 C1 0
0 0 C4

0 B1 0

 : X ⊕ P ⊕N (B) → R(A)⊕ S ⊕K

where A1 and B1 are invertible operators. Using this representation it is easy to
verify that

(2.4) M−1
C =

A−1
1 0 −A−1

1 C1B
−1
1

0 0 B−1
1

0 C−1
4 0

 : R(A)⊕ S ⊕K → X ⊕ P ⊕N (B).

In the case when either A or B is invertible, MC will be invertible if and only if
both A and B are invertible, and it will be invertible for all C ∈ B(Y,X ). The
inverse of MC will in this case be given by

M−1
C =

[
A−1 −A−1CB−1

0 B−1

]
.

From the previous remark, we see that σ(M0) = σ(A) ∪ σ(B), and in the result
that follows, we establish an analogous result for the ε-pseudospectrum:
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Lemma 2.2. Let A ∈ B(X ), B ∈ B(Y) and ε > 0. We have that σε(M0) =
σε(A) ∪ σε(B).

Proof. Since σ(M0) = σ(A) ∪ σ(B) and

(M0 − λ)−1 =

[
(A− λ)−1 0

0 (B − λ)−1

]
, λ ∈ ρ(A) ∩ ρ(B)

it is sufficient to show that for any λ ∈ ρ(M0) we have that

∥(M0 − λ)−1∥X⊕Y >
1

ε
⇔

(
∥(A− λ)−1∥X >

1

ε
or ∥(B − λ)−1∥Y >

1

ε

)
.

Since
∥(M0 − λ)−1∥X⊕Y ≤ max{∥(A− λ)−1∥X , ∥(B − λ)−1∥Y}

it immediately follows that if ∥(M0 − λ)−1∥X⊕Y > 1
ε , then ∥(A − λ)−1∥X > 1

ε
or ∥(B − λ)−1∥Y > 1

ε . Conversely, let us suppose that ∥(A − λ)−1∥X > 1
ε or

∥(B−λ)−1∥Y > 1
ε . Without loss of generality we can suppose that ∥(A−λ)−1∥X > 1

ε
so there exists a vector x ∈ X such that ∥x∥X = 1 and ∥(A− λ)−1x∥X > 1

ε . Then[
x
0

]
∈ X ⊕ Y,

∥∥∥∥[x0
]∥∥∥∥

X⊕Y
= 1 and

∥∥∥∥(M0 − λ)−1

[
x
0

]∥∥∥∥
X⊕Y

=

∥∥∥∥[(A− λ)−1x
0

]∥∥∥∥
X⊕Y

= ∥(A− λ)−1x∥X >
1

ε

completes the proof. 2

3. Main Results

With the preliminary results now in place we proceed with the main results of this
paper:

Theorem 3.1. Let A ∈ B(X ), B ∈ B(Y) and ε > 0. Then

(3.1)

∩
C∈B(Y,X )

σε(MC) = σ0 ∪ ((σε(A) ∪ σε(B)) \ (σ(A) ∪ σ(B))) ∪ Σε.

where

σ0 =
∩

C∈B(Y,X )

σ(MC),

Σε =

{
λ ∈ (σ(A) \ σl(A)) ∪ (σ(B) \ σr(B)) : ||(A− λ)−1

l ||X >
1

ε

or ||(B − λ)−1
r ||Y >

1

ε

}
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Proof. (⊇): Let us first show that σ0 ∪ ((σε(A) ∪ σε(B)) \ (σ(A) ∪ σ(B))) ∪ Σε ⊆∩
C∈B(Y,X ) σε(MC). From the definition of the ε-pseudospectrum it is clear that

σ0 ⊆
∩

C∈B(Y,X )

σε(MC).

Now, let λ ∈ (σε(A)∪σε(B))\(σ(A)∪σ(B)) be arbitrary. Since λ ̸∈ σ(A)∪σ(B) we
have that MC−λ is invertible for every C ∈ B(Y,X ). If λ ∈ σε(A) then there exists
a unit vector x ∈ X such that ∥(A−λ)−1x∥X > 1

ε , so for an arbitrary C ∈ B(Y,X )
we have that∥∥∥∥(MC − λ)−1

[
x
0

]∥∥∥∥
X⊕Y

=

∥∥∥∥[(A− λ)−1x
0

]∥∥∥∥
X⊕Y

= ∥(A− λ)−1x∥X >
1

ε
.

