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ON A SEMI-SYMMETRIC NON-METRIC CONNECTION IN AN ALMOST
KENMOTSUMANIFOLD WITH NULLITY DISTRIBUTION

Gopal Ghosh

Abstract. We consider a semi-symmetric non-metric connection in an almost Kenmotsu
manifold with its characteristic vector field ξ belonging to the (k, μ)′-nullity distribution.
We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the
semi-symmetric non-metric connection in an almost Kenmotsu manifold with ξ belong-
ing to the (k, μ)′-nullity distribution. Then we characterize an almost Kenmotsumanifold
with ξ belonging to the (k, μ)′-nullity distribution.
Keywords: semi-symmetric non-metric connection, almost Kenmotsu manifold, curva-
ture tensor, Ricci tensor, nullity distribution.

1. Introduction

K. Yano [41] initiated systematic study of semi-symmetric connection in a Rie-
mannian manifold. In 1924, Friedmann and Schouten [20] introduced the idea of
semi-symmetric connection on a differentiable manifold. A linear connection ∇̄ on
a differentiable manifoldM is said to be a semi-symmetric connection if the torsion
tensor T of the connection ∇̄ satisfies T(X,Y) = η(Y)X − η(X)Y, where η is a 1-form
and ξ is a vector field defined by η(X) = �(X, ξ), for all vector fields X ∈ χ(M),
where χ(M) is the set off all differentiable vector fields on M.
In 1932, Hayden [22] introduced the idea of semi-symmetric metric connection
on a Riemannian manifold (M, �). A semisymmetric connection ∇̄ is said to be a
semi-symmetric metric connection if ∇̄� = 0. The study of a semi-symmetric metric
connection was further developed by Amur and Pujar [1], T. Imai [23], U. C. De
[16], Z. I. Szab̈o [30], T. Q. Binh [9], M. Pravanović and N. Pušić [27], N. Pušić [29],
Lj. S. Velimirović et al [36, 37], Ajit Barman [10, 11, 12], Y. Liang [25] and many
other geometers.
After a long gap the study of a semi-symmetric connection ∇̄ satisfying ∇̄� � 0 was
initiated by M. Prvanović [28] with the name pseudo-metric semi-symmetric con-
nection. A semi-symmetric connection ∇̄ is said to be a semi-symmetric non-metric
connection if ∇̄� � 0. Semi-symmetric non-metric connections have been studied

Received November 03, 2015; Accepted January 11, 2016
2010 Mathematics Subject Classification. Primary 53C25; Secondary 53C35

245



246 Gopal Ghosh

by several authors such as N. S. Agashe and M. R. Chafle [2], O. C. Andonie [3],
U. C. De et al [17, 18], D. Smaranda [31], B. Barua and S. Mukhopadhay [6], R. N.
Singh et al [32, 33, 34] and many others.

The notion of k-nullity distribution was introduced by Gray [21] and Tanno [35]
in the study of Riemannian manifolds (M, �), which is defined for any p ∈ M and
k ∈ R as follows:

Np(k) = {Z ∈ TpM : R(X,Y)Z = k[�(Y,Z)X − �(X,Z)Y]},(1.1)

for any X,Y ∈ TpM, where TpM denotes the tangent vector space of M at any
point p ∈ M and R denotes the Riemannian curvature tensor of type (1, 3). Blair,
Koufogiorgos and Papantoniou [4] introduced a generalized notion of the k-nullity
distribution, named the (k, μ)-nullity distribution on a contact metric manifold
(M2n+1, φ, ξ, η, �), which is defined for any p ∈M and k, μ ∈ R as follows:

Np(k, μ) = {Z ∈ TpM : R(X,Y)Z = k[�(Y,Z)X − �(X,Z)Y]
+μ[�(Y,Z)hX− �(X,Z)hY]},(1.2)

where h = 1
2£ξφ and £ denotes the Lie derivative.

In [13], Dileo and Pastore introduced the notion of (k, μ)′-nullity distribution,
another generalized notion of the k-nullity distribution, on an almost Kenmotsu
manifold (M2n+1, φ, ξ, η, �) which is defined for any p ∈ M2n+1 and k, μ ∈ R as
follows:

Np(k, μ)′ = {Z ∈ TpM : R(X,Y)Z = k[�(Y,Z)X − �(X,Z)Y]
+μ[�(Y,Z)h′X − �(X,Z)h′Y]}(1.3)

where h′ = h ◦ φ.
A Riemannian manifold is said to be Ricci semi-symmetric if R(X,Y) · S = 0,

where R(X,Y) is considered as a field of linear operators, acting on S and S denotes
the Ricci tensor of type (0, 2).
The present paper is organized in the following way. In section 2, we give a brief
account on an almost Kenmotsu manifold, while section 3 contains some results on
an almost Kenmotsu manifold with ξ belonging to the (k, μ)′-nullity distribution.
In section 4, we define a semi-symmetric non-metric connection. In section 5, we
obtain the expressions of the curvature tensor and Ricci tensor with respect to
the semi-symmetric non-metric connection. Section 6 is devoted to characterize
Ricci semi-symmetric almost Kenmotsu manifold with ξ belonging to the (k, μ)′-
nullity distribution. Finally, we prove that if an almost Kenmotsu manifold with ξ
belonging to the (k, μ)′-nullity distribution is locallyφ-Ricci symmetric with respect
to the semi-symmetric non-metric connection, then themanifold is Ricci symmetric
under certain condition.
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2. Almost Kenmotsu manifold

Adifferentiable (2n+1)-dimensionalmanifoldM is said to have a (φ, ξ, η)-structure
or an almost contact structure, if it admits a (1, 1)-type tensor fieldφ, a characteristic
vector field ξ and a 1-form η satisfying ([5],[7]),

φ2 = −I + η ⊗ ξ, η(ξ) = 1,(2.1)

where I denote the identity endomorphism. Here also φξ = 0 and η ◦ φ = 0; both
can be derived from (2.1) easily.
If a manifold M with a (φ, ξ, η)-structure admits a Riemannian metric � such that
�(φX, φY) = �(X,Y)−η(X)η(Y), for anyvectorfieldsX,Y ofTpM2n+1, thenM is said to
have an almost contact structure (φ, ξ, η, �). The fundamental 2-formΦ on an almost
contact metric manifold is defined by Φ(X,Y) = �(X,ΦY) for any X, Y of TpM2n+1.
The condition for an almost contact metric manifold being normal is equivalent to
the vanishing of the (1, 2)-type torsion tensor Nφ, defined by Nφ = [φ, φ]+ 2dη⊗ ξ,
where [φ, φ] is the Nijenhuis torsion ofφ [5]. Recently in ([13],[14],[15],[26]), almost
contact metric manifold such that η is closed and dΦ = 2η∧Φ are studied and they
are called almost Kenmotsu manifolds. Obviously, a normal almost Kenmotsu
manifold is a Kenmotsu manifold. Also Kenmotsu manifolds can be characterized
by (∇Xφ)Y = �(φX,Y)ξ − η(Y)φX, for any vector fields X, Y. It is well known [24]
that a Kenmotsu manifoldM2n+1 is locally a warped product I × f N2n whereN2n is
a Kähler manifold, I is an open interval with coordinate t and the warping function
f , defined by f = cet for some positive constant c. Let us denote the distribution
orthogonal to ξ byD and defined byD = Ker(η) = Im(φ). In an almost Kenmotsu
manifold, since η is closed,D is an integrable distribution. LetM2n+1 be an almost
Kenmotsu manifold. We denote by h = 1

2£ξφ and l = R(·, ξ)ξ on M2n+1. The tensor
fields l and h are symmetric operators and satisfy the following relations :

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ + φh = 0,(2.2)

∇Xξ = −φ2X − φhX(⇒ ∇ξξ = 0),(2.3)

φlφ − l = 2(h2 − φ2),(2.4)

R(X,Y)ξ = η(X)(Y − φhY) − η(Y)(X − φhX)
+(∇Yφh)X − (∇Xφh)Y,(2.5)

for any vector fields X, Y. The (1, 1)-type symmetric tensor field h′ = h ◦ φ is
anticommuting with φ and h′ξ = 0. Also it is clear that ([13], [40])

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2).(2.6)

Almost Kenmotsu manifold have been studied by several authors such as Dileo
and Pastore ([13], [14], [15]), Wang and X. Liu ([39], [40]) and many others.
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3. Almost Kenmotsu manifold with ξ belonging to the (k, μ)′-nullity
distribution

This section is devoted to study almost Kenmotsu manifolds with ξ belonging to
the (k, μ)′-nullity distribution. Let X ∈ D be the eigenvector of h′ corresponding to
the eigenvalue λ. Then h′X = λX implies h′2X = λ2X. Therefore λ2X = (k + 1)φ2X,
since in a (k, μ)′-almost Kenmotsu manifold h′2 = (k+ 1)φ2. Hence λ2X = −(k+ 1)X
which implies λ2 = −(k + 1), a constant. Therefore k ≤ −1 and λ = ±√−k − 1. We
denote by [λ]′ and [−λ]′ the corresponding eigenspaces related to the non-zero
eigenvalue λ and −λ of h′, respectively. Before presenting our main theorems we
recall some results:

Lemma 3.1. (Prop. 4.1 and Prop. 4.3 of [13]) Let (M2n+1, φ, ξ, η, �) be an almost
Kenmotsu manifold such that ξ belongs to the (k, μ)′-nullity distribution and h′ � 0. Then
k < −1, μ = −2 and Spec (h′) = {0, λ,−λ}, with 0 as simple eigen value and λ =

√−k − 1.
The distributions [ξ]⊕ [λ]′ and [ξ]⊕ [−λ]′ are integrable with totally geodesic leaves. The
distributions [λ]′ and [−λ]′ are integrable with totally umbilical leaves. Furthermore, the
sectional curvature are given as following:

(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and
K(X, ξ) = k + 2λ if X ∈ [−λ]′,

(b) K(X,Y) = k − 2λ if X,Y ∈ [λ]′;
K(X,Y) = k + 2λ if X,Y ∈ [−λ]′ and
K(X,Y) = −(k + 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

Lemma 3.2. (Lemma 3 of [38]) Let (M2n+1, φ, ξ, η, �) be an almost Kenmotsu manifold
with ξ belonging to the (k, μ)′-nullity distribution and h′ � 0. If n > 1, then the Ricci
operator Q of M2n+1 is given by

Q = −2nid + 2n(k + 1)η ⊗ ξ − 2nh′.(3.1)

Moreover, the scalar curvature of M2n+1 is 2n(k − 2n).

Lemma 3.3. (Proposition 4.2 of [13]) Let (M2n+1, φ, ξ, η, �) be an almost Kenmotsu man-
ifold such that h′ � 0 and ξ belongs to the (k,−2)′-nullity distribution. Then for any
Xλ,Yλ,Zλ ∈ [λ]′ and X−λ,Y−λ,Z−λ ∈ [−λ]′, the Riemannian curvature tensor satisfies:

R(Xλ,Yλ)Z−λ = 0,
R(X−λ,Y−λ)Zλ = 0,
R(Xλ,Y−λ)Zλ = (k + 2)�(Xλ,Zλ)Y−λ,
R(Xλ,Y−λ)Z−λ = −(k + 2)�(Y−λ,Z−λ)Xλ,
R(Xλ,Yλ)Zλ = (k − 2λ)[�(Yλ,Zλ)Xλ − �(Xλ,Zλ)Yλ],

R(X−λ,Y−λ)Z−λ = (k + 2λ)[�(Y−λ,Z−λ)X−λ − �(X−λ,Z−λ)Y−λ].
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Lemma 3.4. (Lemma 4.1 of [13]) Let (M2n+1, φ, ξ, η, �) be an almost Kenmotsu manifold
with h′ � 0 and ξ belonging to the (k,−2)′-nullity distribution. Then, for any X,Y ∈
χ(M2n+1),

(∇Xh′)Y = −�(h′X + h′2X,Y)ξ − η(Y)(h′X + h′2X).

From (1.3) we have,

R(X,Y)ξ = k[η(Y)X − η(X)Y] + μ[η(Y)h′X − η(X)h′Y],(3.2)

where k, μ ∈ R. Also we get from (3.2)

R(ξ,X)Y = k[�(X,Y)ξ− η(Y)X] + μ[�(h′X,Y)ξ − η(Y)h′X].(3.3)

Contracting Y in (3.2) we have

S(X, ξ) = 2nkη(X).(3.4)

Moreover in an almost Kenmotsu manifold with (k, μ)′-nullity distribution,

∇Xξ = X − η(X)ξ + h′X(3.5)

and
(∇Xη)Y = �(Y,X) − η(X)η(Y) + �(Y, h′X)(3.6)

4. Semi-symmetric non-metric connection

This section deals with a type of semi-symmetric non-metric connection on an
almost Kenmotsu manifold.
A relation between semi-symmetric non-metric connection ∇̄ and the Levi-Civita
connection ∇ is given by [2],

∇̄XY = ∇XY − η(X)Y + �(X,Y)ξ.(4.1)

Using (4.1), the torsion tensor T of Mwith respect to the connection ∇̄ is given by