Similarly, if λ ∈ σε(B) then there exists a unit vector y ∈ Y such that ∥(B −
λ)−1y∥Y > 1

ε , so for an arbitrary C ∈ B(Y,X ) we have that∥∥∥∥(MC − λ)−1

[
0
y

]∥∥∥∥
X⊕Y

=

∥∥∥∥[−(A− λ)−1C(B − λ)−1y
(B − λ)−1y

]∥∥∥∥
X⊕Y

=
√
∥(A− λ)−1C(B − λ)−1y∥2X + ∥(B − λ)−1y∥2Y

≥ ∥(B − λ)−1y∥Y >
1

ε
.

Since C ∈ B(Y,X ) was arbitrary in these considerations we can conclude that
(σε(A) ∪ σε(B)) \ (σ(A) ∪ σ(B)) ⊆

∩
C∈B(Y,X ) σε(MC).

Next, let λ ∈ Σε be arbitrary. From the definition of the set Σε we know that A−λ
and B−λ are not invertible, but A−λ is left invertible and B−λ is right invertible,
and ∥(A − λ)−1

l ∥X > 1
ε or ∥(B − λ)−1

r ∥Y > 1
ε . Let C ∈ B(Y,X ) be arbitrary. We

have two possibilities, either MC − λ is invertible, or it is not. If it is not invertible
then λ ∈ σ(MC) ⊆ σε(MC). If MC − λ is invertible we can represent it as

MC − λ =

(A− λ)1 C1 0
0 0 C4

0 (B − λ)1 0

 : X ⊕ P ⊕N (B − λ) → R(A− λ)⊕ S ⊕K

X = R(A − λ) ⊕ S, Y = P ⊕ N (B − λ), and where (A − λ)1 and (B − λ)1 are
invertible operators such that

(A− λ)−1
l =

[
(A− λ)−1

1 0
]
: R(A− λ)⊕ S → X

(B − λ)−1
r =

[
(B − λ)−1

1

0

]
: Y → P ⊕N (B − λ).

By (2.4) we know that (MC − λ)−1 can be represented as(A− λ)−1
1 0 −(A− λ)−1

1 C1(B − λ)−1
1

0 0 (B − λ)−1
1

0 C−1
4 0

 : R(A−λ)⊕S⊕K → X⊕P⊕N (B−λ).
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If ∥(A − λ)−1
l ∥X > 1

ε then there exists a unit vector x1 ∈ R(A − λ) such that

∥(A− λ)−1
l x1∥X > 1

ε from which we get∥∥∥∥(MC − λ)−1

[
x1

0

]∥∥∥∥
X⊕Y

=

∥∥∥∥∥∥
A−1

1 0 −A−1
1 C1B

−1
1

0 0 B−1
1

0 C−1
4 0

x1

0
0

∥∥∥∥∥∥
X⊕Y

=

∥∥∥∥∥∥
(A− λ)−1

1 x1

0
0

∥∥∥∥∥∥
X⊕Y

=

∥∥∥∥[(A− λ)−1
l x1

0

]∥∥∥∥
X⊕Y

= ∥(A− λ)−1
l x1∥X >

1

ε
.