T(X,Y) = ∇̄XY − ∇̄YX − [X,Y] = η(Y)X − η(X)Y.(4.2)

Hence a relation satisfying (4.2) is called a semi-symmetric connection.
Further using (4.1), we have

(∇̄X�)(Y,Z) = ∇X�(Y,Z) − �(∇̄XY,Z) − �(Y, ∇̄XZ)
= 2η(X)�(Y,Z)− η(Y)�(X,Z) − η(Z)�(X,Y) � 0.(4.3)

∇̄ defined by (4.1) satisfying (4.2) and (4.3) is a type of semi-symmetric non-metric
connection.
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5. Curvature tensor of an almost Kenmotsu manifold such that ξ belongs to
the (k, μ)′-nullity distribution with respect to the semi-symmetric

non-metric connection

In this sectionwe obtain the expressions of the curvature tensor, Ricci tensor and
scalar curvature ofM2n+1 with respect to the semi-symmetric non-metric connection
defined by (4.1).
Analogous to the definitions of the curvature tensor R of M with respect to the
Levi-Civita connection ∇, we define the curvature tensor R̄ ofMwith respect to the
semi-symmetric non-metric connection ∇̄ given by,

R̄(X,Y)Z = ∇̄X∇̄YZ − ∇̄Y∇̄XZ − ∇̄[X,Y]Z,(5.1)

where X, Y, Z, are the vector fields onM2n+1.
Using (4.1) in (5.1) we get,

R̄(X,Y)Z = R(X,Y)Z − (∇Xη)(Y)Z + (∇Yη)(X)Z
−2η(Y)�(X,Z)ξ+ 2η(X)�(Y,Z)ξ+ �(Y,Z)∇Xξ
−η(Y)�(X,Z)ξ.(5.2)

Using (3.5) and (3.6) we get from (5.2),

R̄(X,Y)Z = R(X,Y)Z + �(Y,Z)X − �(X,Z)Y
+�(Y,Z)h′X − �(X,Z)h′Y + η(X)�(Y,Z)ξ
−η(Y)�(X,Z)ξ.(5.3)

From (5.3) it follows that

R̄(X,Y)Z = −R̄(Y,X)Z
and

R̄(X,Y)Z + R̄(Y,Z)X + R̄(Z,X)Y = 0,

the first Bianchi identity with respect to the semi-symmetric non-metric connection
∇̄. Putting X = ξ in (5.3) and by the help of (3.3), we get

R̄(ξ,Y)Z = (k + 2)�(Y,Z)ξ− (k + 1)η(Z)Y + η(Z)h′Y −
η(Y)η(Z)ξ.(5.4)

Again putting Z = ξ in (5.4) we get,

R̄(ξ,Y)ξ = (k + 1)η(Y)ξ− (k + 1)Y + h′Y.(5.5)
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Let {e1, e2, ...e2n+1} be a local orthonormal basis of fields in M. Then by putting
X = Z = ei in (5.3) and taking summation over i, 1 ≤ i ≤ 2n + 1

S̄(Y,Z) = S(Y,Z) + (4n + 1)�(Y,Z)− �(h′Y,Z) − η(Y)η(Z),(5.6)

where S and S̄ are the Ricci tensor ofMwith respect to ∇ and ∇̄ respectively. From
(5.6) it is clear that,

S̄(Y,Z) = S̄(Z,Y).(5.7)

Let r̄ and r denote the scalar curvature of M with respect to ∇̄ and ∇ respectively.
Again let {e1, e2, ...e2n+1} be a local orthonormal basis of vector fields in M. Then by
putting Y = Z = ξ in (5.6) and taking summation over i, 1 ≤ i ≤ 2n + 1,

r̄ = r + 2n(4n + 3).(5.8)

Therefore we have the following:

Theorem 5.1. For an almost Kenmotsu manifold M with respect to the semi-symmetric
non-metric connection ∇̄

(i) The curvature tensor is given by (5.3),

(ii) The Ricci tensor is given by (5.6),

(iii) The scalar curvature is given by r̄ = r + 2n(4n + 3)

(iv) R̄(X,Y)Z = −R̄(Y,X)Z,
(v) R̄(X,Y)Z + R̄(Y,Z)X + R̄(Z,X)Y = 0,

(vi) The Ricci tensor S̄ is symmetric.