This implies that ∥(MC − λ)−1∥X⊕Y > 1
ε . Similarly, if ∥(B − λ)−1

r ∥ > 1
ε then there

exists a unit vector y ∈ Y such that ∥(B − λ)−1
r y∥Y > 1

ε , and in this case we have
that∥∥∥∥(MC − λ)−1

[
0
y

]∥∥∥∥
X⊕Y

=

∥∥∥∥∥∥
(A− λ)−1

1 0 −(A− λ)−1
1 C1(B − λ)−1

1

0 0 (B − λ)−1
1

0 C−1
4 0

00
y

∥∥∥∥∥∥
X⊕Y

=

∥∥∥∥∥∥
−(A− λ)−1

1 C1(B − λ)−1
1 y

0
(B − λ)−1

1 y

∥∥∥∥∥∥
X⊕Y

=

∥∥∥∥[−(A− λ)−1
l C(B − λ)−1

r y
(B − λ)−1

r y

]∥∥∥∥
X⊕Y

=
√
∥(A− λ)−1

l C(B − λ)−1
r y∥2X + ∥(B − λ)−1

r y∥2Y

≥ ∥(B − λ)−1
r y∥Y >

1

ε

which again shows that ∥(MC − λ)−1∥X⊕Y > 1
ε . We can now conclude that

Σε ⊆
∩

C∈B(Y,X ) σε(MC) which completes the proof of the right inclusion.

(⊆): We will now show that∩
C∈B(Y,X )

σε(MC) ⊆ σ0 ∪ ((σε(A) ∪ σε(B)) \ (σ(A) ∪ σ(B))) ∪ Σε.

Let λ ∈
∩

C∈B(Y,X ) σε(MC) be arbitrary, and we will consider 3 cases.

Case 1: λ ∈ σ(MC) for all C ∈ B(Y,X ). This case is trivial since λ ∈ σ0 in this
case.

Case 2: λ ∈
∩

C∈B(Y,X ) σε(MC) and λ ∈ ρ(A)∩ρ(B). In this caseMC−λ is invertible

for all C ∈ B(Y,X ) so the assumption that λ ∈
∩

C∈B(Y,X ) σε(MC) implies that
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∥(MC − λ)−1∥X⊕Y > 1
ε for all C ∈ B(Y,X ). This will hold for M0 − λ as well,

which implies that

max{∥(A− λ)−1∥X , ∥(B − λ)−1∥Y} ≥ ∥(M0 − λ)−1∥X⊕Y >
1

ε
.

This allows us to conclude that in this case λ ∈ (σε(A) ∪ σε(B)) \ (σ(A) ∪ σ(B)).

Case 3: λ ∈
∩

C∈B(Y,X ) σε(MC), λ ̸∈ σ0, λ ̸∈ ρ(A) ∩ ρ(B). So, (A − λ)−1
l and

(B−λ)−1
r exist. Futhermore, N (B−λ) ∼= S, where S is a complement of R(A−λ)

in X . This complement exists and is non-trivial since A − λ is left-invertible, but
not invertible. Let J be an isomorphism from N (B − λ) to S.

There exists an operator C ′ ∈ B(Y,X ) such that his representation with respect
to the decompositions X = R(A− λ)⊕ S, Y = P ⊕N (B − λ) is of the form

C ′ =

[
0 0
0 C4

]
: P ⊕N (B − λ) → R(A− λ)⊕ S

where C4 is invertible and ∥C−1
4 ∥ < min{∥(A−λ)−1

l ∥X , ∥(B−λ)−1
r ∥Y}. Notice that

in this case ∥C−1
4 ∥ refers to the norm on B(N (B − λ),S) induced by the norms on

Y and X , respectively.

Indeed, let m = min{∥(A−λ)−1
l ∥X , ∥(B−λ)−1

r ∥Y}. We will define C ′ ∈ B(Y,X )
via

C ′ =

[
0 0
0 C4

]
: P ⊕N (B − λ) → R(A− λ)⊕ S,

C4 =
2∥J−1∥

m
J.

For this choice of C ′, we have that C−1
4 = m

2∥J−1∥J
−1 and

∥C−1
4 ∥ =

m

2∥J−1∥
∥J−1∥ =

m

2
< m.