Now using (3.1), we have

S(Y,Z) = −2n�(Y,Z)+ 2n(k + 1)η(Y)η(Z) − 2n�(h′Y,Z).(5.9)

6. Ricci semi-symmetric almost Kenmotsu manifold such that ξ belongs
to(k, μ)′-nullity distribution with respect to the semi-symmetric non-metric

connection

In this section we characterize Ricci semi-symmetric almost Kenmotsu manifolds
with respect to the semi-symmetric non-metric connection.
Now we prove the following:

Theorem 6.1. Let M2n+1 be an almost Kenmotsu manifold with characteristic vector ξ
belonging to (k, μ)′-nullity distribution and h′ � 0. If the manifold is Ricci semi-symmetric
with respect to the semi-symmetric non-metric connection then the manifold M2n+1 is an
Einstein manifold with respect to the semi-symmetric non-metric connection or locally
isometric to the Riemannian product of an (n + 1)-dimensional manifold with constant
sectional curvature −4 and a flat n-dimensional manifold.
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Proof. Suppose (R̄(X,Y) · S̄)(Z,W) = 0 for all vector fields X, Y, Z, W on M2n+1.
Then

S̄(R̄(X,Y)Z,W) + S̄(Z, R̄(X,Y)W) = 0.(6.1)

Putting X = Z = ξ in (6.1) yields

S̄(R̄(ξ,Y)ξ,W) + S̄(ξ, R̄(ξ,Y)W) = 0.(6.2)

Using (5.4) and (5.5) in (6.2) we get,

(k + 1)η(Y)S̄(ξ,W) − (k + 1)S̄(Y,W) + S̄(h′Y,W)
+(k + 2)�(Y,W)S̄(ξ, ξ) − (k + 1)η(W)S̄(ξ,Y) − η)(Y)η(W)S̄(ξ, ξ) = 0,(6.3)

for any vector fields Y,W onM2n+1.
By the help of (5.6) and (5.9) we obtain

−(k + 1)S̄(Y,W) + S̄(h′Y,W) + 2n(k + 2)2�(Y,W)
−2n(k + 2)η(Y)η(W) = 0.(6.4)

Putting Y = h′Y in (6.4) yields

−(k + 1)S̄(h′Y,W) + S̄(h′2Y,W) + 2n(k + 2)2�(h′Y,W) = 0,(6.5)

Again substituting h′2 = (k + 1)φ2 in (6.5), yields

−(k + 1)S̄(h′Y,W) + S̄((k + 1)φ2Y,W) + 2n(k + 2)2�(h′Y,W) = 0.(6.6)

Using (2.1) we get from (5.4),

(k + 1)S̄(h′Y,W) − (k + 1)S̄(Y,W) + (k + 1)η(Y)S̄(ξ,W)
+2n(k + 2)2�(h′Y,W),(6.7)

By the help of (5.6) it follows that

−(k + 1)S̄(h′Y,W) − (k + 1)S̄(Y,W) + 2n(k + 1)(k + 2)η(Y)η(W)
+2n(k + 2)2�(h′Y,W) = 0,(6.8)

Multiplying (6.5) by (k + 1) and then adding with (6.8) we obtain

(k + 2)[(k + 1)S̄(Y,W) − 2n(k + 1)(k + 2)�(Y,W)
−2n(k + 2)�(h′Y,W)] = 0,(6.9)

Let Y,Z ∈ [λ]′, then (6.9) takes the form

(k + 2)[S̄(Y,W) − 2n(k + 2)
(
1 − λ

(k + 1)

)
�(Y,W)] = 0,(6.10)
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since (k+1) � 0. In [13], Dileo and Pastore prove that in almost Kenmotsu manifold
with ξ belonging to the (k, μ)′-nullity distribution if k = −1, then h′ = 0 and the
manifoldM2n+1 is locally a wrapped product of an almost Kähler manifold and an
open interval. Thus k+1 = 0, contradicts our hypothesis h′ � 0. Then the following
two cases occur:
Case 1:

S̄(Y,W) = 2n(k + 2)
(
1 − λ

(k + 1)

)
�(Y,W),

which implies that the manifold is an Einstein manifold with respect to the semi-
symmetric non-metric connection.
Case 2: (k + 2) = 0, that is, k = −2.
Without loss of generality we may choose λ = 1. Then we have from Lemma (3.3),

R(Xλ,Yλ)Zλ = −4[�(Yλ,Zλ)Xλ − �(Xλ,Zλ)Yλ],(6.11)