Since λ ∈ σε(MC′) and MC′ − λ is invertible we have that

1

ε
< ∥(MC′ − λ)−1∥X⊕Y

≤ max{∥C−1
4 ∥, ∥(A− λ)−1

l ∥X , ∥(B − λ)−1
r ∥Y}

≤ max{∥(A− λ)−1
l ∥X , ∥(B − λ)−1

r ∥Y},

where the third inequality follows from ∥C−1
4 ∥ < min{∥(A−λ)−1

l ∥X , ∥(B−λ)−1
r ∥Y},

and the second inequality follows from Lemma 2.1. Indeed, from our choice of C ′

we see that MC′ − λ can be represented as

MC′ − λ =

(A− λ)1 0 0
0 0 C4

0 (B − λ)1 0

 : X ⊕ P ⊕N (B − λ) → R(A− λ)⊕ S ⊕K
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X = R(A − λ) ⊕ S, Y = P ⊕ N (B − λ), and where (A − λ)1 and (B − λ)1 are
invertible operators such that

(A− λ)−1
l =

[
(A− λ)−1

1 0
]
: R(A− λ)⊕ S → X

(B − λ)−1
r =

[
(B − λ)−1

1

0

]
: Y → P ⊕N (B − λ).

By (2.4) we know that

(MC′−λ)−1 =

(A− λ)−1
1 0 0

0 0 (B − λ)−1
1

0 C−1
4 0

 : R(A−λ)⊕S⊕K → X⊕P⊕N (B−λ),

which allows us to apply Lemma 2.1 and establish

∥(MC′ − λ)−1∥X⊕Y ≤ max{∥C−1
4 ∥, ∥(A− λ)−1

l ∥X , ∥(B − λ)−1
r ∥Y}

since ∥(A− λ)−1
1 ∥ = ∥(A− λ)−1

l ∥ and ∥(B − λ)−1
1 ∥ = ∥(B − λ)−1

r ∥
This inequality implies that

∥(A− λ)−1
l ∥X >

1

ε
or ∥(B − λ)−1

r ∥Y >
1

ε
,

which proves that λ ∈ Σε in this case, and completes the proof. 2

The result we obtained regarding the perturbations of the ε-pseudospectrum
of 2 × 2 upper-triangular operator matrices is completely analogous to the results
converting the spectrum, and it would be natural to expect that a similar result
holds for the sets ∪C∈B(Y,X )σ(MC) and ∪C∈B(Y,X )σε(MC), but we will show that
this is not the case.

We have already made use of the fact that if λ ∈ ρ(A) ∩ ρ(B) then MC − λ is
invertible for all C which in turn implies that

σ(MC) ⊆ σ(A) ∪ σ(B),

which (together with σ(M0) = σ(A) ∪ σ(B)) in turn allows us to conclude that∪
C∈B(Y,X )

σ(MC) = σ(A) ∪ σ(B).

In the following Theorem, we show that in the case of the ε-pseudospectrum we
cannot produce a similar result:

Theorem 3.2. Let A ∈ B(X ), B ∈ B(Y) and ε > 0. Then

(3.2)
∪

C∈B(K,H)

σε(MC) = C.
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Proof. As σε(M0) = σε(A) ∪ σε(B) it is sufficient to show that for each λ ∈ C \
(σε(A)∪σε(B)) there exists an operator Cλ ∈ B(Y,X ) such that λ ∈ σε(MCλ

). We
can refine this further since σ(A)∪σ(B) ⊆ σε(A)∪σε(B), so if λ ∈ C\(σε(A)∪σε(B))
then A − λ, B − λ will be invertible, and MC − λ will be invertible for every
C ∈ B(Y,X ).

Let λ ∈ C\(σε(A)∪σε(B)) be arbitrary, and let x0 ∈ X and y0 ∈ Y be arbitrary,
but fixed vectors such that ∥y0∥Y = 1.

We will define Cλ in the following way. Let x1 = (A− λ)x0, y1 = (B − λ)−1y0,
and

Cλy =

{
Lx1, y = y1

0, otherwise
where L =

2

ε∥x0∥X
.

The operator Cλ is well-defined as an operator of rank 1, and

∥(A− λ)−1Cλ(B − λ)−1y0∥X = ∥(A− λ)−1Cλy1∥X
= ∥L(A− λ)−1x1∥X

= L∥x0∥X =
2

ε
.