R(X−λ,Y−λ)Z−λ = 0,(6.12)

for any vectorfieldXλ,Yλ,Zλ ∈ [λ]′ andX−λ,Y−λ,Z−λ ∈ [−λ]′. Also noticing μ = −2
it follows from lemma (3.1) that K(X, ξ) = −4 for any X ∈ [λ]′ and K(X, ξ) = 0 for
any X ∈ [−λ]′. Again from lemma (3.1), we see that K(X,Y) = −4 for any X,Y ∈
[λ]′;K(X,Y) = 0 for any X,Y ∈ [−λ]′ and K(X,Y) = 0 for any X ∈ [λ]′,Y ∈ [−λ]′. As
is shown in [13] that the distribution [ξ] ⊕ [λ]′ is integrable with totally geodesic
leaves and the distribution [−λ]′ is integrable with totally umbilical leaves by
H = −(1 − λ)ξ, where H is the mean curvature vector field for the leaves of [−λ]′
immersed in M2n+1. Here λ = 1, then two orthogonal distributions [ξ] ⊕ [λ]′ and
[−λ]′ are both integrable with totally geodesic leaves immersed in M2n+1. Then
we can say that M2n+1 is locally isometric to H2n+1(−4) × Rn. This completes the
proof.

7. Locally φ-Ricci symmetric almost Kenmotsu manifolds with respect to the
semi-symmetric non-metric connection

E. Boeckx, P. Buecken and L. Vanhecke [8] introduced the notion of φ symmetry.
Recentlyφ-Ricci symmetric Sasakianmanifoldshave been studiedbyDeandSarkar
[19]. An almost Kenmotsu manifold M2n+1 is said to be φ-Ricci symmetric if the
Ricci operator satisfies

φ2((∇XQ)Y) = 0,

for all vector fields X,Y ∈M2n+1 and S(X,Y) = �(QX,Y). If X,Y are orthogonal to ξ,
then the manifold is said to be locally φ-Ricci symmetric.
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Now from (5.9) we can write,

Q̄Y = QY + (4n + 1)Y − h′Y − η(Y)ξ.(7.1)

Again we have,

(∇̄XQ̄)Y = ∇̄XQ̄Y − Q̄(∇̄XY).(7.2)

Using (6.1) in (6.2) we get,

(∇̄XQ̄)Y = (∇̄XQ)Y − (∇̄Xh′)Y − ((∇̄Xη)Y)ξ,(7.3)

Now we prove the following:

Theorem 7.1. If an almost Kenmotsu manifold with ξ belonging to (k, μ)′-nullity dis-
tribution is locally φ-Ricci symmetric with respect to the semi-symmetric non-metric
connection, then the manifold is Ricci symmetric.

Proof. We suppose that the manifold under consideration is locally φ-Ricci sym-
metric. Then φ2(∇̄XQ̄)Y = 0. Now using (2.1) we get from (7.3),

φ2(∇̄XQ)Y − φ2(∇̄Xh′)Y = 0.(7.4)

Hence from Lemma (3.2) we can easily obtain,

φ2(∇̄Xh′)Y = −η(Y)h′X − η(Y)h′2X.(7.5)

Setting h′2 = (k + 1)φ2 in (6.5) we get,

φ2(∇̄Xh′)Y = −η(Y)h′X − (k + 1)η(Y)X − (k + 1)η(X)η(Y)ξ.(7.6)

Using (2.1) and (7.6) in (7.4) we have,

−(∇̄XQ)Y + η(∇̄XQ)Y + η(Y)h′X − (k + 1)η(Y)X
+(k + 1)η(X)η(Y)ξ.(7.7)

From (4.1) it follows that,

∇̄XQY = ∇XQY − η(X)QY + �(X,QY)ξ.(7.8)

and

Q(∇̄XY) = Q(∇XY) − η(X)QY − 2nk�(X,QY)ξ.(7.9)

Also from (6.10) we obtain,

η((∇̄XQ)Y) = η((∇XQ)Y) + (1 + 2nk)�(X,QY).(7.10)
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Using (7.2), (7.8), (7.9) and (7.10) we get from (7.7),

−(∇XQ)Y − (1 + 2nk)�(X,QY)ξ+ (∇XS)(Y, ξ)ξ
+(1 + 2nk)�(X,QY)ξ+ η(Y)h′X − (k + 1)η(Y)X
+η(X)η(Y)ξ = 0.(7.11)

Taking inner product with Z of (7.11) and considering X,Y,Z orthogonal to ξ, we
get

(∇XS)(Y,W) = 0,

which implies the manifold is Ricci symmetric with respect to the Levi-Civita
connection provided X,Y,Z are orthogonal to ξ. This completes the proof.
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