We now have an unit vector in X ⊕ Y,

[
0
y0

]
such that

∥∥∥∥(MCλ
− λ)−1

[
0
y0

]∥∥∥∥
X⊕Y

=

∥∥∥∥[−(A− λ)−1Cλ(B − λ)−1y0
(B − λ)−1y0

]∥∥∥∥
X⊕Y

=
√
∥(A− λ)−1Cλ(B − λ)−1y0∥2X + ∥(B − λ)−1y0∥2Y

≥ ∥(A− λ)−1Cλ(B − λ)−1y0∥Y =
2

ε
>

1

ε
.

This allows us to conclude that ∥(MCλ
− λ)−1∥X⊕Y > 1

ε , so λ ∈ σε(MCλ
), which

completes the proof. 2

We can now briefly comment on the problem of finding an operator C ′ ∈ B(Y,X )
such that

σε(MC′) =
∩

C∈B(Y,X )

σε(MC).

Remark: We have already mentioned that this question in the case of the spec-
trum has been partially answered in several papers, such as [2, 3, 11, 21], and it is
interesting to note that in some cases the solution to this question is the same for
the ε-pseudospectrum and spectrum.

In the case when A ∈ B(X ) and B ∈ B(Y) are Riesz or polynomially Riesz, it is
easy to verify that σ0 = σ(A) ∪ σ(B) and that Σε = Ø so∩

C∈B(Y,X )

σε(MC) = σε(A) ∪ σε(B),
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and therefore any C ∈ B(Y,X ) has the desired property.

Remark: There is room for further research on this topic in several direc-
tions. One direction would be to better describe the ε-pseudospectrum of an upper-
triangular operator matrix MC for fixed A ∈ B(X ), B ∈ B(Y) and C ∈ B(Y,X ).
A second direction would be to investigate the perturbations of ε-pseudospectra for
other types of operator matrices, such as 2× 2 operator matrices of the form

MT,S =

[
A B
T S

]
where A ∈ B(X ) and B ∈ B(Y,X ) are given operators, and T ∈ B(X ,Y), S ∈ B(Y)
and

MX =

[
A C
X B

]
,

where A ∈ B(X ), B ∈ B(Y) and C ∈ B(Y,X ) are given operators and X ∈ B(X ,Y).
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7. D. S. Cvetković-Ilić and M. Kostadinov: Invertibility of linear combinations in
B(H). Linear and Multilinear Algebra 66(11) (2017), 2139–2150.

8. D. S. Cvetković-Ilić and J. Milenković: Fredholmness of a linear combination of
operators. Journal of Mathematical Analysis and Applications 458(1) (2018), 555–565.

9. E. B. Davies: Pseudo-Spectra, the Harmonic Oscillator and Complex Resonances.
Proceedings: Mathematical, Physical and Engineering Sciences 455 (1982), 585–599.



A Note on the Perturbations of Pseudospectra 13

10. T. A. Driscoll and L. N. Trefethen: Pseudospectra for the wave equation with an
absorbing boundary. Journal of Computational and Applied Mathematics 67 (1996),
125–142.

11. H. K. Du and J. Pan: Perturbation of spectrums of 2 × 2 operator matrices. Proc.
Amer. Math. Soc. 121 (1994), 761–776.

12. J. K. Han, H. Y. Lee and W. Y. Lee: Invertible completions of 2×2 upper triangular
operator matrices. Proc. Amer. Math. Soc. 128 (2000), 119–123.

13. J. Huang, J. Sun, A. Chen and C. Trunk: Invertibility of 2× 2 operator matrices.
Mathematische Nachrichten 292 (11), 2411–2426.

14. J. L. Jaramillo, R. P. Macedo and L. Al Sheikh: Pseudospectrum and Black
Hole Quasinormal Mode Instability. Physical Review X 11(3) (2021), 031003(44).

15. M. Kostadinov: Injectivity of linear combinations in B(H). The Electronic Journal
of Linear Algebra 37 (2021), 359–369.

16. M. Kostadinov: Operator matrix representations of the Generalised Bott-Duffin In-
verse. Bulletin of the Iranian Mathematical Society 47(2) (2021), 523–533.
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